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Abstract

ABL1 tyrosine-kinase inhibitors (TKI) are a front-line therapy for chronic myelogenous leukemia 

and represent the best known examples of targeted cancer therapeutics. However, the dynamic 

uptake of low molecular weight TKIs into cells and their intracellular behavior is largely unknown 

due to the difficulty of observing non-fluorescent small molecules at subcellular resolution. Here 

we report the direct label-free visualization and quantification of two TKI drugs – imatinib and 

nilotinib inside living cells using hyperspectral stimulated Raman scattering imaging. Both drugs 

were enriched over 1000-fold in lysosomes as a result of their lysosomotropic properties. In 

addition, low solubility appeared to contribute significantly to the surprisingly large accumulation 

of nilotinib. We further show that the lysosomal trapping of imatinib was reduced by more than 

10-fold when using chloroquine simultaneously, suggesting that chloroquine may increase the 

efficacy of TKIs through lysosome mediated drug-drug interaction besides the commonly 

proposed autophagy inhibition mechanism.
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INTRODUCTION

The Abelson tyrosine kinase (ABL1) is an enzyme which is ubiquitously expressed in cells. 

Its tyrosine phosphorylation capacity is tightly regulated. Genetic damage in a hematopoietic 

cell can lead to a t(9;22)(q34,q11) chromosome translocation resulting in expression of the 

chimeric BCR-ABL1 oncoprotein, in which ABL1 is constitutively active. This oncoprotein 

causes chronic myeloid leukemia (CML), which is invariably fatal if left untreated1. 

Imatinib (Gleevec®, Novartis Pharmaceuticals) is the first-in-class ABL1 tyrosine kinase 

inhibitor, used for the treatment of Philadelphia chromosome positive CML; nilotinib 

(Tasigna®, Novartis Pharmaceuticals) is a more potent and more selective drug, used in the 

same indication2. Whereas imatinib and nilotinib are ATP-competitive inhibitors of ABL 

which bind within the substrate ATP binding pocket of the kinase, two other agents, GNF-2 

and GNF-5 are compounds which specifically inhibit the kinase activity of ABL1 via an 

allosteric mechanism3.

Recently chloroquine, a drug used to treat malaria, has been found to have synergistic effect 

with imatinib in models of CML and gastrointestinal stromal tumors (GIST)4,5. Chloroquine 

significantly increased imatinib-induced BCR-ABL expressing cell death from ~50% to 

75%. Similar effects were observed in GIST cells. It was suggested that chloroquine, known 

to inhibit the autophagy pathway by neutralizing lysosomal pH6, could prevent the imatinib-

treated CML and GIST cells from going through the autophagy-related survival mechanism, 

and thus providing the synergistic effect. This exciting possibility initiated clinical trials 

with combination drug treatment regimens in hematopoietic malignancies as well as in solid 

tumors. While autophagy inhibition was frequently proposed as a mechanism of synergistic 

effect of chloroquine or its hydroxychloroquine analog with targeted or cytotoxic cancer 

therapeutic agents4,5,7–9, studies on both small cell lung cancer and breast cancer cells found 

that the effects of chloroquine were non-specific and independent of autophagy10,11. The 

contribution of autophagy inhibition remains unclear in the synergistic effects observed in 

combination drug treatment.

The molecular biology, pharmacology and tissue distribution of imatinib and nilotinib are 

well established. However, little is known about their intracellular distribution. Eukaryotic 

cells provide compartmental conditions for most biochemical reactions. Endogenous small 

molecules, including inorganic ions, cofactors, amino acids, lipids and carbohydrates, are 

regulated and usually dependent on specific transporter to cross plasma, organelle and 

nuclear membranes12. In contrast, pharmaceuticals and xenobiotics, most of which have 

both lipophilic and hydrophilic groups, can only passively diffuse through the lipid-bilayer 

membrane in neutral form. Despite the subcellular behavior of drugs and xenobiotics being 

of great importance in pharmacology, toxicology and drug discovery, the membrane 

permeability, cytosol and organelle distribution, and transportation of such agents are poorly 

understood. The main reason for this is the lack of a technology capable of observing low-

molecular-weight (LMW) compounds without labeling, and with enough spatial and 

temporal resolution to obtain time-lapse subcellular information.

Confocal Raman microscopy, a non-invasive and label-free imaging technique, has been 

shown to be able to trace drugs in living cells, but with limited speed and sensitivity13–17. 
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Stimulated Raman Scattering (SRS) microscopy, with much improved sensitivity achieved 

by using a high-frequency phase-sensitive lock-in detection scheme, allows high-speed 

label-free chemical imaging with 3-D subcellular spatial resolution18. It has been used for 

the imaging of lipids, proteins, DNA and other high concentration species in cells and 

tissue19–21. However, direct imaging of the intracellular distribution of small drug-like 

molecules has not been demonstrated. Traditional SRS microscopy probes one Raman band 

at a time. Biological cells have strong background SRS signals, especially in the fingerprint 

region. In order to distinguish different molecules, both multiplex SRS and hyperspectral 

SRS (hsSRS) microscopy which allow imaging at multiple Raman frequencies have been 

developed22–25, enabling direct imaging of LMW compounds inside a living cell.

Here we report the first direct observation and quantification of imatinib, nilotinib and 

GNF-2/-5, so-called 1st, 2nd and 3rd generations of TKIs in living CML cells using hsSRS 

imaging. We show that both the lysosomotropic property and the solubility of these drugs 

play important roles in their uptake and selective accumulation inside cellular organelles. 

We also directly studied the interplay between chloroquine and these TKIs in living cells, 

providing new insights into the mechanism of their synergistic effect at the subcellular level.

RESULTS AND DISCUSSION

Spontaneous Raman spectroscopy of drug molecules

To identify suitable spectral range for hsSRS imaging, we first measured the spontaneous 

Raman spectra of five drug molecules with a commercial Horiba-Jobin-Yvon Raman 

spectrometer. The chemical structures of the drug molecules are shown in Fig. 1a and their 

corresponding Raman spectra are shown in Fig. 1b. The spectral regions of particular 

interests are around 1300 cm−1 and 1600 cm−1. Both imatinib and nilotinib exhibited strong 

Raman signals in these two regions, while GNF-2 and GNF-5 exhibited strong Raman signal 

in the 1600 cm−1 region. The Raman peaks around 1300 cm−1 were tentatively assigned to 

the C-C stretching of the bond between pyrimidine and pyridine based on Raman 

measurements of a tool compound 4-(3-pyridinyl)-2-pyrimidine amine; while the Raman 

peaks around 1600 cm−1 were attributed to overlapping aromatic ring stretching26. 

Chloroquine had a major peak around 1370 cm−1, which was attributed to quinoline ring 

stretching mode27.

hsSRS imaging of drug accumulation inside cells

We imaged imatinib and nilotinib treated cells with a total of 20 SRS frames evenly spaced 

between 1236 cm−1 and 1497 cm−1 at a speed of 1.6 sec/frame. Fig. 2a and 2b show SRS 

images at 1305 cm−1 of 20 μM imatinib and nilotinib treated BaF3/BCR-ABL1 cells, 

respectively (supplementary Movie S1 show the hsSRS imaging data). Compared with the 

control cell treated only with DMSO (Fig. 2c), we observed several bright spots within both 

drug treated cells which resulted from drug accumulation inside the cell. The SRS spectra of 

the enclosed regions of interest (ROI, yellow circle) matched that of the SRS spectra of 

drugs in solution (Fig. 2d and 2e), but were different from cytosol spectra which had a broad 

peak around 1340 cm−1 (assigned to C-H deformation). Moreover, the drug spectra were 

similar to their spontaneous Raman counterpart (Fig. 1b) except for reduced spectral 
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resolution due to the limitation of the current spectral focusing hsSRS setup. In both cases, 

SRS spectra substantiated that the bright spots within cells are indeed accumulation of 

drugs, not metabolic or morphological responses of cells. Because SRS signal of drugs 

exhibit linear relationship with concentration (supplementary Fig. S2), the concentration of 

drugs inside cells can be quantitatively determined based on calibrations of drug solutions at 

known concentration. In the cytosol, we did not observe cytosol SRS spectral shape change 

when compared to control cells without drug treatment (Fig. 2f), suggesting that cytosolic 

drug concentrations were below the current limit of detection (1–2 mM).

To examine whether the accumulation of drugs was due to the binding of drugs to their 

targets, we imaged the drug uptake in BaF3/wt cells, which lack the BCR-ABL1 protein. 

Similar drug accumulations were observed in these control cells compared to that of BaF3/

BCR-ABL1 cells (supplementary Fig. S3). Further comparison of the spectral intensities of 

accumulated drugs revealed that drug accumulations were comparable in these two types of 

cells (supplementary Fig. S3), suggesting that drug accumulations are independent of their 

binding to their target protein BCR-ABL1.

Determining the mechanism of drug accumulation

The three-dimensional distributions of drug accumulation revealed that both imatinib and 

nilotinib accumulated outside cell nuclei (supplementary Movie S2). Because both drugs are 

weak bases that can be protonated in acidic environment, the most likely sites of 

accumulation are lysosomes or related acidic organelles. To examine this hypothesis, we 

imaged drug treated BaF3/BCR-ABL1 cells that were simultaneously labeled with 

Lysotracker Red (Invitrogen), a fluorescent marker for lysosomes. Cells were incubated in 

the presence of 20 μM imatinib or nilotinib together with 50 nM Lysotracker Red for 4 

hours before imaging. Both the SRS image and the two-photon fluorescence image were 

acquired simultaneously. Fig. 3a and 3d show the maximum intensity projection of three-

dimensional SRS images of cells treated with imatinib or nilotinib at 1305 cm−1, while Fig. 

3b and 3e show the maximum intensity projection of three-dimensional fluorescence images 

of the same cells (supplementary Movies S2 shows the corresponding three-dimensional 

sectioning images with 0.5 μm Z step). In both cases, the exact spatial overlap confirms that 

drugs are accumulated in lysosome or lysosome-related acidic organelles (Fig. 3c and 3f). 

Lysosomes were also stained in control cells not treated with any drug, but they did not 

show any difference in SRS intensity compared to the rest of the cytoplasm (Fig. 3g–i).

It is known that many weak bases can readily diffuse through cell membranes in their 

neutral form, but will be trapped within lysosomes in the protonated form due to the pH 

difference between the two regions separated by the lysosomal membrane. This is 

commonly referred to as the lysosomotropic effect, which was discussed in great detail by 

C. De Duve in 197428. The much lower pH (pH = 4.5–5) of the lysosome compared with 

that of the cytoplasm (pH = 7–7.5) provides a driving force for intra-lysosomal 

accumulation of weak bases. Based on De Duve’s theory, drug molecules in their neutral 

form permeate the membrane at a much higher rate compared to their protonated form. The 

maximum concentration ratio is determined by the ratio of the lysosomal pH and 

extracellular pH. Assuming the pH in the lysosomes to be 4.5 and that in the medium to be 
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7.2, that ratio is 500. For weakly basic drugs that have pKa lower than 7 or drugs that have a 

high ratio of permeability rates, the maximum concentration ratio is lower.

One of the best known lysosomotropic agents is the anti-malaria drug chloroquine. To 

quantitatively examine the uptake of chloroquine into lysosomes, we incubated BaF3/BCR-

ABL1 cells with 50 μM chloroquine for 2 hours. hsSRS imaging showed that the 

chloroquine accumulated inside lysosomes to give an average concentration of 50 mM 

(supplementary Fig. S4). Based on the SRS signal intensities, we calculated the 

concentration ratios of lysosomal drug to extracellular drug: chloroquine was enriched by 

1000 (±128) fold, imatinib by 933 (±354) fold, and nilotinib by 2520 (±1520) fold. Both 

chloroquine and imatinib have pKa values larger than 8 (chloroquine pKa1 = 10.2, pKa2 = 

8.3, imatinib pKa = 8.1), leading to an accumulation of ~1000-fold, a factor of 2 larger than 

predicted. The difference could be due to our rather simplified prediction model. A more 

complicated model taking into account the diffusion property, adsorption to lipids, and 

electrical attraction or repulsion has been shown to predict higher accumulation of 

chloroquine and other drugs29. Surprisingly, nilotinib accumulated by a factor of 80 times 

more than its predicted value of 32 based on its measured pKa of 6. We believe this is due to 

the relatively poor solubility of nilotinib at acidic pH (measured solubility is 2.6 μM at pH 2 

and 0.4 μM at pH 6.8). As the accumulation of nilotinib in the lysosome exceeds its 

solubility, precipitation of nilotinib follows. The precipitation shifts the equilibrium such 

that more nilotinib molecules are transported into the lysosome and results in a much higher 

apparent nilotinib concentration inside the lysosome. In contrast, both imatinib and 

chloroquine have excellent water solubility at pH 4–5 (>400 mM) and therefore would not 

be subject to precipitation.

We further lowered the extracellular concentration of both drugs to determine whether the 

precipitation of nilotinib was responsible for the observed abnormal accumulation. When the 

extracellular concentration of both drugs were lowered from 20 μM to 4 μM, lysosomal drug 

concentration decreased by roughly 4- to 5-fold for imatinib, but by at least 30-fold for 

nilotinib (supplementary Fig. S5). The concentration-independent enrichment of imatinib 

(within experimental error) is consistent with the acid-base equilibrium predictions. In 

contrast, the strong concentration dependence of nilotinib enrichment supports our 

hypothesis that its precipitation plays an important role in lysosomal trapping: when the 

enriched nilotinib concentration is below its solubility, precipitation will not occur and the 

enrichment ratio will follow that predicted by acid-base equilibrium. Determination of the 

exact enrichment ratio for nilotinib without precipitation is limited by the inaccuracy in 

determining lysosomal drug SRS spectra at sub-mM concentration. Nonetheless, we show to 

our knowledge for the first time that the precipitation of low solubility compounds, in 

addition to the protonation of weak basic groups, provides another trapping mechanism for 

their lysosomal enrichment. The lysosomotropic model should therefore be modified to 

include the solubility equilibrium to better describe situations where the compound under 

study has low solubility (Fig. 3j).

To further examine whether autophagy plays an important role in imatinib/nilotinib uptake 

into lysosomes, we pre-incubated the BaF3/BCR-ABL1 cells with 5 mM 3-methyladenine 

(3MA) for 4 hours, before incubating the cells with drugs (20 μM) for another 2 hours. 3MA 
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is a known autophagy inhibitor which works by blocking autophagosome formation via the 

inhibition of type III phosphatidylinositol 3-kinases30. No significant difference in 

lysosomal drug accumulation was observed for either imatinib or nilotinib (supplementary 

Fig. S5), suggesting that autophagy is not responsible for the observed drug enrichment in 

lysosomes.

For drugs that have pKa < 4.5, we do not expect to observe drug accumulation in lysosomes. 

GNF-2 and GNF-5 are two highly selective allosteric inhibitors of BCR-ABL13. Both drugs 

are predominantly unprotonated at pH 4–7. We incubated BaF3/BCR-ABL1 cells with the 

two drugs at a concentration of 50 μM for 2 hours. As predicted, hsSRS imaging did not 

reveal any significant accumulation in lysosomes (Fig. 4a). SRS images at 1600 cm−1 

showed that neither drug penetrated into the nucleus. Therefore, the nucleus spectra did not 

change while the cytoplasm spectra had moderate increases in intensity around 1600 cm−1 

(Fig. 4b). After subtracting the nucleus spectra from the cytoplasm spectra, we plotted the 

difference in subtracted spectra between drug treated cells and control cells (Fig. 4c). They 

were similar to the drug solution spectra (Fig. 4d), suggesting that the increases were due to 

drug accumulation in the cytoplasm. Based on the calibration of pure drug solutions, the 

cytosolic concentrations of both drugs were calculated to be around 2–3 mM, about 40–50 

fold increase compared to extracellular concentration (Fig. 4e). The reason of such cytosolic 

enrichment remains unclear and requires further investigation.

Time course of drug uptake into lysosomes

Both the membrane permeation dynamics and thermodynamic equilibrium partition are 

important in determining the lysosomal uptake of drugs. To quantitatively evaluate the 

uptake rate of drugs into the lysosome, we performed hsSRS imaging of drug treated cells at 

different time points and determined the lysosomal concentrations of both imatinib and 

nilotinib. Fig. 5a and 5b show the average SRS spectra of different subcellular components 

in BaF3/BCR-ABL1 cells (n=6) at 1, 2, 4 and 8 hours for imatinib and nilotinib, respectively 

(supplementary Fig. S6 shows representative SRS images at 1305 cm−1). The lysosome SRS 

spectra exhibited large cell-to-cell variations, which could be due to different lysosome pH 

or different cell cycle stages. Fig. 5c and 5d show the calculated apparent concentration of 

lysosomal drugs as a function of incubation time. Compared to the extracellular drug 

concentration of 20 μM, both drugs were enriched over 1000-fold in the lysosome within 

several hours. We note that even at 8 hours, both drug accumulations do not reach steady-

state. Effective accumulated drug concentrations keep increasing. Similar phenomena has 

been observed before for clofazimine, an antibiotic drug that is known to form insoluble 

aggregates in cells13. The non-steady state behavior deviates from that predicted by De 

Duve’s theory. In the case of nilotinib, we believe the deviation is due to slow drug 

precipitation, which increases the size of precipitates and the apparent drug concentration 

over time; in the case of imatinib, the deviation could be due to formation of other 

complexes or drug degradation.

The rate of nilotinib enrichment was much higher than that of imatinib, which is consistent 

with the presumption that only the neutral form of the drug is permeable through the 

lysosome membrane. At cytosolic pH, nilotinib has a much larger fraction of molecules in 
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neutral form than imatinib, therefore its rate of diffusion across membrane appears higher. 

Accompanying the increase of drug accumulation over time, the number and size of 

lysosomes containing drugs often increased (supplementary Fig. S6). After 8 hours of 

incubation, some cells already showed signs of apoptosis, such as disappearance of nucleus 

structure.

Lysosome-mediated chloroquine-TKI drug interaction

Drug distribution within cells is important for drug efficacy. Although many anticancer drug 

including TKIs are weakly basic and therefore subject to lysosomal trapping, the clinical 

implications of this effect are often overlooked, due to the lack of quantitative 

measurements. Lysosomal trapping of drugs may have two important consequences: first, it 

effectively decreases cytosolic drug concentration; second, it can inhibit autophagy by 

disrupting autophagosome fusion with lysosomes31. The predominant explanation for the 

drug sensitization effect of chloroquine and hydroxychloroquine in TKI treatment of CML 

and several other cancers is that they inhibit autophagy, which plays a key role in the 

survival of cancer cells (including cancer stem cells). Despite the many different studies of 

the autophagy-inducing effect of TKI drugs, the assessment of intracellular interactions of 

drug combinations remains elusive. Here we demonstrate that hsSRS imaging can directly 

image and quantify TKI drug interactions with chloroquine and the dynamics of drug 

enrichment in lysosomes.

We incubated BaF3/BCR-ABL1 cells with both 20 μM imatinib and chloroquine at two 

concentrations of either 20 or 50 μM for 3 hours. hsSRS imaging data show clear contrast 

changes in the lysosomes with increasing chloroquine concentrations (supplementary Movie 

S3, Fig. 6a–c). We further quantified the spectral change (Fig. 6d). The spectral peak at 

1370 cm−1 corresponding to chloroquine increased in amplitude as chloroquine 

concentration increased from 0 to 50 μM. Accompanying this change, the intensity of the 

spectral peak at 1305 cm−1 corresponding to imatinib decreased to almost the same level as 

that of cytoplasm. The lysosomal concentration of imatinib decreased by roughly 5-fold at 

20 μM chloroquine concentration, and by more than 10-fold at 50 μM chloroquine 

concentration (Fig. 6d). This measurement suggests that imatinib is driven out of the 

lysosome due to the accumulation of chloroquine. It can be explained by the two drugs’ 

competition for protons: chloroquine is a stronger base with two protonation sites that have a 

pKa > 8, while imatinib is a weaker base having only one protonation site that has a pKa > 8. 

Chloroquine protonation increases the intra-lysosomal pH and reduces imatinib 

accumulation in lysosomes. If acid-base equilibrium plays the major role here, the intra-

lysosomal pH must have increased by at least one unit upon incubation in 50 μM 

chloroquine solution, which agrees with previous measurement by pH-dependent 

fluorescence32,33. We conclude that lysosome mediated drug interaction of imatinib and 

chloroquine can effectively reduce lysosomal trapping of imatinib and increase its cytosolic 

availability. This offers an alternative explanation of the sensitization effect of chloroquine 

in imatinib based CML chemotherapy4. Cell-based assays confirmed this finding - 

chloroquine not only sensitized BaF3/BCR-ABL1 cells from imatinib (supplementary Table 

S1) but also shifted imatinib’s EC50 in the phospho-Stat5 assay (supplementary Table S2).
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Surprisingly, when BaF3/BCR-ABL1 cells were treated with 20 μM nilotinib and either 20 

or 50 μM chloroquine simultaneously for 3 hours, we did not observe any significant 

reduction of nilotinib accumulation, even though chloroquine concentration still increases in 

lysosomes (Fig. 6e–h). Considering that chloroquine can increase the pH by about one unit 

to pH = 5–6, the theoretical enrichment of nilotinib would be less than 10-fold based on 

acid-base equilibrium considerations. This small enrichment factor cannot explain the high 

accumulation ratio observed. We suspect that the faster dynamics of nilotinib precipitation 

inside the lysosome is responsible for this phenomenon. Nilotinib diffuses into lysosomes 

faster than chloroquine and forms precipitates before the pH is elevated by chloroquine 

accumulation. This phenomenon would change with lower nilotinib concentration. 

However, directly observing such effects would require at least ten times higher SRS 

detection sensitivity than currently achievable.

CONCLUSIONS

In summary, hsSRS combines the high specificity of Raman spectroscopy with the high 

sensitivity provided by SRS microscopy, which allows for unprecedented capability in label-

free imaging of drug-cell interaction at subcellular resolution. Most TKI drugs have 

lysosomotropic properties, rendering them amenable to lysosomal trapping. At 20 μM 

concentration, both imatinib and nilotinib are enriched by more than 1000-fold in 

lysosomes, which can be explained by De Duve’s theory modified with the addition of 

solubility equilibrium. This large enrichment reduces the availability of cytosolic drug and 

thus decreases drug efficacy. In CML patients treated with these two drugs, mean blood 

plasma trough concentrations of imatinib and nilotinib are 4 μM and 2μM34,35, respectively. 

They are 5–10 times lower than the concentration used in this experiment. Nevertheless, we 

have shown that even at 4 μM drug concentration, we were able to observe drug enrichment 

in lysosome using hsSRS imaging. More importantly, for imatinib, which does not 

precipitate after enrichment, the enrichment factor is independent on drug concentration. 

Thus the lysosomal trapping of imatinib will reduce its efficacy in CML patients. The effect 

would be even more severe for drugs that have large enrichment (high pKa) and low water 

solubility.

We have further shown that hsSRS imaging can directly monitor the interaction of imatinib 

with chloroquine. We determined that 50 μM of chloroquine can increase the pH of 

lysosome by at least one unit, which results in a 10-fold decrease of lysosomal imatinib 

enrichment. We believe this lysosome-mediated drug interaction is at least partly 

responsible for the sensitizing effect of chloroquine for imatinib-treated CML patients. 

Because lysosomotropism is such a universal mechanism based mostly on the acid-base 

equilibrium partition of weakly basic molecules on the two sides of the lysosomal 

membrane, the synergistic effect must also be applicable to other weakly basic drugs and 

cancer cells as well. However, the lysosome-mediated interaction would be strongest for 

drugs that have pKa > 6. For drugs that have lower pKa such as nilotinib, such interaction is 

expected to be weaker. Another caveat is that the dynamics of drug uptake may also play an 

important role. Faster uptake of nilotinib and the precipitation that follows can significantly 

lower the impact of chloroquine accumulation induced lysosomal pH increase.
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We believe that this is the first time that intracellular TKI drugs are visualized and 

quantified at submicron resolution; we also demonstrate the first quantitative measurement 

of drug-drug interaction with label-free imaging. Further improvement in SRS sensitivity 

will enable this technique to be broadly applicable to the study of many different drugs in 

living cells. This could potentially be achieved with higher power lasers in combination with 

longer wavelength to reduce photodamage. We have shown hsSRS imaging in the 

fingerprint region, especially focused on C=C stretching and aromatic ring breathing. It is 

worth noting that it is also possible to design deuterated drugs or alkyne tagged drugs for 

which the physical and chemical properties are largely intact, but their Raman signals are 

shifted into a low background region36, enabling easier and more sensitive SRS detection.

METHODS

Materials

Imatinib and nilotinib were obtained from Novartis. Chloroquine, GNF-2, and GNF-5 were 

purchased from Sigma-Aldrich. 3-Methyladenine was purchased from R&D systems. 

Lysotracker Red was purchased from Lonza. Interleukine-3 was purchased from 

Calbiochem.

Cell culture

The murine bone marrow-derived cell line BaF3 was used to generate the appropriate cell 

line models. BaF3 cells were obtained from the German Collection of Microorganisms and 

Cell Cultures (DSMZ, Braunschweig and DSMZ No. ACC 300). Parental BaF3 cells depend 

on interleukine-3 (IL-3) for growth and survival and were used as the reference cell line that 

does not depend on BCR-ABL1 activity for growth and survival37. These cells are referred 

to as BaF3/wt. To generate BaF3 cells that depend on BCR-ABL1 expression for growth 

and survival, BaF3 cells were engineered to express BCR-ABL1 using retroviral 

transduction with a MSCV based retroviral vector containing a p210 BCR-ABL1 expression 

cassette. When grown in the absence of IL-3, the proliferation of the cells is dependent on 

the expression of BCR-ABL138. These cells are referred to as BaF3/BCR-ABL1. BaF3/

BCR-ABL1 cells were cultured in RPMI 1640 medium supplemented with 10% FBS and 

1% Pen/Strep. BaF3/wt cells were cultured in RPMI 1640 medium supplemented with 10% 

FBS, 1% Pen/Strep and 5ng/ml mouse IL-3. Both cells were grown in suspension at 37°C 

with 5% CO2 and were passaged every other day with a 1:5 split ratio.

Hyperspectral SRS imaging

The experimental setup we used for fingerprint hsSRS imaging was published previously24 

(supplementary Fig. S1). In brief, two synchronized femtosecond lasers were chirped to 

about 2 ps using SF57 glass rods. One laser was fixed at 1040 nm wavelength and the other 

was tunable from 750 nm to 970 nm. We chose the center wavelength of the tunable laser to 

be at 914 nm and 890 nm for hsSRS imaging in the 1300 cm−1 region and 1600 cm−1 

region, respectively. The wavenumbers were calibrated with oleic acid spectral peaks using 

linear fitting. Spectral resolution is about 20–30 cm−1. The temporal delay between the two 

pulsed lasers was controlled by a motorized stage (Newport MFA-PP). A 60X water 

immersion objective (Olympus UPLSAPO60X, NA = 1.2) was used to focus the lasers onto 
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the sample, with typical optical power at the sample of 40 mW for the pump beam and 40 

mW for the Stokes beam. Each SRS image has 512 × 512 pixels and takes 1.65 sec to 

acquire.

hsSRS imaging of drug treated cells

Imatinib, nilotinib, GNF-2 and GNF-5 were dissolved in deuterated DMSO at 10 mM stock 

concentration. For drug treatment studies, different amounts of drug stock solution were 

added to freshly passaged cell suspensions and were grown in the incubator for a few hours. 

Even though some drugs (especially nilotinib) have poor solubility in water, they all have 

excellent solubility in DMSO (> 50 mM). We did not observe any precipitation of the drugs 

in the culture medium at all conditions. Before imaging, 20 μL of cell suspension were 

deposited onto a coverslip with a pipette. A coverslide was immediately applied on top to 

form a single layer of cells, which were then sealed with nail polish. Cells were immediately 

imaged at room temperature within 20 minutes.

To obtain lysosomal drug SRS spectra, ROIs of lysosomes were first selected based on their 

SRS intensity at 1305 cm−1. Typical size of a ROI can range from 0.5μm–3μm. Paired 

background SRS spectra were obtained from cytoplasmic ROI regions that do not contain 

any bright lysosomal drug inclusions. To calculate lysosomal drug concentration, the 

background SRS spectra were subtracted from the lysosomal spectra. The peak intensities of 

the resulting spectra were used to calculate the concentration of drugs by comparing them to 

peak SRS intensities of pure drug solutions at 100 mM.

Two-photon fluorescence imaging of Lysotracker Red

The same lasers used for SRS imaging can excite Lysotracker fluorescence based on two-

photon excitation. We used a bandpass filter (605 nm/55 nm) to select the two-photon 

fluorescence of Lysotracker Red and detected it with a PMT amplifier (Hamamatsu). The 

epi-fluorescence signal from PMT and SRS signal from the photodiode were detected 

simultaneously during the beam scanning.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Structure and spectral properties of five drug molecules imatinib, nilotinib, 
chloroquine, GNF-2, and GNF-5
a, Chemical structures of the drug molecules. b, spontaneous Raman spectra of the drug 

molecules in the fingerprint region from 700 cm−1 to 1700 cm−1. The major peaks used for 

SRS imaging for each drug are marked with shaded vertical lines (~1300 cm−1 for imatinib 

and nilotinib, 1370 cm−1 for chloroquine, and ~1600 cm−1 for GNF2 and GNF5).
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Figure 2. hsSRS microscopy reveals enrichment of drugs in living cells: the SRS spectra of bright 
spots in drug-treated cells match the SRS spectra of the drug in solution, but differ from that of 
cytosol
a, Representative SRS images at 1305 cm−1 of 20 μM imatinib treated BaF3/BCR-ABL1 

cells for 4 hours. b, Representative SRS images at 1305 cm−1 of 20 μM nilotinib treated 

BaF3/BCR-ABL1 cells for 4 hours. c. Representative SRS images at 1305 cm−1 of control 

cells treated with DMSO. d, SRS spectra of selected ROI (yellow polygon) in a and b. e, 

SRS spectra of 100 mM imatinib and 100 mM nilotinib solutions. f, comparison of average 

SRS spectra of cytosol (excluding brighter regions, n = 6) of imatinib treated, nilotinib 

treated and control BaF3/BCR-ABL1 cells. Scale bar: 5 μm.
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Figure 3. Accumulations of drugs in lysosomes are confirmed by simultaneous two-photon 
fluorescence imaging of lysotracker and SRS imaging of drug accumulation
a–b, Maximum intensity projection of three-dimensional SRS images at 1305 cm−1 (a) and 

Lysotracker-Red fluorescence images (b) of 20 μM imatinib treated BAF3/BCR-ABL1 cells 

for 4 hours. c, Spatial overlap of the fluorescence image (red) and SRS image (green). d–e, 

Maximum intensity projection of three-dimensional SRS images at 1305 cm−1 (d) and 

Lysotracker-Red fluorescence images (e) of 20 μM nilotinib treated BaF3 cells for 4 hours. 

f, Spatial overlap of the fluorescence image (red) and SRS image (green). g–h, Maximum 

intensity projection of three-dimensional SRS images at 1305 cm−1 (g) and Lysotracker-Red 

fluorescence images (h) of control BaF3 cells. Scale bar: 5μm. j, Modified thermodynamic 

equilibrium model on lysosomotropism which includes solubility equilibrium. Protonated 

drug (DH+) needs to be deprotonated (neutral form D) in order to diffuse through the plasma 

membrane and the lysosomal membrane. Inside the lysosome, the drug exists mainly in 

protonated form due to the low pH and is no longer membrane-permeable. When the 

concentration of the protonated drug goes beyond its solubility, it would precipitate 

(DH+A−) inside the lysosome with counter ion A−.
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Figure 4. hsSRS imaging of intracellular uptake of GNF-2/GNF-5 drug show that only cytoplasm 
spectra has moderate intensity increases at ~1600 cm−1 due to drug accumulation
a, Representative SRS images at 1600 cm−1 of control BaF3/BCR-ABL1 cells, GNF-2 

treated BaF3/BCR-ABL1 cells, and GNF-5 treated BaF3 cells show that both GNF-2 and 

GNF-5 selectively accumulate in the cytoplasm. b, Average SRS spectra (n =6) of cytosol 

(red), and nucleus (green) for control cells, GNF-2 treated cells, and GNF-5 treated cells. c, 

Subtraction of GNF-2 cytoplasm-nucleus difference spectra with that of control (pink) and 

subtraction of GNF5 cytoplasm-nucleus difference spectra with that of control cell (cyan). d, 

SRS spectra of 100 mM GNF-2 and GNF-5 solutions. Shaded area of the same color 

indicated the standard deviation of SRS spectral measurement on six cells. e, Calculated 

concentrations of GNF2 and GNF5 in the cytoplasm of drug treated BaF3/BCR-ABL1 cells. 

Scale bar: 5 μm.
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Figure 5. Time course of lysosomal drug uptake monitored by hsSRS imaging reveal that both 
imatinib and nilotinib are enriched over 1000-fold in the lysosome within a few hours, and they 
do not reach steady-state even after 8 hours; the rate of nilotinib enrichment is higher than that 
of imatinib
a, Average SRS spectra of lysosome (blue), cytosol (red) and nucleus (blue) at 1, 2, 4 and 8 

hours for imatinib treated BaF3/BCR-ABL1 cells (n=6). Shaded curves show corresponding 

standard deviation of the spectra of different cells. At 8 hrs, the nuclei of some cells were 

not visible and therefore the nucleus spectra were not plotted for imatinib treated cells. b, 

Average SRS spectra of lysosome (blue), cytosol (red) and nucleus (blue) at 1, 2, 4 and 8 

hours for nilotinib treated BaF3/BCR-ABL1 cells (n=6). c–d, Lysosomal drug concentration 

increases with incubation time as calculated from SRS spectra in a and b, respectively. The 

error bars are standard deviations of calculated drug concentrations of the six cell samples at 

each time point.
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Figure 6. Intracellular interaction of TKI drugs with chloroquine measured by hsSRS imaging 
show that the increase of chloroquine accumulation (SRS peak at 1370 cm−1) in the lysosome 
significantly reduce imatinib but not nilotinib enrichment in the lysosome (both have SRS peak 
at 1305 cm−1)
a–c, e–g, SRS spectra of lysosomes, cytosol and nucleus for BaF3/BCR-ABL1 cells treated 

with different combinations of drugs for 3 hours: 20 μM imatinib (a), 20 μM imatinib + 20 

μM chloroquine (b), 20 μM imatinib + 50 μM chloroquine (c), 20 μM nilotinib (e), 20 μM 

nilotinib + 20 μM chloroquine (f), and 20 μM nilotinib + 50 μM chloroquine (g). d, h, To 

visualize the drug accumulation induced spectra change, the difference spectra of lysosome 

and cytosol are plotted: difference spectra of imatinib treated cells at increasing chloroquine 

concentrations corresponding to a (red), b (green) and c (blue), respectively (d) and 

difference spectra of nilotinib treated cells at different chloroquine concentrations 

corresponding to e (red), f (green) and g (blue), respectively (h). Shaded curves show 

corresponding standard deviation of measurement on six different cells.
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