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Abstract: We find a surprising connection between asymptotically flat space-times

and non-relativistic conformal systems in one lower dimension. The BMS group is

the group of asymptotic isometries of flat Minkowski space at null infinity. This

is known to be infinite dimensional in three and four dimensions. We show that

the BMS algebra in 3 dimensions is the same as the 2D Galilean Conformal Algebra

which is of relevance to non-relativistic conformal symmetries. We further justify our

proposal by looking at a Penrose limit of a radially infalling null ray inspired by non-

relativistic scaling and obtain a flat metric. The 4D BMS algebra is also discussed

and found to be the same as another class of GCA, called the semi-GCA, in three

dimensions. We propose a general BMS/GCA correspondence. Some consequences

are discussed.
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1. Introduction

Holography in asymptotically Anti de Sitter spaces has been the cynosure of attention

for over a decade, following the AdS/CFT correspondence [1]. Somewhat less studied

and even lesser understood is holography in asymptotically flat spacetimes [2]. One

of the approaches to this has been to consider the Bondi-Metzner-Sachs group. In

the absence of gravity, the isometry group of the space-time is the well know Poincare

group which is the semi-direct product of translations and Lorentz transformations.

The situation, however, changes drastically when gravity is turned on, even for weak

gravitational fields. When one looks at four dimensional asymptotically flat metrics,

the isometry group of the background metric is enhanced to an infinite dimensional

asymptotic symmetry group at null infinity. This is the Bondi-Metzner-Sachs group

[3]. This consists of the semi-direct product of the global conformal group of the

unit 2-sphere and the infinite dimensional “super-translations”. There is a further
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enhancement to two copies of the Witt algebra (Virasoro algebra without the central

extension) times the super-translations if one does not require the transformations

generated to be well defined [21]. In three dimensions, under similar considerations,

bms3 is again infinite dimensional and now has one copy of the Witt algebra along

with the supertranslations [19]. These correspond to a null boundary of S1×R. For

a more thorough review of the BMS group with a modern perspective, the reader

is referred to [20]. Other studies of the flat space holographic correspondence using

the BMS group can be found in [22]. An incomplete list of works on other aspects

of flat space holography include [23].

The Galilean Conformal Algebra (GCA) on the other hand, has been discussed

in literature in connection with a non-relativistic limit of the AdS/CFT conjecture

[7]. It was obtained by a parametric contraction of the finite conformal algebra and

was observed to have an infinite dimensional lift for all space-time dimensions. The

2 and 3 point correlation functions of the GCA were found [8]. In the case of two

dimensions, the relativistic algebra is itself infinite dimensional and a simple map was

obtained between the two copies Virasoro algebra and 2d GCA. The representations

and other details of the two dimensional case have been worked out in detail in [9].

For other related studies in the GCA, the reader is referred to [14] – [17].

In what follows, we briefly review the two algebras the BMS1 and the GCA in

arbitrary dimensions and then show that bms3 and gca2 algebras are isomorphic.

The realization of central charges are discussed. We comment on how the limiting

procedure from the asymptotically AdS to the BMS as discussed in [19], although

similar, is a bit different from the way the GCA is obtained from the relativistic

Virasoro in [9]. In [7], we proposed a non-relativistic scaling for the bulk theory.

Here we show that a similar scaling in AdS3 would lead us to a flat metric when

one performs a Penrose limit on a radially infalling null ray. We move on to bms4

and discuss the equivalence to another algebra, the semi-Galilean conformal algebra

[15], in three dimensions. The semi-GCA is obtained by a generalized contraction

which makes one of the spatial directions non-relativistic while keeping the other

relativistic. A general BMS/GCA correspondence is proposed along with various

comments.

1The conventions and indeed the review of the BMS algebra closely follow [19].
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2. A quick look at the two algebras

2.1 The gcan algebra

The maximal set of conformal isometries of Galilean spacetime generates the infinite

dimensional Galilean Conformal Algebra [7]. The notion of Galilean spacetime is a

little subtle since the spacetime metric degenerates into a spatial part and a temporal

piece. Nevertheless there is a definite limiting sense (of the relativistic spacetime)

in which one can define the conformal isometries (see [14]) of the nonrelativistic

geometry. Algebraically, the set of vector fields generating these symmetries are

given by

L(n) = −(n + 1)tnxi∂i − tn+1∂t ,

M
(n)
i = tn+1∂i ,

J (n)
a ≡ J

(n)
ij = −tn(xi∂j − xj∂i) , (2.1)

for integer values of n. Here i = 1 . . . (d− 1) range over the spatial directions. These

vector fields obey the algebra

[L(m), L(n)] = (m− n)L(m+n), [L(m), J (n)
a ] = −nJ (m+n)

a ,

[J (n)
a , J

(m)
b ] = fabcJ

(n+m)
c , [L(m),M

(n)
i ] = (m− n)M

(m+n)
i . (2.2)

There is a finite dimensional subalgebra of the GCA (also sometimes referred

to as the GCA) which consists of taking n = 0,±1 for the L(n),M
(n)
i together with

J
(0)
a . This algebra is obtained by considering the nonrelativistic contraction of the

usual (finite dimensional) global conformal algebra SO(d, 2) (in d > 2 spacetime

dimensions) (see for example [4]–[7]).

However, in two spacetime dimensions, as is well known, the situation is special.

The relativistic conformal algebra is infinite dimensional and consists of two copies

of the Virasoro algebra. One expects this to be also related, now to the infinite

dimensional GCA algebra. Indeed in two dimensions the non-trivial generators in

(2.2) are the Ln and the Mn (where we have dropped the spatial index from the

latter since there is only one spatial direction and instead restored the mode number

n to the conventional subscript) :

Ln = −(n + 1)tnx∂x − tn+1∂t ,

Mn = tn+1∂x , (2.3)

which obey

[Lm, Ln] = (m− n)Lm+n , [Mm,Mn] = 0 ,
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[Lm,Mn] = (m− n)Mm+n . (2.4)

The generators in (2.3) arise precisely from a nonrelativistic contraction of the

two copies of the Virasoro algebra of the relativistic theory. The non-relativistic

contraction consists of taking the scaling

t → t , x → ǫx , (2.5)

with ǫ → 0. This is equivalent to taking the velocities v ∼ ǫ to zero (in units where

c = 1).

Consider the vector fields which generate (two copies of) the centre-less Virasoro

Algebra in two dimensions :

Ln = −zn+1∂z , L̄n = −z̄n+1∂z̄ . (2.6)

In terms of space and time coordinates, z = t+ x, z̄ = t− x. Hence ∂z =
1
2
(∂t + ∂x)

and ∂z̄ =
1
2
(∂t − ∂x). Expressing Ln, L̄n in terms of t, x and taking the above scaling

(2.5) reveals that in the limit the combinations

Ln + L̄n = −tn+1∂t − (n+ 1)tnx∂x +O(ǫ2) ,

Ln − L̄n = −
1

ǫ
tn+1∂x +O(ǫ) . (2.7)

Therefore we see that as ǫ → 0

Ln + L̄n −→ Ln , ǫ(Ln − L̄n) −→ −Mn . (2.8)

Thus the GCA in 2d arises as the non-relativistic limit of the relativistic algebra.

2.2 The bmsn algebra

In this subsection, we look first at the algebra of the BMS group in general dimensions

and then focus on the three-dimensional case. We wish to recover the BMS group

from the symmetries of flat space-time. To find the asymptotic symmetries we would

need to look at the structure at null infinity. Let us begin by introducing the retarded

time u = t − r, the luminosity distance r and angles θA on the n − 2 sphere by

x1 = r cos θ1, xA = r sin θ1 . . . sin θA−1 cos θA, for A = 2, . . . , n − 2, and xn−1 =

r sin θ1 . . . sin θn−2. The Minkowski metric is then given by

ds̄2 = −du2 − 2dudr + r2
n−2
∑

A=1

sA(dθ
A)2, (2.9)
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where s1 = 1, sA = sin2 θ1 . . . sin2 θA−1 for 2 ≤ A ≤ n−2. The (future) null boundary

is defined by r = constant → ∞ with u, θA held fixed.

One requires asymptotic Killing vectors to satisfy the Killing equation to leading

order. They turn out to be [19]

ξu = T (θA) + u∂1Y
1(θA) + o(r0), ξr = −r∂1Y

1(θA) + o(r), (2.10)

ξA = Y A(θB) + o(r0), A = 1 . . . n− 2. (2.11)

where T (θA) is an arbitrary function on the n−2 sphere, and Y A(θA) are the compo-

nents of the conformal Killing vectors on the n− 2 sphere. These asymptotic Killing

vectors form a sub-algebra of the Lie algebra of vector fields and the bracket induced

by the Lie bracket ξ̂ = [ξ, ξ′] is determined by

T̂ = Y A∂AT
′ + T∂1Y

′1 − Y ′A∂AT − T ′∂1Y
1 , (2.12)

Ŷ A = Y B∂BY
′A − Y ′B∂BY

A. (2.13)

The asymptotic Killing vectors with T = 0 = Y A form an abelian subalgebra in the

algebra of asymptotic Killing vectors. The quotient algebra is defined to be bmsn.

It is the semi-direct sum of the conformal Killing vectors Y A of Euclidean n − 2

dimensional space with an abelian ideal of so-called infinitesimal supertranslations.

In three dimensions, the conformal Killing equation on the circle imposes no

restrictions on the function Y (θ). Therefore, bms3 is characterized by 2 arbitrary

functions T (θ), Y (θ) on the circle. These functions can be Fourier analyzed by defin-

ing Pn ≡ ξ(T = exp(inθ), Y = 0) and Jn = ξ(T = 0, Y = exp (inθ)). In terms of

these generators, the commutation relations of bms3 become2

[Jm, Jn] = (m− n)Jm+n, [Pm, Pn] = 0, [Jm, Pn] = (m− n)Pm+n. (2.14)

The 6 dimensional Poincaré algebra iso(2, 1) of 3 dimensional Minkowski spacetime

is enhanced to the semi-direct sum of the infinitesimal diffeomorphisms on the circle

with the infinitesimal supertranslations.

2Here we drop all factors of i.
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3. The bms3/gca2 correspondence

From (2.14) and (2.4), it is obvious that the algebras are isomorphic with the trivial

identifications

Ln ↔ Jn, Mn ↔ Pn (3.1)

So, what we have is a holographic correspondence between an asymptotic 3 dimen-

sional flat space-time and a 2 dimensional non-relativistic conformal field theory.

There have been some different forms of realizations of the bulk theory which

has the GCA as its boundary algebra. Originally in [7], we proposed the dual gravity

theory to be a Newton-Cartan like AdS2 × Rd by taking a similar non-relativistic

limit on the bulk Anti de Sitter space. So, for the case of AdS3, which is the focal

point of our attention now, the theory in the bulk was a AdS2 × R Newton-Cartan.

The Ln’s turned out to be the asymptotic symmetries in the sense of Brown and

Henneaux [18]. It has also been observed that the GCA emerges as the asymptotic

symmetry algebra of Cosmological Topologically Massive Gravity in three dimensions

when the coefficient of the gravitational Chern-Simons term is made very large [17].

This realization of the GCA in the bulk allows for an asymmetry which is required

in the central charges C1 and C2 discussed below. The new gravity description in

terms of the BMS algebra gives a third and possibly the most intriguing occurrence

of the GCA.

Some might argue that in order to really have this correspondence, we would

need a concrete realization of the boundary theory. To answer this question it is to

be noted that the infinite 2d GCA also makes its appearance in non-equilibrium sta-

tistical mechanical systems [13]. So we indeed do have realizations of this BMS/GCA

correspondence.

The Euler equation in non-relativistic hydrodynamics emerges in situations when

the viscosity of the fluid is negligible. In [7], it was noted that the finite dimensional

GCA is the symmetry algebra of the Euler equations. In fact, it is interesting that all

the Mn’s (for any n) are also symmetries of the equations [7, 11]. In the introduction,

we had remarked that in four dimensions, if the BMS group is not extended to in-

clude all conformal transformations, then it consists of the semi-direct product of the

global conformal group in two dimensions and the supertranslations. The situation

is similar in three dimensions. We can look at the “restricted” BMS algebra, with

only the global part of the conformal transformations included. This contains L{0,±1}

together with all the Mn’s. So, yet another curious observation of the BMS/GCA

– 6 –



correspondence is that the features of the “restricted” BMS group in 3 dimensions

is encoded in the symmetries of the Euler equations in 1 + 1 dimensions.

3.1 Central Charges

Now, let us look at the realizations of central charges on both sides of the corre-

spondence. In the gravity side, a Brown-Henneaux like analysis enables one to write

down a central charge [19]

Kξ,ξ′ =
1

8πG

∫ 2π

0

dθ
[

∂θY
θ(∂θ∂θT

′ + T ′)− ∂θY
′θ(∂θ∂θT + T )

]

. (3.2)

In terms of the generators QPn
= Pn,QJn = Jn, we get the centrally extended

algebra

[Jm,Jn] = (m− n)Jm+n, [Pm,Pn] = 0,

[Jm,Pn] = (m− n)Pm+n +
1

4G
m(m2 − 1)δn+m,0. (3.3)

The central charge cannot be absorbed into a redefinition of the generators. Only

the commutators of generators involving either J0,J1,J−1 or P0,P1,P−1 correspond-

ing to the exact Killing vectors of the Poincaré algebra iso(2, 1) are free of central

extensions.

The discussion of the GCA was at the classical level of vector fields. At the

quantum level the two copies of the Virasoro get respective central extensions

[Lm,Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 ,

[L̄m, L̄n] = (m− n)L̄m+n +
c̄

12
m(m2 − 1)δm+n,0 . (3.4)

Considering the linear combinations (2.7) which give rise to the GCA generators as

in (2.8), we find

[Lm, Ln] = (m− n)Lm+n + C1m(m2 − 1)δm+n,0 ,

[Lm,Mn] = (m− n)Mm+n + C2m(m2 − 1)δm+n,0 ,

[Mm,Mn] = 0 . (3.5)

This is the centrally extended GCA in 2d. Note that the relation between central

charges is

C1 =
c+ c̄

12
,

C2

ǫ
=

c̄− c

12
. (3.6)

Thus, for a non-zero C2 in the limit ǫ → 0 we see that we need c̄− c ∝ O(1
ǫ
). At the

same time requiring C1 to be finite we find that c+ c̄ should be O(1).

So, matching the central charges on both sides we get

C1 = 0, C2 =
1

4G
(3.7)
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3.2 BMS from AdS: Analogies and differences

We would like to compare and contrast our approach in [9] in obtaining the 2d

GCA from the relativistic Virasoro with the approach of [19] in deriving the bms3

from Anti-de Sitter space. Let us remind ourselves of the construction of [19]. The

algebra (3.3) has many features in common with the anti-de Sitter case: it has the

same number of generators, and a Virasoro type central charge. If one introduces

the negative cosmological constant Λ = − 1
R2 and considers

[Jm, Jn] = (m− n)Jm+n, [Pm, Pn] =
1

R2
(m− n)Jm+n, [Jm, Pn] = (m− n)Pm+n,

(3.8)

the bms3 algebra (2.14) corresponds to the case R → ∞. For finite R, the charges

L±
m corresponding to the generators L±

m = 1
2
(RP±m ± J±m) form the standard two

copies of the Virasoro algebra,

[L±
m,L

±
n } = (m− n)L±

m+n +
c

12
m(m2 − 1)δn+m,0, {L±

m,L
∓
n } = 0, (3.9)

where c = 3R
2G

is the central charge for the anti-de Sitter case.

This construction seems almost identical to the one described for the GCA previ-

ously. But there are some subtle differences. One notices that the linear combinations

in the two cases are not the same, with

Pm =
1

R
(Lm + L̄−m), Jm = (Lm − L̄−m) (3.10)

as opposed to (2.8). This also sheds light on the reason why there is a central term

in the [P, J ] commutator as opposed to the [J, J ]. If the central terms were different

for the left and right movers (c±), the [P, J ] would have a c+ + c− term while [J, J ]

would have a c+ − c− term. Here, in the case discussed above c+ = c− and hence

we get just the one central term. This corresponds to the c = −c̄ in the GCA case.

Notice that like C2 in the GCA case, the central term needs to be very large to avoid

the contraction and hence c = 3R
2G

.

4. A BMN route to BMS

In [7], we proposed a gravity dual of the GCA by taking a parametric limit of the

bulk AdSd+2 geometry. Consider the metric of AdSd+2 in Poincare coordinates

ds2 =
1

z′2
(ηµνdx

µdxν − dz′2) =
1

z′2
(dt′2 − dz′2 − dx2

i ) (4.1)
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The nonrelativistic scaling limit that was considered was

t′, z′ → t′, z′ xi → ǫxi. (4.2)

The scaling of t and xi were motivated by the boundary scaling. Since the radial

direction of the AdSd+2 is an additional dimension, we need to fix its scaling. The

radial direction is a measure of the energy scales in the boundary theory via the usual

holographic correspondence. We therefore expect it to also scale like time i.e. as ǫ0.

This means that in the bulk the time and radial directions of the metric both survive

when performing the scaling. Together these constitute an AdS2 sitting inside the

original AdSd+2. The bulk dual was proposed to be a Newton-Cartan like AdS2×Rd

where the metric was degenerate and the dynamical quantities were the non-metric

connections. The GCA in the bulk was shown to emerge by taking this limit on the

Killing vectors of AdSd+2. In what follows, we suggest a different bulk realization of

the GCA, one relevant to the asymptotically flat space realization we have discussed

earlier. We will show that a scaling exactly similar to (4.2) gives rise to flat space

metric from the AdS metric.

Let us concentrate on AdS3. We will now re-introduce factors of the AdS radius

R. We would take a Penrose limit of the AdS metric in the co-ordinates stated

above3. The Poincare patch has a horizon at z′ = ∞ and to extend the coordinates

beyond this we will choose to follow an infalling null geodesic, in an analogue of the

Eddington-Finkelstein coordinates. Therefore define z = z′ and t = t′ + z′. In these

coordinates

ds2 =
1

z2
(−2dtdz + dt2) =

dt

z2
(dt− 2dz). (4.3)

Let’s consider the bulk metric with the radius included.

ds2 =
R2

z2
(−dt(2dz − dt)− dx2) (4.4)

This will give a non-degenerate metric only if we have the scaling

x =
µ

R
x, t, z ∼ O(1), t− 2z =

µ2

R2
v (4.5)

with R → ∞ and keeping µ, v, xi, t finite. The resulting metric is

ds2 =
4µ2

t2
(dtdv − dx2) (4.6)

where we have kept the leading order terms as R → ∞. (Notice z2 = t2 + O(R−2)

and hence the replacement.) This is like a BMN limit [10] where we are zooming

3This was obtained in collaboration with Rajesh Gopakumar.
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into the vicinity of the null radial geodesic. Note that t− 2z = t′ − z′ in terms of the

original Poincare coordinates that we started out with.

However, this metric is actually flat. This can be seen by writing x = tρ. This

gives the metric

ds2

4µ2
=

dz

t2
(dv − ρ2dt− 2ρtdρ)− dρ2 = −d(

1

t
)d(v − ρ2t)− dρ2. (4.7)

which we see is clearly a flat metric on R2,1 when we define ũ = 1
t
and ṽ = v − ρ2t.

We have kept only the leading terms in the above computation.

The above computation shows that by taking a non-relativistic limit (4.5) which

is almost exactly like (4.2), with an additional condition on t − z, we can recover

a flat space. It was shown in [7], that the Killing vectors of AdS in the limit (4.2)

give rise to an infinite algebra in the bulk which precisely reduces to the GCA on

the boundary and satisfy the same commutation relations in the bulk. Given the

connection between bms3 and gca2, it is satisfying that one has been able to recover

a flat space metric using the same limit.

In terms of the AdS3/CFT2 correspondence, the above mentioned BMS3/GCA2

is thus a limit where on the gravity side one takes the radius of AdS to infinity while

on the field theory side, one takes the speed of light to infinity. So, this seems to

indicate an equivalence between the radius of AdS and the speed of light in the CFT.

5. The bms4/gca
s=1
3 correspondence

5.1 The BMS group in 4 dimensions

The structure of the BMS group in four dimensions as before is dictated by the

structure of the spacetime at null infinity, which is now S2 × R. As in the case of

the three dimensional BMS group, if one does not want to restrict to globally well

defined transformations on the two-sphere, we get two copies of the Witt algebra.

The general solution to the conformal Killing equations is Y ζ = Y (ζ), Y ζ̄ = Ȳ (ζ̄),

with Y and Ȳ independent functions of their arguments. The standard basis vectors

are chosen as

ln = −ζn+1 ∂

∂ζ
, l̄n = −ζ̄n+1 ∂

∂ζ̄
, n ∈ Z (5.1)

At the same time, let us choose to expand the generators of the supertranslations in

terms of

Tm,n = P−1ζmζ̄n, m, n ∈ Z. (P (ζ, ζ̄) =
1

2
(1 + ζζ̄)) (5.2)
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In terms of the basis vector ll ≡ (ll, 0) and Tmn = (0, Tmn), the commutation relations

for the complexified bms4 algebra read

[lm, ln] = (m− n)lm+n, [l̄m, l̄n] = (m− n)l̄m+n, [lm, l̄n] = 0,

[ll, Tm,n] = (
l + 1

2
−m)Tm+l,n, [l̄l, Tm,n] = (

l + 1

2
− n)Tm,n+l. (5.3)

Two copies of the Witt algebra indicate that we would need to look beyond usual

GCAs in any dimensions as the field theory realizations of this symmetry.

5.2 Semi-Galilean Conformal Algebras

In order to find a field theoretic description of the above symmetry, in this section

we study non-relativistic limit of relativistic conformal algebra in d + 1 dimensions

by making use of a general contraction [15].

t → t, yα → yα, xi → ǫxi, (5.4)

where α = 1, · · · , s and i = s + 1, · · · d. The contraction is defined by the above

scaling in the limit of ǫ → 0.

We start from a CFT in d + 1 dimensions. The GCA was a specific example of

the semi-GCA with s = 0. We label semi-GCAs by gcasn. (In our notation, GCA is

gcas=0. Let us consider the case of s = 1. As in the s = 0 case, there is a finite algebra

which is obtained by contraction and then this can be given an infinite dimensional

lift. It is useful to define new coordinates u = t+y, v = t−y. The infinite generators

are [15]

Ln = un+1∂u +
n+ 1

2
unxi∂i, L̄n = vn+1∂v +

n+ 1

2
vnxi∂i, (5.5)

Mi rs = −urvs∂i. Jij nm = −unvm(xi∂j − xj∂i), (5.6)

one finds an infinite dimensional algebra as follows

[Ln, Lm] = (n−m)Ln+m, [L̄n, L̄m] = (n−m)L̄n+m,

[Mi nm,Mj n′m′ ] = 0, [Ln, L̄m] = 0,

[Ln,Mi ml] =

(

n+ 1

2
−m

)

Mi (n+m)l, [L̄n,Mi ml] =

(

n + 1

2
− l

)

Mi m(n+l)

[Ln, Jij ml] = −mJij (n+m)l, [L̄n, Jij ml] = −lJij m(n+l)

[Ml nm, Jij n′m′ ] =
(

δjlMi (n+n′)(m+m′) − δilMj (n+n′)(m+m′)

)

. (5.7)
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Jij nm’s generate an so(d− 1) affine algebra.

We are interested in the case where the dimension of the field theory is three

and the co-ordinates are t, y, x, viz. one of each kind mentioned above. Then the

additional vector indices drop off, as do the generators of rotation. Then it is straight

forward to observe that this restricted algebra which we call gcas=1
3 is isomorphic to

(5.3). So we see that in this case we have a correspondence between asymptotically

flat four dimensional space described by the bms4 algebra and a conformal field

theory in three dimensions where one of the spatial dimensions is non-relativistic.

6. Remarks on a general correspondence

The BMS algebra is infinite dimensional in 3 and 4 dimensions as the group of isome-

tries of the circle and the sphere are enhanced to the full conformal algebra. Even

in the case of the GCA and its cousin, called the semi-GCA with s = 1 we have seen

similar enhancements. For s = 2 and beyond, we don’t get this enhancement. A

way of understanding this fact is to remember the gravity description in terms of the

Newton-Cartan structure, as defined in [7]. The GCA had a bulk piece with an AdS2

and the s=1 GCA had a similar AdS3 counterpart. The higher sGCA would have

AdS2+s factors in the Newton-Cartan structure, but these would not have enhanced

Virasoro like symmetries [15]. This suggests a general BMS3+s/sGCA2+s corre-

spondence. In words, we should keep one non-relativistic direction in the conformal

field theory that is dual to the one higher dimensional BMS group. For example,

when we are looking at the BMS algebra in five dimensions, we should look at a

four-dimensional s = 2 GCA.

Let us comment briefly on this above correspondence in the context of realizing

it as a limit of an AdS/CFT correspondence, like we saw in the three dimensional

case. One should easily be able to obtain the flat space limit of the respective AdS

space by looking at higher dimensional analogues of the radially infalling null-ray

and scaling the co-ordinates in a manner described in Sec. 4. The point to note is

that now all differences between relativistic co-ordinates would scale as R−2. The

speed of light in the non-relativistic direction of the field theory would be the dual

to the AdS radius in the bulk theory. There is however one point that needs more

understanding. In the three-dimensional case (bms3), the fact that the algebra is

infinite came from the existence of the two copies of the parent Virasoro algebra of

AdS3. For bmsn where n > 4, there is no enhancement of the algebra and this is

in keeping with the parent AdSn theory. But the case of n = 4 is curious from this

– 12 –



point of view as there is no infinite algebra of asymptotic isometries of AdS4 but we

still get an infinite algebra in the limit4. We would like to understand this better.

7. Conclusions

In this note, we have looked at two seemingly unrelated pictures, that of asymp-

totically flat spaces and non-relativistic conformal systems in one lower dimension

and shown that they are equivalent at the level of the symmetry algebras. We have

pointed out explicitly the cases of three and four dimensions and made some general

remarks about a correspondence in all dimension of space-time.

We have managed to understand the case of three dimensional gravity better

by looking at the theory in Anti de Sitter space. A BMN like non-relativistic limit

on radial infalling null ray gave us a flat metric and a similar non-relativistic limit

on the Killing vectors in [7] had revealed the bulk GCA, which is the BMS in three

dimensions. On the boundary, we had taken a similar limit to obtain the GCA in

two dimensions. This seems to indicate that the asymptotically flat space limit of

AdS3 is equivalent to looking at the non-relativistic limit of the conformal algebra

in two dimensions and a duality between the radius of AdS and the speed of light

in the boundary conformal theory. We should stress that as of now, we do not fully

understand how to reconcile the seemingly different space-time actions of the BMS

and the GCA. This is a point that we are looking to address in the near future.

We have looked at the structure of the non-relativistic field theory in some detail

in [9]. It was found there that most of the answers in the GCA can be obtained in

a spirit very similar to the techniques of 2-d conformal symmetry. Even though the

mixing of the holomorphic and anti-holomorphic components make life somewhat

difficult, the calculations are not intractable. Given this correspondence between flat

space and the GCA, it is tempting to ponder on the consequences of our analysis

in [9] and hope to make statements about answers on the gravity side. For this, a

first step would be to identify the parameters on both sides. We had labelled the

GCA with the eigenvalues of boosts and dilatations in [8, 9]. It would be useful to

understand the relations of these to physical quantities in the asymptotically flat

spaces. The correlation functions of the GCA were also computed in [8, 9]. The

correlation functions in the field theory would map to onshell amplitudes in gravity.

It is plausible that one would be able to make statements about the S-matrix in

4This is somewhat analogous to the appearance of the infinite gcas=0

d
from the relativistic con-

formal algebra in d > 2.
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asymptotically flat spacetimes by using the techniques of the GCA. We are unaware

of any such analysis using the BMS algebra and this is an avenue definitely worth

exploring.

The four dimensional case, i.e. BMS4/sGCA3 is a case we have talked less about

in this note. This is however the more interesting map for physical systems because

of the obvious reason that we are talking about asymptotically flat four dimensional

space. On the field theory side, this is a case which has been far less studied. One

must look at the representations and in a spirit similar to [8], one should be able to

construct the Hilbert space and find the two and three point functions by looking

at just the global part of the algebra. One crucial point of difference that can be

observed immediately is that the boosts would not commute with the L0 and L̄0. So

we would have significant differences with s = 0 GCA.

This note is a first step in the direction of using the non-relativistic conformal

techniques to study the holography of flat space, which we hope would be a worth-

while exercise.
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