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The contribution of magnetostatic interaction fields in magnetic systems during first-order-
reversal-curve sFORCd simulations has been systematically addressed using a dynamic
micromagnetic algorithm. The interaction field distributionssIFDd display a nonlinear dependency
on the field history and intergrain spacing, and are commonly asymmetric. The IFDs tend to be more
Gaussian on average than Cauchian as predicted analytically for disordered systems, due to ordering
during FORC diagram determination. The spreading of the FORC distribution in the vertical
direction of the FORC diagram is shown to be directly related to the mean standard deviation of the
IFD during the FORC measurement, with a small offset related to the smoothing factor. ©2005
American Institute of Physics.fDOI: 10.1063/1.1861518g

I. INTRODUCTION

In recent years first-order-reversal-curvesFORCd dia-
grams have been proposed as an experimental method for the
characterization of ferromagnetic systems.1,2 The FORC
method originates from the well-studied phenomenological
Preisach3 theory of hysteresis. However, as the FORC dia-
gram is defined from a purely experimental procedure it has
certain features that are unique to it. This has led for a need
to understand the origin of these observed features from a
theoretical point of view.

Constructing a FORC diagram requires lengthy measure-
ments, which has only recently become possible with mod-
ern instrumentation. Each FORC is measured by saturating
the sample, decreasing the field to a valueHA, and reversing
the field sweep to the saturated state in a series of field steps
sHBd. This process is repeated for many values ofHA. The
magnetizationMsHA,HBd is measured at each step and the
mixed second derivative taken to give the FORC
distribution,2

rsHA,HBd = − ]2MsHA,HBd/]HA ] HB. s1d

To construct the FORC diagram, a quadratic surface is
fitted over a local area defined by the smoothing factorsSFd.
The larger SF, the greater the number of points used. These
surfaces are combined to give a piecewise quadratic surface.
When the distribution is plotted as a contour plot of
rsHA,HBd, i.e., a FORC diagram, it is convenient to rotate
axes by changing coordinates fromhHA,HBj to hHC=sHB

−HAd /2 ,HU=sHB+HAd /2j.
The FORC diagram and the Preisach distribution will be

identical for a system correctly described by the classical
Preisach modelsCPMd. However, as many samples are not
properly described by the CPM, then this leads to unusual
features in the FORC diagram such as negative regions and
asymmetry.

Magnetostatic interactions are known to be one physical
mechanism, which can generate non-CPM behavior. For ex-
ample, another mechanism is multidomain behavior. Previ-
ous models1,4,5 have shed some light on the effect of inter-
actions on the FORC diagram, e.g., broadening of the FORC
distribution in theHU directions and enhancement of nega-
tive regions within the lower half of the FORC diagram.
However, the shape and behavior of the interaction field have
not been systematically addressed. Here we extend these
studies to further examine, using a micromagnetic model, the
role of interactions in single-domainsSDd assemblages
and the behavior of the interaction field during FORC
measurement.

Previous work on interaction fields has shown that for a
disordered system of dipoles the local interaction field for
volume concentrationsp,15–20% has a Cauchy distribu-
tion, while for higher concentrations the distribution is
Gaussian.6,7 However, during a FORC diagram measure-
ment, the distribution is never disordered due to the highly
asymmetric measuring algorithm. The interaction field distri-
bution sIFDd of such ordered magnetic systems is often
asymmetric and the arithmetic variance of the IFD as a func-
tion of the magnetization.8–11

II. THE MICROMAGNETIC MODEL

The three-dimensional micromagnetic algorithm used in
this study is a combination of a minimum energy conjugate-
gradient sCGd algorithm and a dynamic algorithm which
solves the Landau–Lifshitz–GilbertsLLGd equation.12 The
reasoning behind this approach is that the dynamic algorithm
gives the more rigorous solution since the magnetization be-
tween stable states must follow a physically reasonable path
dictated by the LLG equation of motion, however, it is rela-
tively slow stwo orders of magnitude slowerd compared to
the CG method. In this combination algorithm, we use the
CG algorithm to rapidly generate an initial guess for the
magnetic structure, which is then put into the dynamic
solver. This increases the efficiency of the algorithm by
roughly an order of magnitude compared to the dynamic
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solver alone, and was found to produce the same hysteresis
behavior. The combined method is more robust than the CG
method alone, as it minimizes the torque on each discretized
magnetic moment compared to the CG method, which only
minimizes the total energy. The dynamic solver produces
lower-energy states than the CG algorithm alone. We use fast
Fourier transformssFFTd to calculate the demagnetizing en-
ergy which allows the high resolution needed to examine
arrays of interacting grains. This algorithm differs from
that used in Muxworthyet al.,4,13 who used only the CG
algorithm.

We model three-dimensional arrays of 10310310 SD
cubic grains distributed evenly. Initially we consider assem-
blages with identical uniaxial anisotropy constantK, then
assemblages with lognormal distributions of uniaxial aniso-
tropy constantK. In both cases the easy axis of the aniso-
tropy is randomly orientated for each grain. We examine the
interaction field through each simulation. As with our previ-
ous study,4 we concentrate on a relatively soft magnetic ma-
terial magnetitesFe3O4d, which has a reduced anisotropyK
of ,0.1 Kd swhereKd=m0MS

2/2: m0 is the permeability of
free space andMS the spontaneous magnetizationd. All fields
are given in reduced units, i.e.,h=H /HR, where HR

=2K /MS.

III. INTERACTIONS BETWEEN IDENTICAL
SD PARTICLES

The FORC diagramssFig. 1d calculated using 120 simu-
lated FORCs are essentially the same as those reported by
Muxworthy et al.4 for assemblages of 1000 SD grains with
uniaxial randomly distributed anisotropy using 100 FORCs.
The FORCs are smoother than those reported in Muxworthy
et al.4 because of the improved numerical algorithmfFig.
1sadg. We consider the effect of variations in interaction spac-
ing d sthe distance between grains divided by grain dimen-
siond on the magnetostatic interaction field. The IFDs are
calculated directly in the micromagnetic program. At the
center of each grain the interaction field vector due to other

grains in the assemblage is recorded at each field step in the
FORC diagram. The IFDs are calculated both parallel and
perpendicular to the external field direction. The IFD was
calculated for several directions in the plane normal to the
field, and was found to be independent of direction.

The FORC diagram for a moderately interacting assem-
blagesd=1.3d is shown in Fig. 1sbd. The origin of the large
negative region in the bottom left of the diagram has been
discussed in detail previously.4 Selected IFDs for the inter-
action fieldhI parallel to the external field are also depicted
in Fig. 1 for a single FORC, i.e.,hA=−0.52 A m−1. As hB

increases the IFD shifts towards positive values and the
width or standard deviation reduces. The IFD changes shape
quite markedly near the main switching field which is athB

,0.55 A m−1.
The IFDs in directions parallel and perpendicular to the

applied field are shown ford in Fig. 2 for two different
assemblages, strong and weak interacting systems, i.e.,d
=0.0 andd=3.0, respectively. Asd decreases the standard
deviation of the distribution clearly increases. The parallel
IFD is clearly asymmetric, the asymmetry being dependent
on the field and magnetizationfFigs. 1scd–1sedg. The perpen-
dicular IFDs display greater symmetry.

The arithmetic mean of the parallel and perpendicular
IFDs is plotted in Fig. 3 versus normalized magnetization for
strongly and moderately interacting systems, i.e.,d=0.0 and
1.3, respectively. Ford=0.0 the arithmetic mean of the par-
allel IFD displays an almost linear dependency on the mag-
netization fFig. 3sadg throughout the FORC measurement.
For the same regime, the mean of the perpendicular field
displays no strong dependency, but its absolute values are
much smaller than the parallel mean values. As the interac-

FIG. 1. Raw FORCssad and FORC diagramsbd for an assemblage of 1000
ideal SD grains with randomly orientated uniaxial anisotropy with grain
separationd=1.3. Inscd, sdd, andsed the parallel interaction field distribution
histogram is shown for three selectedhB values for the FORC withhA

=−0.52 A m−1 sad. The selected FORC is also depicted onsbd. In sbda SF of
3 was used to fit the FORC distribution.

FIG. 2. Parallel and perpendicular interaction field distributions forsad and
sbd d=0.0, andscd and sdd d=3.0, for hA=hB=−0.04 A m−1. Note the dif-
ferenthI scales.
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tions decrease, there is a complex nonlinear dependency of
both the parallel and perpendicular means onM /MS.

For d=0.0, the parallel standard deviation displays a
weak inverse relationship onM /MS fFig. 4sadg. Asd is in-
creased the standard deviation displays a complex asymmet-

ric relationship withM /MS, which is highly dependent onhA

fFig. 4sbdg. The asymmetry is much more pronounced than in
studies of other magnetic measurement procedures.8,10,11

In Fig. 5sadthe mean arithmetic mean of the IFD for the
entire FORC measurement versusd for both the parallel and
perpendicular directions is shown. Similarly the mean stan-
dard deviation is shown in Fig. 5sbd. Belowd,1 the average
parallel arithmetic mean increases sharply with decreasingd
for the parallel uniform regimes. That is, for strongly inter-
acting regimes there is a mean bias inhI towards the applied
field direction throughout the FORC diagram derivation. The
mean perpendicular arithmetic mean is almost independent
of d. In contrast both the average parallel and perpendicular
standard deviations display a strong dependency ond up to
d=5, where the standard deviation is small.

IV. INTERACTIONS BETWEEN NONIDENTICAL
SD PARTICLES

The FORC and Preisach diagrams are essentially statis-
tical problems examining distributions of particle behavior.
To make the model more representative, we vary the coer-
civity of the assemblage. For computation simplicity the
uniaxial anisotropy valueK was varied rather than the grain
volume, however, the net effect is similar.4,5 The coercive
force distribution for powders and natural samples is com-
monly, though not always, lognormally distributed. The
mean of the lognormal distribution was kept constant at
0.1 Kd, just the width of the lognormal distribution was var-
ied, i.e., the lognormal variancesl.

The effect of increasing the coercivity distribution width
is to stretch the FORC distribution out along thehC axisfFig.
6sadg, with an overall appearance closer to that of the experi-
mental results.2,14,15Interactions cause the FORC distribution
to broaden in thehU direction, with preferential broadening
at low h . This is because on average, the contribution of

FIG. 3. Arithmetic mean parallel and perpendicularhI

vs M /MS for sad and sbd d=0.0, andscd and sdd d
=1.3, for all the FORC data points in a simulation. As
the FORC simulation progresses, i.e.,hA decreasing
from positive to large negative values, the shading of
the points becomes darker.

FIG. 4. Parallel arithmetic standard deviation ofhI vs M /MS for sad d
=0.0 andsbd d=1.3, for all the FORC data points in a simulation.
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interactions to the assemblage’s magnetic behavior is in di-
rect competition with the anisotropy energy; the higher or
harder the anisotropy, the less the influence of the interac-
tions on assemblage behavior.13,16 This effectively means
that magnetostatic interactions will cause FORC distribu-
tions to broaden more significantly at lowhC values causing
a uniform distribution to become more “pear shaped.”

The IFDs become more regular in shape, though there
they are still asymmetric. The mean arithmetic mean and
standard deviation for the parallel IFD plot, within the same
areas as the uniform distributionssFig. 5d for si =0.01 and
0.05.

In Figs. 6scdand 6sddthe standard deviation of the par-
allel hI and perpendicularhI in FORC space for the same
assemblage, as shown in Fig. 6sad. In Fig. 6sbd, the raw mag-
netization is plotted in FORC space. It is clear, that the field
history sboth hA andhBd strongly affects the standard devia-
tion of hI. For example, on the upper part of Fig. 6scd, where
hA is positive or has small negative values, the standard de-
viation is relatively uniform and narrow, but ashA decreases
the standard deviation increases near the switching regions.
The perpendicular standard deviation also shows a depen-
dency on the switching ridgesfFig. 6sddg.

V. DISCUSSION AND CONCLUSIONS

The interacting field distributions within the models dis-
play strong dependencies on both field history and the spac-
ing d and orientation, in agreement with similar studies.9 As
d decreases the standard deviation of the IFD increases.
When random spatial distributions or lognormal distributions
of coercive field are examined, then the interaction effects
observed for assemblages of identical grains are less pro-
nounced and smoothed. The inclusion of lognormal coerciv-
ity distributions sFig. 6d causes the FORC distribution to
spread out along thehC axis in agreement with other theo-
retical studies.1,5

Following from Néel’s17 interpretation of the Preisach
diagram, Pikeet al.1 argued that spreading in thehU direction
was directly linked to the variance of the IFD. To estimate
this degree of spreading we introduce the parameter full
width at half maximumsFWHMd, which is the full width at
half maximum of the FORC distribution cut through the
main peak in thehU direction. In Fig. 7 FWHM is plotted
against the average standard deviation ofhI in the parallel
direction for two values of SF. Both values of SF display the
same linear dependency on the standard deviation, offset by
a finite difference related to SF. Due to the method of calcu-
lating the FORC diagram, increasing SF increases FWHM.
For strongly interacting systems the FWHM becomes diffi-
cult to estimate due to the irregular profile. The statement of
Pike et al.1 appears to be correct for moderately interacting
systems. For strongly interacting systems the FORC diagram

FIG. 5. sad Average meanhI for the entire FORC simulation vsd for uni-
form anisotropysboth parallel and perpendicularhId and assemblages with
lognormally distributed anisotropysonly parallelhId. In sbd the average stan-
dard deviation.

FIG. 6. sad FORC diagramsSF=3d for an assemblage
of 1000 ideal SD grains with lognormally distributed
coercivity ssl =0.01d. Spacingd=2.0. sbd Raw magne-
tization datasM /MSd plotted in FORC space,scd Stan-
dard deviation of the parallel IFD plotted in FORC
space, andsdd perpendicular standard deviation plotted
in FORC space.
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becomes irregular, while for weakly interacting systems even
though the standard deviation ofhI →0, FWHM remains
nonzero due to the FORC fitting algorithm.

It is well known that the Preisach distribution is not
stable during the magnetization process of most known mag-
netic systems. It is possible to distinguish two kinds of modi-
fication to the Preisach distribution, the shift of the distribu-
tion in the Preisach plane and the change of IFD variance as
a function of the magnetization. The former is accommo-
dated in the moving Preisach models, and the change in the
IFD variance is taken into account in the variable variance
Preisach model.8 For the highly interacting systems parallel
hI and M /MS are nearly linearly correlatedfFig. 3sadg, and
for such cases a moving Preisach model will sufficiently de-
scribe the system.1 However, such highly interacting systems
do not carry reliable magnetic signals. For more moderately
and weakly interacting systems, it is necessary to include a
variable variance model. For FORC diagrams it is clear from
Fig. 4sbd that the variance displays nonlinear behavior, and
that it would be necessary to implement an iterative algo-
rithm to determine the IFD variance on real samples.8,18

For the distributions of nonidentical grains, the parallel
IFDs were on average better described by Gaussian distribu-
tions than Cauchy distributions, even thoughp had a maxi-

mum of only 15% ford=1. This is in contrast to the theory
of Berkov;7 however, this disagreement is probably due to
the magnetic systems in a FORC measurement never being
in a truly disordered state, and to a lesser extent the fixed
symmetry in our model.

For highly interacting SD systems, i.e.,d,1 or p.0.2,
FORC diagrams do not appear to be successful at identifying
the system, as the strong peaks associated with a narrow
distribution of SD grains completely vanish.4 Conversely,
this means that any randomly orientated sample, which dis-
plays a noticeable peak in its FORC diagram, is probably not
strongly influenced by interactions.
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