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Animal movements can influence their ecology and demographics. Animal 

movements are often characterized by path structures with directional 

persistence.  The extent to which directional persistence improves forage 

success is investigated in this paper using theoretical simulations. It is shown 

that a movement strategy with directional persistence enables simulated 

animals to find more forage as compared to a random movement strategy. 

Situations where resources are chosen with certainty (optimally) are even 

more successful. Choosing resource with certainty cannot result in directional 

persistence. However, in cases where animals choose with certainty adjacent 

cells with resource but continue in their existing direction if none of these have 

resources then results include directional persistence.  It is posited here that 

this combined strategy is the most effective because if optimal foraging works 

it is optimally efficient but where foraging is sub-optimal, for a variety of 

reasons, directional persistence will benefit foraging. 

  Historically population ecology focused on temporal fluctuations but recently a 

growing body of research is addressing the spatial aspects of population dynamics, 

for both terrestrial1 and marine2 environments, of which animal movement is an 

important component.  Random walk type models have been used successfully to 
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characterize movement for various organisms as long as path lengths are at scales 

that capture the true path structure3. Many animals have a tendency to move in 

preferred directions, a situation better modelled by a correlated random walk where 

turning angles are taken from biased distributions, see Bartumeus et al.4 for 

example. 

  Much of the literature that considers the turn angle and individual segment length 

distributions of moving organisms show that there are often angles and distances 

that predominate5-10.  In fact, in all of these particular studies, the turn angles that 

predominate move the organism in a roughly forward direction (approximated best 

by a correlated walk). These examples are from a variety of organisms, which 

include species of mammal, bird, amphibian, fish and bacterium, and measured in a 

variety of environments, heterogeneous and homogeneous. For other organisms, 

roughly backwards directions predominate6,8 or both forwards and backwards 

directions predominate11,3.  Here backwards directions refer to situations where the 

animal reverses its existing direction.  

  Animal movements are often characterized by long-tailed power-law distributions 

of movement lengths called Lévy distributions12. Reynolds and Rhodes13 discuss in 

some detail the possibilities for the Lévy walk animal movement paradigm and this 

is not considered further in this paper. 

    Correlated walks appear to predominate as an animal movement strategy 

(Schultz and Crone10 give one of the few examples of completely random walk 

strategy). Situations where directional preferences include reversals in direction can 

be seen as an endeavour to remain in larger habitat patches6,8 or an evolved 

response to random environments as hypothesized for the case of bacteria11.  Of 
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interest here is the predominance of organisms with turn angle distributions that 

move them generally in forward directions. Possible reasons relate to foraging itself 

as a correlated random walk will cover more area over time than a random walk3. 

Here I hypothesize that a correlated walk will also increase forage success.  To test 

this hypothesis a simple spatially explicit consumer resource cellular-automaton 

model is used. 

 Figure 1 shows fluctuations in the numbers of animals and resourced cells 

over time for a simulation of consumers living and dying according to their ability 

to locate and consume resource. This ability is based only on a predetermined 

movement strategy. For the first 1000 simulation steps in Figure 1 the animals use a 

random walk strategy (RW). After 1000 steps they use a correlated random walk 

strategy with tight directional persistence (CRWT). For a CRWT as compared to a 

RW, animal numbers increase on average by 0.75 and resource decreases on 

average by 0.45 (Figure 1). The trend is not sensitive to parameter variation.  Thus, 

the consumer is able to locate and utilise resource more efficiently using the 

CRWT. For a situation using a broader directional persistence (CRWB) this change 

is less evident with animal numbers increasing on average by 0.45 and resource 

decreasing by 0.27 as compared to the RW (not shown).   

   This model is very simplistic but captures the essential population dynamics 

between a consumer and its food resource allowing one to test the effectiveness of 

the different movement strategies. As predicted consumers that move in roughly 

forward directions can be more efficient foragers (as defined by increasing their 

numbers and finding more forage).  While not completely intuitive this might be 

easily explained in that by continuing in a general direction there is a greater 
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probability of encountering a resource cell that has not yet been consumed at least 

by that individual. It has been demonstrated that static objects found and destroyed 

using CRWs are more efficient than using RWs4. The difference here is that 

population dynamics are included and the resource cells regenerate over time.  

Thus, the density and layout of resource are determined by the dynamic and not by 

fixed design. 

  Bartumeus et al4 suggested that “correlated random-walk properties (i.e., scale-

finite correlations) may be interpreted as the by-product of locally scanning 

mechanisms”. The present study suggests that that animal use of a CRW strategy 

could be partially innate.   The simulations here are dynamic with birth and death 

processes but the simulated animals do not perceive their environment, they 

merely use a movement strategy.  Moreover, running simulations with optimal 

foraging, where animals select any resourced adjacent cell, placed randomly, 

produces completely random distributions of turn angles. Thus, for resources that 

are positioned randomly, even if animals choose with absolutely certainty of 

getting resource does not create a CRW with animals heading roughly forwards.   

  One might argue that resources in real environments can be positioned 

spatially with correlated bias, which they can be.  For example river courses can 

have resources along their lengths.  Also, the need to drink water can create 

straight movement toward water bodies. However, in most environments 

optimal resources will almost inevitably have a random component to their 

spatial positions.  Thus, I am suggesting that regardless of the complex nature 

of an actual resource structure resource uncertainty should result in some 

foraging advantage for moving roughly forward.  
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  As shown in Figure 2 the optimal foraging strategy described above does 

improve the absolute efficiency of foraging (there are on average more animals 

and less forage than in Figure 1 with all other parameters the same).  As already 

mentioned this strategy cannot create a CRW with animals heading roughly 

forwards.  However, for simulations run with the additional procedure that when 

no adjacent cells have resource an animal continues in its existing direction 

results in a distribution of turn angles that does include significant numbers of 

forward movements, creating a bias of going forward.  The effect on efficiency is 

minimal.  Thus, the following simple explanation becomes possible.  Animals 

where possible use an optimal foraging strategy but where this is not possible 

they move roughly in their existing forage direction.  This combined strategy is 

more optimal in the sense that when the optimal foraging strategy fails in the 

short term (their immediate choices are sub-optimal) then a moving forward 

strategy will be more efficient than an unbiased strategy. Sub-optimal foraging 

could be the result of a number of factors such as a lack of suitable forage locally 

or other needs such as water. Also, predation pressure or dominant individuals 

can prevent optimally foraging. For the same reasons, the CRW should benefit 

foragers who have less than perfect knowledge of the positions of optimally 

resourced patches (which is likely14). Thus, the use of a CRW strategy, which in 

effect takes into account the improved probability of finding future forage in 

cells further away, should benefit foraging when optimal foraging fails locally or 

foragers do not have perfect knowledge of resource positions.  

  Bacteria have been shown to use CRW strategies in isotropic media5,11 and 

thus this behaviour appears innate. These bacteria have flagella that propel them 

and this could well be conducive to moving in straight directions. However, 
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similar results are found for mites on a coverslip washed in distilled water15 and 

as arthropods mites have a physical structure quite different to bacteria.  As 

these bacteria and mites had no forage in those experiments5,11,15 this fits the 

explanation that movement forward is an innate method to locate forage when 

not immediately apparent.  

  Bartumeus16  argues for the existence of intermittent biological mechanisms to 

explain the statistical patterns found in movement data. What simpler mechanism 

than for animals to forage roughly in forward moving directions when unable to 

forage optimally? This research indicates that a strategy of moving generally in a 

forward direction provides some foraging advantage and is thus probably an innate 

behaviour likely to be found in many animals.   

METHODS 

A consumer resource model is developed using the Netlogo programming 

platform17.  The consumer animals move on a square lattice with 2500 grid cells 

and periodic boundary conditions. Periodic boundary conditions are used to 

remove edge effects (the right edge of the lattice is connected to the left edge and 

the top edge to the bottom edge). The size of lattice is sufficient in that a lattice 

with double these cells produced comparative results. Grid cells either have a 

unit of food resource or are empty with an initial probability of 0.5 of cells 

resourced. Thus, approximately half of the cells have food and half are empty, 

distributed randomly throughout the grid. Twenty animal model agents (referred 

to throughout as animals) are initially placed in random positions on the 

simulation grid and given a random amount of energy up to 6 units (units are 

arbitrary). New positions for the animals are found using one of the methods for 
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changing direction (given below) and moving one cell in that direction, while 

incrementing the time by one and decreasing the animal’s energy by one. If an 

animal moves to a resourced cell it consumes that cells resource and increments 

its own energy by 3 units. This amount of energy is required for consumer 

population survival. Resource returns to a cell (re-growth) after a number of time 

steps (arbitrarily set equal to 45 time steps).  If an animal’s energy goes below 

zero it dies. Animals reproduce at 0.04 of the population.  

Three movement strategies are considered: 

1. A random walk (RW) where changes in direction are randomly taken 

from an even distribution of angles -180◦ to 180◦. 

2. A correlated random walk with broad directional persistence (CRWB) 

where angles are taken from a normal distribution of turn angles with a 

mean of 0◦ and standard deviation of 90◦. At each step in the simulation 

the 0◦ corresponds to the animals existing direction.  

3. A correlated random walk with tight directional persistence (CRWT) 

where angles are taken from a normal distribution of turn angles with a 

mean 0◦ and standard deviation 20◦. 
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Figure 1 Resulting numbers of animals (solid line) and cells with resource 

(dashed line) for a simulation of foraging animals.  After 1000 time steps the 

strategy is changed from a RW to a CRWT. Other parameters values are given in 

the methods. 
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Figure 2 Resulting numbers of animals (solid line) and cells with resource 

(dashed line) for a simulation of foraging animals where animals choose 

adjacent cells with forage. Where there are a number of choices they choose one 

randomly.  When confronted by no adjacent cell with resource they choose a new 

direction randomly. Parameter values are the same as in Figure 1. 
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