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Analysing distributed Internet worm attacks using

continuous state-space approximation of process

algebra models

Jeremy T. Bradley∗ Stephen T. Gilmore† Jane Hillston†

April 30, 2007

Abstract

Internet worms are classically described using SIR models and sim-
ulations, to capture the massive dynamics of the system. Here we
are able to generate a differential equation-based model of infection
based solely on the underlying process description of the infection agent
model. Thus, rather than craft a differential equation model directly,
we derive this representation automatically from a high-level process
model expressed in the PEPA process algebra. This extends existing
population infection dynamics models of internet worms by explicitly
using frequency-based spread of infection. Three types of worm attack
are analysed which are differentiated by the nature of recovery from
infection and vulnerability to subsequent attacks.

To perform this analysis we make use of continuous state-space
approximation, a recent breakthrough in the analysis of massively
parallel stochastic process algebra models. Previous explicit state-
representation techniques can only analyse systems of order 109 states,
whereas continuous state-space approximation can allow analysis of
models of 1010000 states and beyond.

1 Introduction

Internet worms are malicious programs that exploit operating system se-
curity weaknesses to propagate themselves over the internet. While the
security flaws go unpatched, the worm spreads epidemic-like and uses large
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amounts of available bandwidth. It has been shown, however, that far more
destructive is the worms’ effect on the internet routing infrastructure [16],
as the worms tend to overload the connecting routers with nonexistent IP
lookups.

In recent years, worms like Nimbda, Slammer, Code Red, Sasser [21] and
Code Red 2 have caused the internet to become unusable for many hours
at a time until security patches can be applied and routers fixed. Models
of such infections which try to capture explicitly the overall behaviour of
routing protocols as well as the infection behaviour of the worm itself run
the risk of exploring an unfeasibly large state-space.

To counteract this explosion, several papers [15, 14] have used hybrid, or
multi-scale modelling techniques, which use ordinary differential equations
(ODEs) to capture the macro-scale infection dynamics of the worm, and
explicit state-space representation to pick out the interaction of a single
router, say, within such an environment.

We propose using a stochastic process algebra model to describe indi-
vidual worm behaviour and using a continuous state-space approximation
to provide insight into the emergent behaviour of the worm as it spreads to
thousands and then hundreds-of-thousands of hosts.

In order to perform this analysis, we present a method for analysing huge
stochastic process algebra models. By transforming a stochastic process
algebra model into a set of ODEs, we can obtain a plot of model behaviour
against time for models with global state spaces in excess of 1010000 states.
Existing explicit state-based methods for calculating steady-state, transient
or passage-time measures are limited to state-spaces of the order of 109.

In order to capture the mass infection dynamics in a population, it is
common to construct a set of ODEs which capture the global behaviour
of the infection. For an epidemic, these ODEs can be based around the
standard SIR model which represents the numbers of susceptible, infective
and removed individuals within a population. We extend the standard SIR
model to take into account the frequency-based nature of infection1. More
significantly, our modified SIR worm models are derived from the process
model of an individual worm, rather than by empirical observation of global
dynamics.

In this paper, we analyse three types of worm attack: an SIR over a
network model where host inoculation prevents a host from being reinfected;
an SIR over a network model where host inoculation is reversible (i.e. a host
can be made insecure by a subsequent improperly applied security patch);

1Infection as spread through an intermediary medium, in this case the Internet, as
opposed to by direct pairwise host infection.
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and a SIR/network model which results in a distributed denial-of-service
(DDOS) attack.

The remainder of this paper is organised as follows. We review the re-
lated work in Section 2. The use of PEPA descriptions to generate an associ-
ated set of ordinary differential equations (ODEs) is described in Section 3.
This includes a summary of the previous results presented in [11], followed
by a description of a generalisation to this result [4]. This technique is then
applied to derive ODE models of internet worm attacks in Section 5, where
we show that throttling the backbone bandwidth at an appropriately early
stage of an infection can severely impede the spread of infection. The paper
finishes with some conclusions in Section 6. The use of the PEPA modelling
formalism may be familiar to the reader but for the benefit of those readers
who do not know it we include an introduction in Appendix A.

2 Related Work

Modelling internet worm attacks with large scale, continuous state-space
models based on ordinary differential equations was recently proposed by
Liljenstam et al. [15, 14] and Nicol et al. [16], and this has been an inspira-
tion for our paper. However, in their approach the population-level system of
ODEs must be crafted by hand with simulations used to give individual scale
behaviour under such attacks. Using the process algebra description system-
atically to generate the coupled ODEs allows us to focus the population-level
model more closely on the individual behaviours of the elements within the
system. Thus we may readily experiment with different reaction strategies
and examine their impact on the population level statistics. Moreover, our
models are able to capture a frequency-based model of infection spread, in
contrast to the population infection dynamics of the standard SIR model.
By this we mean that we assume that the rate of spread of infection is based
on the frequency of interactions between susceptible and infective agents.
The most common alternative is to assume that the rate of spread of infec-
tion is based on the density of infective agents within the total population
[17]. Since infection is not passed on casually in our case (cf. the spread of
the common cold through sneezing) the frequency-based models are more
appropriate.

Previously, process algebra models have been used to model disease
spread and SIR models in an abstract context [17, 18]. In these models the
deterministically timed, synchronous process algebra, WSCCS [20], whereas
we use the stochastic process algebra PEPA. Furthermore, in this previous
work the underlying mathematical models, mean field equations and ODEs,
were derived informally. In contrast we have developed a systematic map-
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ping which allows a system of coupled ODEs to be derived automatically
from a general PEPA model. This extends previous work by Hillston [11]
which established a mapping from a restricted class of PEPA models to
ODEs. Other work exploring the relationship between process algebra mod-
els and ODE models has been published in [1, 5, 6].

3 ODE Generation from PEPA Models

In this section, we summarise the numerical vector form representation
and ODE analysis of PEPA models. In [11], Hillston shows how a class
of PEPA models can be analysed using coupled ordinary differential equa-
tions (ODEs). We will need an extension of this to capture the dynamics of
internet worms.

The insight in [11] is to show that cooperating models of identical com-
ponents of the form, for example:

P || P || · · · || P︸ ︷︷ ︸
n

might be better represented by a vector which describes the number of com-
ponents in a given derivative state. That is to say, suppose P has two
other derivative states, P ′ and P ′′, in its component description. A triple
(v1, v2, v3) could be used to represent there being v1 components in state
P , v2 in state P ′ and v3 in state P ′′ in the cooperation above. Clearly
v1 + v2 + v3 = n, the total number of components in the cooperation. The
ordering of the derivative states within the expression above makes no dif-
ference to the observable behaviour. Thus there is no loss of information in
simply counting derivatives in this way rather than recording their relative
positions. Moreover it has the effect of reducing the state space repre-
sentation to an aggregated form (described in [9]) which requires a vector
representation of size |D(P )|, the number of derivatives of P , rather than
one of size n, in the unaggregated form.

In the generic example of a n-processor/m-resource system given in [11]:

Proc0
def= (task1, r1).Proc1

Proc1
def= (task2, r2).Proc0

Res0
def= (task1, r1).Res1

Res1
def= (reset , s).Res0

(Proc0 || · · · || Proc0) ¤¢
{task1} (Res0 || · · · || Res0)
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An aggregate state ((n−1, 1), (m, 0)) would represent a possible state where
there were n − 1 processor components in state Proc0, one in state Proc1,
m resource components in state Res0, and none in state Res1.

Hillston [11] further goes on to show how a set of ODEs can be con-
structed which can approximate the discrete number of components in a
given state with a continuous state space approximation. This is not signif-
icant for PEPA models with only a few replicated components. However,
agent models typically have many thousands or millions or even hundreds
of millions of similar components and for this style of modelling, this type
of aggregation and analysis is very necessary.

Since much of the analytical value of the formalisation is obtained through
numerical or symbolic evaluation of the system of ODEs one might ask why
we should not begin our modelling working directly with differential equa-
tions, perhaps coded in a numerical evaluation platform such as Matlab.
One motivation for this is that we have reasoning apparatus available to us
at the process algebra level. We can determine that models are free from
deadlock — even for very large state spaces — using the MTBDD-based
representation of the state space supported by the PRISM modelling tool.
We can use the bisimulation relation of the language to do component-wise
simplification of the model, if needed. Finally, because we are modelling in
a high-level language it is possible to apply these different numerical eval-
uation procedures to compute performance results from the same model.
For example, we can also evaluate PEPA models by stochastic simulation.
This is a freedom which we would not have if we had coded a differential
equation-based representation of the model directly in a numerical comput-
ing platform such as Matlab.

The original work by Hillston placed a number of structural restrictions
on the PEPA models which may be used to generate the continuous state
space approximation [11]. These restrictions are listed below.

1. Cooperation within groups of components of the same type is not
allowed; i.e. counted component derivatives for the purposes of con-
tinuous approximation, must occur within a parallel component group
such as:

P || P || · · · || P.

2. The cooperation set, L, between interacting groups of components, as
in:

(P || P || · · · || P ) ¤¢
L

(Q || Q || · · · || Q)

is restricted to be the set of common action labels between P and Q.

3. Cooperation, where it does occur, is assumed to be of an active nature
with a common view of the rate. For instance α actions that occur at
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rate λ can only cooperate with other α actions that occur at the same
rate, λ.

4. Each action name must appear only in one derivative within the def-
inition of a sequential component, and must only occur once within
that derivative definition.

5. Action hiding is not considered.

In the SIR models which we consider in this paper it is necessary to consider
some synchronisations that involve both active and passive partners. In the
following section we show how the approach can be extended to models with
this feature.

4 Extending Coverage of the PEPA Language

In this section, we extend the previous mapping from PEPA to the numerical
vector form, and to a set of ODEs, to allow synchronisations between active
and passive actions (that is, restriction (3) above is relaxed). Additionally,
with the formulation below, we can also relax the requirement that coop-
eration is restricted to the common set of actions between two cooperating
groups of components, thus dealing with restriction (2).

4.1 Time-based System Equation

As a first step, we introduce a time-based system equation for a PEPA
model, which extends the numerical vector form of [11]. The state of a
PEPA model at time t can be represented by P (t), which has the grammar:

P (t) ::= P (t) ¤¢
L

P (t) (N(S, t), . . . , N(S, t))∅

where S is the derivative state of a sequential component. The derivatives
tuple (N(S1, t), . . . , N(SNs , t))∅ is used to count the number of derivatives
of S in the current state of the cooperation:

S ‖ S ‖ · · · ‖ S

At this time, we do not consider action hiding or cooperation between com-
ponents within the derivatives tuple.

The derivatives tuple uses the function N(X, t) to represent the number
of components that are in state X at time t within the environment expressed
by the overall PEPA system formula, P (t). There are Ns = |D(S)| elements
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in this tuple to represent the total number of derivative states of component
S, as discussed in Section 3.

The time-based system equation can be systematically generated from
the static system equation that is used to specify the initial state of co-
operation in a PEPA model. Groups of identical components within an
empty cooperation structure are mapped onto the derivatives tuple structure
(N(C1, t), . . . , N(CNc , t))∅. Whereas, heterogeneous cooperation is mapped
onto the equivalent time-based cooperation structure, P1(t) ¤¢

L
P2(t), where

importantly the cooperation set information is maintained. For example,
the system equation from the Processor/Resource model of Section 3:

Sys
def= (Proc0 || · · · || Proc0) ¤¢

{task1} (Res0 || · · · || Res0)

would be turned into the following time-based equivalent:

Sys(t) def= P1(t) ¤¢
{task1}P2(t)

P1(t)
def= (N(Proc0, t), N(Proc1, t))∅

P2(t)
def= (N(Res0, t), N(Res1, t))∅

As can be seen we define the state of the model in terms of the local states
of the sequential components of the model. The function I(P ) identifies this
set of components as follows:

I(P1(t) ¤¢
L

P2(t)) = I(P1(t)) ∪ I(P2(t))
I((N(C1, t), . . . , N(CNc , t))L) = {Ci : 1 ≤ i ≤ Nc }

By restriction (4) above, for an arbitrary action type α, within each
sequential component there is at most one local state enabling an action of
type α. We use the function Vα to identify the derivative which enables the
action of type α, if one exists. The set of component derivatives returned
by this function will either contain one element or it will be empty.

Vα(P1(t) ¤¢
L

P2(t)) = Vα(P1(t)) ∪ Vα(P2(t))
Vα((N(C1, t), . . . , N(CNc , t))L) = {Ci : 1 ≤ i ≤ Nc ∧ rα(Ci) > 0 }

Clearly, Vα(P ) ⊆ I(P ).

4.2 Apparent Rate Calculation

In order to generate a set of ODEs for a more generic PEPA model, we will
need to show how the apparent rate function, rα(·), can be calculated over
the time-based system equation, P (t). It is important to understand that
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this is not a redefinition of PEPA’s apparent rate formula, just a use of the
existing apparent rate rules over the new representation:

rα(P1(t) ¤¢
L

P2(t))=

{
min(rα(P1(t)), rα(P2(t))) : if α ∈ L

rα(P1(t)) + rα(P2(t)) : if α 6∈ L

rα( (N(C1, t), . . . , N(CNc , t))∅) = N(Ci, t) rα(Ci)
where Vα((N(C1, t), . . . , N(CNc , t))L) = {Ci }

rα( (N(C1, t), . . . , N(CNc , t))∅) = 0
where Vα((N(C1, t), . . . , N(CNc , t))L) = ∅

We also need to consider a slightly more general rate set from that originally
considered [10], to take into account the continuous approximation of the
ODE system. For this purpose a PEPA action rate, λ, is drawn from the
extended set:

λ ∈ IR+ ∪ {n> | n ∈ IR, n ≥ 0}
where 0> will mean that there are no current passive components capable
of performing a particular shared action. Thus for r1 ∈ IR+, r2 ∈ IR, r2 ≥ 0:

min(r1, r2>) =
{

r1 : if r2 > 0
0 : if r2 = 0

Since the new rate set is a strict superset of the original rate definition, this
in no way impinges on previous PEPA results.

When it comes to capturing the influence of the passive component on
the rate of an interaction in the ODEs we use an indicator function to reflect
whether the passive component is ready to participate in the shared action
or not.

4.3 Component Rate Calculation

The inclusion of passive actions means that the rate at which a component
evolves is not wholly defined by that component. Thus we need a function
which records the rate of evolution of a component via actions of a particular
type, within a given context. This is the component rate function. It is
defined for a sequential component derivative C, within a time-based system
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equation P (t), over a given action type α:

ρα(C,P1(t) ¤¢
L

P2(t))=





min(ρα(C,Pi(t)), rα(Pj(t)))
: if α ∈ L,C ∈ Vα(Pi)

ρα(C, Pi(t)) : if α 6∈ L,C ∈ Vα(Pi)
0 : otherwise

for 1 ≤ i ≤ 2 and j = 3− i.

ρα(Ci,(N(C1, t), . . . , N(CNc , t))∅) =N(Ci, t) rα(Ci)

In the first case of ρα(C,P1(t) ¤¢
L

P2(t)) the component rate calculation cap-
tures the local effect of the cooperation on the component, C. The overall
synchronised rate is min(ρα(C, Pi(t)), rα(Pj(t))) reflecting that the locally
enabled action may have to wait for other slower components to perform
their version of the same action if the action is to proceed both locally and
globally.

The second case ρα(C, P1(t) ¤¢
L

P2(t)) shows that if the action type α is
not in the cooperation set only this Pj(t) does not impact on the rate of α
in a sequential component derivative within Pi(t)

For ρα(Ci, (N(C1, t), . . . , N(CNc , t))∅), the component rate relies solely
on the product N(C, t) ra(C), since there is no cooperation in operation.

4.4 ODE Generation

We are now in a position to describe how to generate a system of coupled
ODEs over a PEPA model. As in [11], let us assume that we have n distinct
component types C1, C2, . . . , Cn in our PEPA model M . Each component
type Ci has Ni derivatives referenced by Cij for 1 ≤ j ≤ Ni.

Using P (t) as the time-based system equation for M and recalling that
N(S, t) defines the number of components in state S at time t within the
equation P (t), we can write down a small-time approximation representing
the change in value of N(Cij , t) within P (t):

N(Cij , t + δt)−N(Cij , t) =

−
∑

k : Cij
(α,·)−→Cik

ρα(Cij , P (t)) δt

︸ ︷︷ ︸
exit activities

+
∑

k : Cik
(β,·)−→Cij

ρβ(Cik, P (t)) δt

︸ ︷︷ ︸
entry activities

(1)

Dividing by δt and letting δt → 0 and with vij(t) = N(Cij , t), we get the
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ODE system:

dvij(t)
dt

= −
∑

k : Cij
(α,·)−→Cik

ρα(Cij , P (t)) +
∑

k : Cik
(β,·)−→Cij

ρβ(Cik, P (t)) (2)

for j = 1, 2, . . . , Ni and i = 1, 2, . . . , n. From our discussion of the component
rate function, we know that ρα(C,P (t)) = f(vij(t) : 1 ≤ j ≤ Ni, 1 ≤ i ≤ n)
for some f which will encapsulate the structure of cooperation over the
action α within the system in question.

4.5 Worked Example

In this section, we demonstrate ODE generation over a process algebra model
using a simple Resource-Processor example. It is often useful to have PEPA
components synchronise passively in cooperations, which can be studied with
the extensions presented in Section 4. In this example we have processors
synchronising passively with the resources, i.e. they wait for the resources
to return their data. We describe this scenario in the model:

Proc0
def= (task1,>).Proc1

Proc1
def= (task2, r2).Proc0

Res0
def= (task1, r1).Res1

Res1
def= (reset , s).Res0

Sys
def= (Proc0 || · · · || Proc0︸ ︷︷ ︸

100

) ¤¢
{task1} (Res0 || · · · || Res0︸ ︷︷ ︸

40

)

In the above model, a processor synchronises with a resource on a task1
action before it can independently perform a task2 action and return to its
original Proc0 state. The resource also synchronises on the task1 action be-
fore being able to reset and become Res0 once more. We configure the initial
system with 100 Proc0 components cooperating with 40 Res0 components.

We first need to create a time-based system equation for the system
before we can employ the ODE generation methods. By letting:

P1(t) = (N(Proc0, t), N(Proc1, t))∅
P2(t) = (N(Res0, t), N(Res1, t))∅

we can define a time-based version of Sys to be:

Sys(t) = P1(t) ¤¢
{task1}P2(t)
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which represents the number of different types of component in P1 and P2

at time, t. We also use the component mapping:

C11 → Proc0 C21 → Res0

C12 → Proc1 C22 → Res1

for vij = N(Cij , t). We are now in a position to apply Eq. (2) and generate
the following system of equations:

dv11(t)
dt

= −ρtask1(Proc0, Sys(t)) + ρtask2(Proc1, Sys(t))

= −rtask1(Sys(t)) + ρtask2(Proc1, P1(t))
= −min(rtask1(P1(t)), rtask1(P2(t)))

+ rtask2(Proc1)N(Proc1, t)
= −min(v11(t)>, v21(t)r1) + r2v12(t)
= −r1I11(t)v21(t) + r2v12(t)

dv12(t)
dt

= −ρtask2(Proc1, Sys(t)) + ρtask1(Proc0, Sys(t))

= r1I11(t)v21(t)− r2v12(t)
dv21(t)

dt
= −ρtask1(Res0, Sys(t)) + ρreset(Res1, Sys(t))

= −min(v11(t)>, v21(t)r1) + sv22(t)
= −r1I11(t)v21(t) + sv22(t)

dv22(t)
dt

= −ρreset(Res1, Sys(t)) + ρtask1(Res0, Sys(t))

= r1I11(t)v21(t)− sv22(t)

where I11(t) is a specific indicator function on the value of v11(t) defined in
general as follows:

Iij(t) =
{

1 : vij(t) > 0
0 : vij(t) = 0

We demonstrate the ODE solution that is obtained from such a system
in Fig. 1. This graph shows the number of Proc0 and Res0 components that
exist in the system at time t. In this example, r1 = 4.0, r2 = 2.8, s = 1.0.

We compared the time taken to solve the system of ODEs with the
time taken to solve the Markov chain representation for steady-state. We
used the PRISM probabilistic model checker [13] to solve the Markov chain
representation. As the number of copies of the processor and the resource
grow the state space of the system doubles every time that another processor
or resource is added. This cannot continue much past ten processors and
ten resources (220 states).
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Figure 1: An example ODE solution for the passive processor/resource
model

The ODE integrator which we used is a Java implementation of the
Dormand-Prince fifth-order Runge-Kutta solver [7]. The version of PRISM
which we used is 3.1. The runtimes which are reported are elapsed (wall
clock) times as reported by GNU time version 1.7. All timings were made
on a 1.60GHz Pentium IV with 1Gb RAM running Fedora Core 5 Linux,
averaged over a number of runs. These repeated runs are simply to allow
us to compute average timings to tell us about the efficiency of our analysis
procedure: the results from each run of the Runge-Kutta integrator are
identical.

Time to solve Time to integrate
Processors Resources States CTMC (secs) ODEs (secs)

10 10 220 237.58 2.36
20 10 230 – 2.42
20 20 240 – 2.40

100 100 2200 – 2.42
1000 1000 22000 – 2.46

10000 10000 220000 – 2.46

It is important to understand what the ODE solution represents com-
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pared to say, traditional transient analysis of a Markov chain: an ODE repre-
sents a deterministic view of a system, that is, a particular mean trajectory.
This compares to a transient Markov model solution which maintains the
stochastic information in the solution and shows a particular trajectory’s
probability of occurring at a time t.

Specifically, Fig. 1 shows that initially, the populations of Proc0 and Res0

decrease together as they synchronise with each other. As the number of
Proc0 components exceeds the number of Res0 components initially, there
is always a high contention for Res0 components to synchronise with. After
plateauing at around 80 competing Proc0 components, a steady state of
around 90 is reached. This high contention has the effect of suppressing the
population of Res0 components to a steady-state value less than 10.

This does not mean that it is not possible for more that 10 resources to
ever perform a reset after a certain length of time. Rather this means that,
in the steady state, there is a large demand for the resources and those that
do become available above 10 are quickly absorbed by the population of 90
or so unsynchronised Proc0 components.

5 Models of Internet Worms

In this section, we apply a version of an SIR model of infection to various
computer worm attack models. An SIR model explicitly represents the
total number of susceptible, infective and removed hosts in a system
and is more commonly used to model disease epidemics. The following
shows the standard deterministic model for an SIR infection, s is the number
of susceptibles, i, the number of infectives and r, the size of the removed
population at time t:

ds(t)
dt

= −βs(t)i(t)

di(t)
dt

= βs(t)i(t)− γi(t)

dr(t)
dt

= −γi(t) (3)

where β is the infection parameter and γ is the removal parameter. It is
usual when coming up with tailored versions of the SIR model, to modify
the ODEs directly to capture any individual requirements. For instance in
Liljenstam et al. [14], they capture spatial differences in worm infection in
a network by using m2 β-parameters to specify the infection rates between
m autonomous systems.

Rather than directly modify the ODEs, we take the different (and un-
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usual) approach of letting an underlying process description dictate the over-
all structure of the deterministic model. We consider:

1. Basic SIR over a network

2. SIR with reinfection over a network

3. SIR model with second phase distributed denial-of-service attack

In all three cases, the transmission of an infection has to occur over a possibly
congested network. This model, where a transmission population (in this
case the available ability to route traffic in the network) is used as a conduit
for infection, is termed a frequency-based infection and is distinct from the
more usual density-based assumption of the standard SIR model, Eq. (3).
Again, it is common for such a distinction to be factored into the governing
equations by means of some generalising coefficients.

The benefit of having an explicit representation for the network, is that
we can see how the worm infection’s progress interferes with network dy-
namics. It also turns out that manipulating the network availability can be
a useful factor in the controlling the spread of infection.

5.1 Susceptible-Infective-Removed model over a Network

This is our most basic infection model and is used to verify that we get
recognisable qualitative results.

Initially, there are N susceptible computers and one infected computer.
As the system evolves more susceptible computers become infected from
the growing infective population. An infected computer can be patched so
that it is no longer infected or susceptible to infection. This state is termed
removed and is an absorbing state for that component in the system.

The capacity of the network is dictated by the parameter N , the number
of concurrent, independent connections that the network can sustain. Addi-
tionally, an attempted network connection can fail or timeout as indicated
by the fail action. This might be due to network contention or the lack of
availability of a susceptible machine to infect. As large scale worm infec-
tions tend not to waste time determining whether a given host is already
infected or not, we assume that a certain number of infections will attempt
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to reinfect hosts; in this instance, the host is unaffected.

S = (infectS ,>).I
I = (infectI , β).I + (infectS ,>).I + (patch, γ).R
R = stop

Net = (infectI ,>).Net ′

Net ′ = (infectS , β).Net + (fail , δ).Net
Sys = (S[M ] || I) ¤¢

L
Net [N ]

where L = {infectI , infectS}. Throughout this section, we use the shorthand
C[N ] to represent the parallel composition of N components of type C:

C || C || · · · || C︸ ︷︷ ︸
N

As with the worked example, we first derive the time-based system equation
for this model:

Sys(t) = P1(t) ¤¢
L

P2(t)
P1(t) = (N(S, t), N(I, t), N(R, t))∅
P2(t) = (N(Net , t), N(Net ′, t))∅

We use the following mapping for Eq. (2):

C11 → S C21 → Net
C12 → I C22 → Net ′

C13 → R

The ODE system for the SI-over-Network model is:

dv11(t)
dt

= −βI11(t)v22(t)

dv12(t)
dt

= −γv12(t) + βI11(t)v22(t)

dv13(t)
dt

= γv12(t)

dv21(t)
dt

= −βI21(t)v12(t) + βI11(t)v22(t)

+βI12(t)v22(t) + δv22(t)
dv22(t)

dt
= −βI11(t)v22(t)− βI12(t)v22(t)− δv22(t)

+βI21(t)v12(t)

where as before vij(t) = N(Cij , t).
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Figure 2: Plot of infectives, susceptibles and network connections over time
for patch rate, γ = 0.1 and network connection failure rate, δ = 0.5.

In Figs. 2–4, we take a susceptible population of M = 1000 computers
and an interconnect network capable of sustaining up to N = 200 simulta-
neous independent connections.

Fig. 2 and Fig. 3 show the different population dynamics for different
values of the patch parameter, γ. In Fig. 2, we see that the network reaches
saturation as a direct result of infection growth.

Fig. 4 shows how the number of infected machines varies as the patch
rate is increased. As we might expect for a higher patch rate, the infection
takes longer to take hold and then does not peak at the sort of values as
seen from a, possibly more realistic, patch rate. With a patch rate of 1/10th
that of the infection rate, we see the infection peak earlier at nearly 80% of
the susceptible population.

16



 0

 200

 400

 600

 800

 1000

 0  20  40  60  80  100

N
um

be
r

Time, t

Worm infection dynamics for gamma=0.3

Infected machines
Network connections

Susceptible machines

Figure 3: Plot of infectives, susceptibles and network connections over time
for patch rate, γ = 0.3

5.2 Susceptible-Infective-Removed-Reinfection model over a
Network

The Susceptible-Infective-Removed-Reinfection (SIRR) model is set out be-
low. As with the SIR model of Section 5.1, we constrain infection to occur
over a limited network resource, constrained by the number of independent
network connections in the system, N . A small modification in the process
model of infection allows for removed computers to become susceptible again
after a delay. We use this to model a faulty or incomplete security upgrade
or the mistaken removal of security patches which had previously defended
the machine against attack.

S = (infectS ,>).I
I = (infectI , β).I + (infectS ,>).I + (patch, γ).R
R = (unsecure, µ).S

Net = (infectI ,>).Net ′

Net ′ = (infectS , β).Net + (fail , δ).Net
Sys = (S[1000] || I) ¤¢

L
Net [N ]
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Figure 4: Plot of number of infected machines as patch rate γ is increased
from 0.1 to 0.3

where L = {infectI , infectS}.
The definition of the quantities Sys(t), P1(t), P2(t) and vij(t) remain

unaltered with respect to the model since the number of components has
not changed.

The modified ODEs, generated from the new model, are presented below:

dv11(t)
dt

= −βI11(t)v22(t) + µv13(t)

dv12(t)
dt

= −γv12(t) + βI11(t)v22(t)

dv13(t)
dt

= −µv13(t) + γv12(t)

dv21(t)
dt

= −βI21(t)v12(t) + βI11(t)v22(t)

+βI12(t)v22(t) + δv22(t)
dv22(t)

dt
= −βI11(t)v22(t)− βI12(t)v22(t)− δv22(t)

+βI21(t)v12(t)
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where as before vij(t) = N(Cij , t).

Solutions of the ODEs for the SIRR system gives rise to Figs. 5, 6 and 7.
As a result of the addition of the possibility of a patched machine becoming
susceptible once more, the infection level does not die away to zero but
instead a residual level remains in the system.

Here, we vary the network capacity N of the interconnecting network.
We observe that a reduced network capacity in Figs. 6 and 7 prevents the
sharp peak in infection and instead restricts the infection spread to a much
slower monotonic rise. Although the ultimate residual infection level in the
system is the same (this depends on the ratio of infection rate to patch
and unsecure rates), preventing the catastrophic infection growth and peak
could be significant in preventing the damage to the router infrastructure
seen in recent worm infections.
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Figure 5: Plot of infection dynamics for unsecured SIR model with network
capacity of N = 200 channels

5.3 Susceptible-Infective-Removed-Attack model

This example describes a modified SIR-Attack model. This simulates a
possible distributed denial-of-service (DDOS) attack mode of an Internet
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Figure 6: Plot of infection dynamics for unsecured SIR model with network
capacity of N = 50 channels

worm. In some worms it is known that there is a bimodal behaviour to the
worm, either a worm can infect another computer or it can start an attack on
a victim computer. The attack need not itself exploit any particular security
flaw, but can be something as simple as requesting a specific web page, or
issuing a ping request. The combination of perhaps millions of machines
making such requests quickly overwhelms the target computer, which either
crashes under the huge load, or becomes unusably slow.

The PEPA model is extended with a new component to represent the
target computer, V , and the behaviour of the network is enhanced to capture
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Figure 7: Plot of infection dynamics for unsecured SIR model with network
capacity of N = 20 channels

the transmission of attacks in addition to infection messages.

S = (infectS ,>).I
I = (infectI , β).I + (infectS ,>).I + (patch, γ).R

+(attack mode, χ).A
A = (attackA, λ).A + (patch, γ).R
R = stop

Net = (infectI ,>).Net′ + (attackA,>).Net ′′

Net ′ = (infectS , β).Net + (fail , δ).Net
Net ′′ = (attackV , ρ).Net + (fail , δ).Net

V = (attackV ,>).V ′

V ′ = (release, σ).V
Sys = (S[1000] || I || V ) ¤¢

L
Net [N ]

where L = {infectI , infectS , attackA, attackV }.
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The time-based system equation for this model is:

System(t) = (Population(t) || Target(t)) ¤¢
L

Network(t)
Population(t) = (N(S, t), N(I, t), N(A, t), N(R, t))∅

Target(t) = (N(V, t), N(V ′, t))∅
Network(t) = (N(Net , t), N(Net ′, t))∅

We use the following mapping for Eq. (2):

C11 → S C21 → Net C31 → V
C12 → I C22 → Net ′ C32 → V ′

C13 → A C23 → Net ′′

C14 → R

The ODE system for the SIR-attack model is:

dv11(t)
dt

= −βI11(t)v22(t)

dv12(t)
dt

= −γv12(t)− χv12(t) + βI11(t)v22(t)

dv13(t)
dt

= −γv13(t) + χv12(t)

dv14(t)
dt

= γ(v12(t) + v13(t))

dv21(t)
dt

= −βI21(t)v12(t)− λv13(t)I21(t)

+ δ(v22(t) + v23(t)) + ρI31(t)v23(t)
+ βI11(t)v22(t) + βI12(t)v22(t)

dv22(t)
dt

= −βI11(t)v22(t)− βI12(t)v22(t)− δv22(t)

+ βI21(t)v12(t)
dv23(t)

dt
= −ρI31(t)v23(t)− δv23(t) + λI21(t)v13(t)

dv31(t)
dt

= −ρI31(t)v23(t) + σv32(t)

dv32(t)
dt

= −σv32(t) + ρI31(t)v23(t)

where as before vij(t) = N(Cij , t).

Fig. 8, Fig. 9 and Fig. 10 show how an individual machine might fare
under a concerted distributed denial-of-service attack from a population of
worm infected computers. When the number of network connections of the
victim machine is limited to 150 the machine is rapidly overwhelmed and
remains so. In contrast, when 500 network connections are available the
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victim machine retains some capacity to handle connections throughout the
attack. At the intermediate level of 250 connections the machine is briefly
overwhelmed but recovers moderately quickly. Note that the characteristics
of the original attack remains the same in each of the scenarios.
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Figure 8: Characteristic of a DDOS attack that overwhelms a victim ma-
chine

6 Conclusion

Internet worms are a virtual pestilence. The distributed scale of their ef-
fects defeats attempts to model their behaviour in very close detail, and
thus impedes the analysis which has the potential to bring understanding
of their function and distribution. Large-scale modelling can be effective
here, because it abstracts away from modelling of individual behaviour and
considers population-based representations. In the present paper we have
used a high-level modelling language (the PEPA process algebra) to generate
frequency-based population dynamics models of Internet worm spread.

The continuous-space modelling methods which are used in population-
based studies are often unfamiliar to those who model the discrete-state
systems used in computer networks. By initiating our modelling from a
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Figure 9: Characteristic of a DDOS attack that briefly incapacitates a victim
machine before it recovers

high-level process-based representation rather than from differential equa-
tions directly, we hope that we have brought powerful and efficient analysis
techniques closer to the practitioners who need to use them.

We have focused our attention on this aspect of the modelling process
because numerical integration of systems of differential equation is a fully
automatic process which runs without user intervention. Thus, if the process
algebra model describes the behaviour of the major system components well
then the modeller is well-placed to interpret the results of the time series
analysis which results from solving the initial value problem for the ODEs.
In practice, we have found this to readily admit an intuitive interpretation.

The scale of problems which can be modelled in this way vastly exceeds
those which are founded on explicit state representations. The latter are
prone to the well-known problems of state space explosion and cannot be
made to scale up to systems of the complexity of the models of internet
worms which are presented here. We believe the modelling methods exem-
plified in the present paper to be generally useful for analysing the behaviour
of populations of interacting processes with complex dynamics.

Our plans for future work include the extension of our mapping from
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Figure 10: Characteristic of a DDOS attack that does not saturate the
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the PEPA language onto differential equation models. We seek to expand
our coverage of the language to include other forms of cooperation across
populations.
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A The PEPA Process Algebra

PEPA as a performance modelling formalism has been used to study a wide
variety of systems: multimedia applications [2], mobile phone usage [8],
GRID scheduling [19], production cell efficiency [12] and web-server clus-
ters [3] amongst others. The definitive reference for the language is [10].

As in all process algebras, systems are represented in PEPA as the com-
position of components which undertake actions. In PEPA the actions are
assumed to have a duration, or delay. Thus the expression (α, r).P denotes
a component which can undertake an α action at rate r to evolve into a
component P . Here α ∈ A where A is the set of action types and P ∈ C
where C is the set of component types. The rate r is usually interpreted as
a random delay which samples from an exponential random variable with
parameter r.

PEPA has a small set of combinators, allowing system descriptions to
be built up as the concurrent execution and interaction of simple sequential
components. The syntax of the type of PEPA model considered in this paper
may be formally specified using the following grammar:

S ::= (α, r).S | S + S | CS

P ::= P ¤¢
L

P | P/L | C
where S denotes a sequential component and P denotes a model component
which executes in parallel. C stands for a constant which denotes either a
sequential component or a model component as introduced by a definition.
CS stands for constants which denote sequential components. The effect of
this syntactic separation between these types of constants is to constrain
legal PEPA components to be cooperations of sequential processes.

More information on PEPA can be found in [10]. The structured opera-
tional semantics are shown in Fig. 11. A brief discussion of the basic PEPA
operators is given below:

Prefix The basic mechanism for describing the behaviour of a system with
a PEPA model is to give a component a designated first action using
the prefix combinator, denoted by a full stop, which was introduced
above. As explained, (α, r).P carries out an α action with rate r, and
it subsequently behaves as P .

Choice The component P +Q represents a system which may behave either
as P or as Q. The activities of both P and Q are enabled. The first
activity to complete distinguishes one of them: the other is discarded.
The system will behave as the derivative resulting from the evolution
of the chosen component.
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Prefix

(α, r).E
(α,r)−−−→ E

Competitive Choice

E
(α,r)−−−→ E′

E + F
(α,r)−−−→ E′

F
(α,r)−−−→ F ′

E + F
(α,r)−−−→ F ′

Cooperation

E
(α,r)−−−→ E′

E ¤¢
S

F
(α,r)−−−→ E′ ¤¢

S
F

(α 6∈ S)
F

(α,r)−−−→ F ′

E ¤¢
S

F
(α,r)−−−→ E ¤¢

S
F ′

(α 6∈ S)

E
(α,r1)−−−→ E′ F

(α,r2)−−−→ F ′

E ¤¢
S

F
(α,R)−−−→ E′ ¤¢

S
F ′

(α ∈ S)

where R = r1
ra(E)

r2
ra(F ) min(ra(E), ra(F ))

Hiding

E
(α,r)−−−→ E′

E\L (α,r)−−−→ E′\L
(α 6∈ L)

E
(α,r)−−−→ E′

E\L (τ,r)−−−→ E′\L
(α ∈ L)

Constant
E

(α,r)−−−→ E′

A
(α,r)−−−→ E′

(A def= E)

Figure 11: PEPA Structured Operational Semantics

Constant It is convenient to be able to assign names to patterns of be-
haviour associated with components. Constants are components whose
meaning is given by a defining equation. The notation for this is
X

def= E. The name X is in scope in the expression on the right hand
side meaning that, for example, X

def= (α, r).X performs α at rate r
forever.

Hiding The possibility to abstract away some aspects of a component’s
behaviour is provided by the hiding operator, denoted P/L. Here,
the set L identifies those activities which are to be considered internal
or private to the component and which will appear as the unknown
type τ .
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Cooperation We write P ¤¢
L

Q to denote cooperation between P and Q
over L. The set which is used as the subscript to the cooperation
symbol, the cooperation set L, determines those activities on which
the components are forced to synchronise. For action types not in L,
the components proceed independently and concurrently with their
enabled activities. We write P ‖ Q as an abbreviation for P ¤¢

L
Q

when L is empty.

In process cooperation, if a component enables an activity whose action
type is in the cooperation set it will not be able to proceed with that activity
until the other component also enables an activity of that type. The two
components then proceed together to complete the shared activity. Once
enabled, the rate of a shared activity has to be altered to reflect the slower
component in a cooperation.

In some cases, when a shared activity is known to be completely depen-
dent only on one component in the cooperation, then the other component
will be made passive with respect to that activity. This means that the
rate of the activity is left unspecified (denoted >) and is determined upon
cooperation, by the rate of the activity in the other component. All passive
actions must be synchronised in the final model.

Within the cooperation framework, PEPA respects the definition of
bounded capacity : that is, a component cannot be made to perform an ac-
tivity faster by cooperation, so the rate of a shared activity is the minimum
of the apparent rates of the activity in the cooperating components.

The total capacity of a component P to carry out activities of type α is
termed the apparent rate of α in P , denoted rα(P ). It is used heavily when
calculating the pairwise cooperation rate: when cooperating with another
component, the bounded capacity principle ensures that the overall rate of
cooperation does not exceed either of the constituent apparent rates.

To summarise the original ruleset from [10], the apparent rate function
can be defined as:

rα(P ) =
∑

P
(α,λi)−−−→

λi

where λi ∈ IR+ ∪ {n> | n ∈ Q, n > 0}, n> is shorthand for n × > and >
represents the passive action rate that inherits the rate of the coaction from
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the cooperating component. > requires the following arithmetic rules:

m> < n> : for m < n and m,n ∈ Q
r < n> : for all r ∈ IR, n ∈ Q

m>+ n> = (m + n)> : m,n ∈ Q
m>
n> =

m

n
: m,n ∈ Q

Note that (r +n>) is undefined for all r ∈ IR in PEPA therefore disallowing
components which enable both active and passive actions in the same action
type at the same time, e.g. (a, λ).P + (a,>).P ′.
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