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Many common human mesenchymal tumors, including gastrointestinal stromal tumor (GIST), 

rhabdomyosarcoma (RMS), and leiomyosarcoma (LMS), feature myogenic differentiation1–3. 

Here we report that intragenic deletion of the dystrophin-encoding and muscular dystrophy-

associated DMD gene is a frequent mechanism by which myogenic tumors progress to high-grade, 

lethal sarcomas. Dystrophin is expressed in nonneoplastic and benign counterparts for GIST, RMS 

and LMS, and the DMD deletions inactivate larger dystrophin isoforms, including 427kDa 

dystrophin, while preserving expression of an essential 71kDa isoform. Dystrophin inhibits 

myogenic sarcoma cell migration, invasion, anchorage independence, and invadopodia formation, 

and dystrophin inactivation was found in 96%, 100%, and 62% of metastatic GIST, embryonal 

RMS, and LMS, respectively. These findings validate dystrophin as a tumor suppressor and likely 

anti-metastatic factor, suggesting that therapies in development for muscular dystrophies may also 

have relevance in treatment of cancer.

Human cancers featuring myogenic differentiation include LMS, RMS, and GIST. GIST – 

although most closely resembling interstitial cells of Cajal (ICC) – often express myogenic 

differentiation markers, such as smooth muscle actin and calponin4–7. Presumptive initiating 

mutations have been identified in these myogenic cancers, including germline TP53 

mutations in patients with LMS and RMS8,9 and gain-of-function KIT or PDGFRA 

mutations in patients with GIST10–12. Somatic mutations contribute to tumorigenic 

progression in myogenic cancers, e.g. cell cycle dysregulation by CDKN2A or TP53 

inactivation in GIST13,14, but few of these genetic progression mechanisms in myogenic 

cancers have been characterized.

To identify shared tumorigenic mechanisms in myogenic cancers, we performed genome-

wide Affymetrix 250K single-nucleotide polymorphism (SNP) assays. These studies 

revealed intragenic deletions in the Duchenne and Becker muscular dystrophy gene, DMD15 

in 25 of 40 high-grade myogenic cancers (63%), including 19 of 29 GISTs, 3 of 4 RMS, and 

3 of 7 LMS (Fig. 1a). Although DMD is an X-linked gene, the deletions were found in both 

male and female patients, including 9 of 13 (69%) GISTs in men and 10 of 16 (63%) GISTs 

in women (Supplementary Table 1). DMD deletions in myogenic cancers were not present 

in companion non-neoplastic tissues, attesting to somatic origin (Fig. 1b). DMD deletions, 

when identified within a primary GIST, were perpetuated in subsequent metastatic lesions 

(Supplementary Fig. 1), and when identified in any GIST metastasis, were present in other 

metastases from the same patient (Supplementary Fig. 2). DMD intragenic deletions were 

not detected in 58 non-myogenic sarcomas (Supplementary Table 2) and were observed only 

infrequently (4.3%) in 905 non-sarcoma human cancer cell lines in the Cancer Cell Line 

Encyclopedia program16, (Supplementary Fig. 3). These data show that the frequency of 

DMD deletions is higher in myogenic cancers compared to non-myogenic tumors (P 

<0.0001).

Whereas all DMD deletions in cancers from men were nullizygous, the deletions in cancers 

from women were either nullizygous (n = 9) or heterozygous (n = 4) (Fig. 2a and 

Supplementary Table 1). Fluorescence in situ hybridization for DMD and the Xist inactive X 

chromosome marker17 showed that heterozygous DMD deletions targeted the active X 
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chromosome (Fig. 2b). Therefore, both nullizygous and heterozygous DMD deletions in 

female patients caused complete DMD inactivation.

DMD is the longest known human gene15, composed of 79 coding exons spanning 2.2 

megabases of the genome, with various transcriptional start sites18. Multiplex ligation-

dependent probe amplification (MLPA) copy number assessment for each of the DMD 

coding exons revealed intragenic DMD deletions in 24 of 56 high-grade myogenic cancers 

(43%) (Fig. 3, Supplementary Fig. 4 and Supplementary Table 3), all of which were 

predicted to abrogate expression of the largest dystrophin isoform (427kDa), encoded by 

DMD exons 1–79. By contrast, intragenic DMD deletions were not found in 20 benign 

tumor counterparts for GIST, RMS and LMS (11 low-risk GISTs, 2 rhabdomyomas and 7 

leiomyomas), despite high levels of dystrophin expression (Supplementary Table 3). The 

dystrophin 427kDa isoform was expressed strongly in normal tissue and benign counterparts 

for GIST, RMS and LMS (Fig. 4), but was undetectable or weakly expressed in 96% of 

metastatic GISTs (26 of 27), irrespective of whether they contained KIT or PDGFRA 

mutations (Fig. 4b and Supplementary Table 4). Similarly, dystrophin 427kDa expression 

was undetectable or weak in 100% of metastatic embryonal RMS (eRMS) (9 of 9), and 62% 

of metastatic LMS (8 of 13) (Fig. 4c,d and Supplementary Table 4). Dystrophin 427kDa was 

also downregulated in 75% of primary “high-risk” GISTs (i.e., GISTs having histologic 

criteria predictive of metastasis), consistent with the SNP evidence that DMD dysregulation 

is positively selected for in clinically-aggressive primary tumors, even prior to metastasis 

(Fig. 4b). Expression of 427kDa dystrophin was not detected in 46 non-myogenic sarcomas 

(Supplementary Table 5). By contrast, expression of dystrophin isoform Dp71 (71kDa), 

encoded by exons 63–79, is preserved in cancers with DMD deletions (Fig. 5). Dp71 is also 

expressed in non-myogenic sarcomas (Supplementary Fig. 5), in keeping with reports that 

Dp71 expression is ubiquitous in nonneoplastic tissues, other than skeletal muscle19. DMD 

Dp71 knockdown in DMD-deleted RMS cells inhibited cell growth (Supplementary Fig. 6), 

indicating that dystrophin 71kDa has essential roles in myogenic cancer cells. These 

findings account for obligate dystrophin 71kDa expression in myogenic cancers, and explain 

why DMD genomic deletions rarely extend to the coding sequence for this isoform (Fig. 3).

Dystrophin biologic function was evaluated by re-expressing dystrophin in DMD-inactivated 

GIST, RMS and LMS. Re-expression of dystrophin 427kDa is challenging, due to the large 

size of the cDNA construct. Therefore, we used a miniDMD construct lacking exons 17–48 

which encode a spectrin-like domain20 (Fig. 3). This miniDMD construct is biologically 

relevant, inasmuch as it restores crucial aspects of dystrophin function in gene therapy for 

muscular dystrophy patients21. MiniDMD transfection into DMD-inactivated GIST, eRMS 

and LMS induced 240kDa dystrophin expression at levels that are physiologic for 

dystrophin 427kDa expression in low-risk (indolent) GIST, skeletal muscle and 

myometrium, respectively (Supplementary Fig. 7). Dystrophin re-expression inhibited 

invasiveness and migration in GIST, eRMS and LMS, but showed no effect in the non-

myogenic fibrosarcoma cell line HT-1080 (Fig. 6a,b), and reduced the number of viable 

cells in eRMS and LMS, but not in GIST, fibrosarcoma, Ewing’s sarcoma or HEK 293 cells 

(Supplementary Fig. 8). Dystrophin re-expression inhibited anchorage-independent growth 

in DMD-inactivated GIST, eRMS and LMS (Fig. 7a), but not in comparator non-myogenic 
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fibrosarcoma or Ewing’s sarcoma (Fig. 7a and Supplementary Fig. 9). These studies support 

the hypothesis that DMD inactivation enhances metastatic potential selectively in cancers 

with myogenic programs.

Dystrophin provides a structural link between the actin-based cytoskeleton and extracellular 

matrix22,23, which is consistent with our evidence that dystrophin regulates invasion and 

migration in myogenic cancers. Metastases account for 90% of cancer-related deaths24,25, 

and some invasive cancer cells feature invadopodia, which are actin-rich membrane 

protrusions regulating metastatic behavior26. Restoration of DMD expression inhibited 

invadopodia formation in GIST and LMS (Fig. 7b), also consistent with dystrophin function 

as an anti-metastatic factor.

The genomic, clinicopathological and functional evidence herein demonstrate dystrophin 

tumor suppressor roles contributing to permissiveness for metastatic behavior in human 

cancers. The relevance of these findings is supported by reports of spontaneous RMS in 

DMD-inactivated mdx mice27–29. Similarly, reports of RMS in Duchenne muscular 

dystrophy patients suggest that germline DMD inactivation may predispose to myogenic 

cancer30,31. DMD is a large gene, but of the >40 human genes that are more than 1 

megabase in genomic length, only DMD is known to have frequent deletions that seem 

subject to strong selective pressure in pre-metastatic GIST. Several observations support 

DMD inactivation as a driver event in myogenic cancers: 1) frequent DMD deletions are not 

found in non-myogenic cancers (Supplementary Fig. 3), most of which have more complex 

genomic landscapes than those in RMS and GIST32, indicating that clonal DMD deletions in 

advanced myogenic cancers are not attributable merely to cytogenomic complexity; 2) DMD 

deletions are not found in benign precursors to GIST (Fig. 4b) but rather are remarkably 

frequent late events in GIST progression and are found in subclones which – based on the 

genomic evidence – overgrow DMD-wildtype subclones in the same tumors; 3) although a 

late event in tumorigenesis, the same DMD deletion found in one metastasis can be detected 

in all other metastases from the patient (Supplementary Fig. 2), consistent with a biologic 

advantage for dystrophin inactivation. These genomic lines of evidence, coupled with 

demonstration that DMD-restoration is only impactful in myogenic cancers (Fig. 6,7), 

suggests that DMD mutations in myogenic cancers are classic tumor suppressor events.

It is unclear whether the DMD mutation rate is particularly high in myogenic cancers, 

perhaps due to mechanisms such as transcription-associated recombination33, but in any 

case the combined evidence summarized above suggests that DMD inactivation may be 

more than simply a passenger event in myogenic cancer. Previously, DMD deletions were 

demonstrated in 5.5% of malignant melanoma34, but it is unknown whether those deletions 

had functional consequences. In clinically-advanced myogenic cancers, we show that DMD 

inactivation abolishes the dystrophin 427kDa expression found in normal tissue and benign 

counterparts for GIST, LMS and RMS, while preserving dystrophin 71kDa protein, which 

appears to be an obligate factor in these cancers. Dystrophin interacts with a complex of 

sarcolemmal proteins and glycoproteins known as dystrophin-associated proteins22, and our 

demonstration of dystrophin tumor suppressor roles anticipates that other proteins in this 

complex might regulate tumorigenic functions. As one example, the dystrophin-related 

protein, utrophin, is a potential tumor suppressor in non-myogenic malignancies35, and 
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pharmacologic induction of utrophin overexpression in mdx mice prevents development of 

muscular dystrophy, suggesting that utrophin can compensate for dystrophin deficiency36. 

Other treatment options to correct dystrophin defects are undergoing evaluation in clinical 

trials for Duchenne muscular dystrophy37–40, and these approaches warrant evaluation as 

potential therapeutic agents in oncology. Identification of patients whose cancers have 

dystrophin defects might be expedited by immunohistochemical screening for loss of 

dystrophin 427kDa expression. Immunohistochemical assays show robust dystrophin 

expression in nonneoplastic myogenic cells (skeletal, cardiac, and smooth muscle) and in 

leiomyoma (benign smooth muscle tumors) (Supplementary Fig. 10a,c), whereas LMS 

(malignant smooth muscle tumors) often feature complete loss of demonstrable dystrophin 

expression (Supplementary Fig. 10b,c). Therefore, dystrophin dysregulation warrants 

evaluation as a prognostic factor in myogenic cancers, and as a potential point of therapeutic 

attack.

METHODS

Tumor and tissue samples

Snap-frozen tumor biopsies and matched normal tissue samples were from patients at 

Brigham and Women’s Hospital and Memorial Sloan Kettering Cancer Center. All samples 

were collected with institutional review board approval.

SNP arrays

High molecular weight genomic DNA was isolated using QIAamp DNA Mini Kit 

(QIAGEN) and analyzed by Affymetrix 250K SNP array. DNA was digested with Nsp1, and 

linkers were ligated to the restriction fragments to permit PCR amplification. The PCR 

products were purified and fragmented by treatment with DNase I, then labeled and 

hybridized to microarray chips. The positions and intensities of the fluorescence emissions 

were analyzed using dChip software. Array intensity was normalized to the array with 

median intensity. Median smoothing was used to infer copy number.

Fluorescence in situ hybridization and Xist evaluation

BACs RP11-42E12 (DMD, chromosome Xp21.1; start position 32,642,966 GRCh37/hg19; 

end position 32,848,014; targeting DMD introns 4–9) and RP11-939O17 (DMD, 

chromosome Xp21.1; start position 32,844,043; end position 33,018,177; targeting DMD 

introns 2–4) were obtained from BAC/PAC Resources (Children’s Hospital, Oakland, CA). 

BAC DNA was labeled using a nick translation kit with Spectrum Orange-11-dUTP (DMD). 

As a control for X chromosome copy number a centromere X probe (DXZ1, spectrum aqua 

probe) was obtained from Abbott Laboratories (Vysis, Abbott Park, Illinois). A fosmid clone 

overlapping the Xist locus (G248P8779H11; Xq13.2; start position 73,038,817; end position 

73,075,707) was obtained from BAC/PAC Resources (Children’s Hospital, Oakland, CA). 

The fosmid DNA was labeled by nick translation with Spectrum Green-11-dUTP, and used 

in a triple-hybridization with the probes for DMD (spectrum orange) and centromere X 

(aqua) according to standard protocols.
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Multiplex Ligation-dependent Probe Amplification (MLPA)

The MLPA procedure and capillary electrophoresis were performed using SALSA MLPA 

kits P034-A2 and P035-A2 from MRC-Holland. The combined P034 and P035 kits contain 

probes for each of the 79 DMD coding exons and for the alternative exon 1 Dp427c. MLPA 

reactions were conducted using a G-Storm GS1 thermal cycler (Gene Technologies Ltd) 

with fragment analysis by ABI-3130XL Genetic Analyzer and GeneMapper software 

(Applied Biosystems). Raw data were received as peak heights, as a measure of peak 

intensity, for each of the probes.

Purification of murine interstitial cells of Cajal (ICC)

Murine ICC (~500,000) were isolated as Kit+CD44+CD34− cells from the hematopoietic 

marker-negative (CD45−F4/80−CD11b−) fraction of the gastric tunica muscularis of day 7–

15 BALB/c mice (n = 52, in 5 cohorts) as described previously41,42. The fidelity of ICC 

sorting was validated by demonstrating a >2.5-fold increase in KIT protein expression in 

sorted compared to unsorted cells and by lack of expression of the smooth muscle marker 

Myh11 and the pan-neural marker PGP 9.5 by western blotting.

Western blotting

Frozen tumor samples were diced in ice-cold lysis buffer (1% NP-40, 50 mM Tris-HCl pH 

8.0, 100 mM sodium fluoride, 30 mM sodium pyrophosphate, 2 mM sodium molybdate, 5 

mM EDTA, 2 mM sodium orthovanadate) on dry ice and homogenized with a Tissue Tearor 

Homogenizer for 3 seconds, 3–5 times, on ice, and the cell lysate was then rocked overnight 

at 4°C. Lysates were cleared by centrifugation at 14,000 rpm for 30 min at 4°C, and lysate 

protein concentrations were determined using a Bio-Rad protein assay (Bio-Rad 

Laboratories Hercules, CA, USA). Electrophoresis and western blotting were performed 

using standard techniques. The hybridization signals were detected by chemiluminescence 

(Immobilon Western, Millipore Corporation, MA) and captured using a FUJI LAS1000-plus 

chemiluminescence imaging system (Fuji Film, Tokyo, Japan). Primary antibodies were 

DYS1 (Novocastra, NCL-DYS1, raised against the dystrophin rod domain, amino acids 

1181 and 1388, detects 427 kDa dystrophin isoform), DYS2 (Novocastra, NCL-DYS2, 

raised against the C-terminal 17 amino acids of dystrophin, detects 240 kDa mini-

dystrophin), 7A10 (Santa Cruz, sc-47760, raised against amino acids 3200–3684 of 

dystrophin, detects Dp71), and GAPDH (Sigma, G8795).

Cell lines

GIST-T1 was generously provided by Dr. Takahiro Taguchi43. HT-1080 and HEK 293 were 

obtained from the American Type Culture Collection. All other cell lines were developed in 

the Jonathan Fletcher laboratory at Brigham and Women’s Hospital. GIST-T1 and GIST430 

were established from metastatic GISTs with DMD exon 1 and exons 1–9 deletions, 

respectively. RMS176 was established from a metastatic eRMS with DMD exons 1–7 and 

exons 21–44 deletions. LMS04 was established from a metastatic LMS without apparent 

DMD deletion but with complete loss of 427kDa dystrophin expression. The HT-1080 

fibrosarcoma44 and EWS502 Ewing’s sarcoma were non-myogenic controls with wildtype 

DMD.
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Stable transfections

GIST-T1, GIST430, RMS176, LMS04 and EWS502 cell monolayers were disaggregated 

with trypsin and resuspended in Amaxa Nucleofector solution V (Amaxa Biosystems) at a 

concentration of 1 × 106 cells per 100 μl. Nucleofection was performed using program 

T-030 on a Nucleofector II machine (Amaxa Biosystems). One microgram of pCR3.1-EGFP 

or pCR3.1-miniDMD plasmid was used for electroporation. Transfected cells were selected 

with G418 for 5 days before analyses.

Dp71 siRNA knockdown

Dp71-specific siRNA, targeting the unique region in exon 1 of Dp71, was obtained from 

Invitrogen (sequence provided in Supplementary Table 6). Control siRNA was obtained 

from Invitrogen (Stealth RNAi™ siRNA negative control medium GC Duplex, Catalog # 

12935-300). siRNA was delivered into RMS176 and RMS843 cells by nucleofection 

(Amaxa Biosystems) as described previously45.

Cell viability assays

Viability studies were performed using the CellTiter-Glo luminescent assay (Promega, 

Madison, WI). Cells were plated at 2,000 cells per well in a 96-well flat-bottomed plate 

(Falcon, Lincoln, NJ). Luminescence was analyzed using a Veritas microplate luminometer 

(Turner Biosystems, Sunnyvale, CA).

Soft agar assay

Cells were plated in 35mm dishes after stable transfection of EGFP or miniDMD. The cells 

were incubated for 3–4 weeks and then stained with 1 ml of 1 mg/ml methyl thiazol 

tetrazolium (MTT) for 3 hours. Colonies were counted manually. All experiments were 

performed in triplicate.

Quantitative cell invasion and migration assays

0.3 ml serum free media containing 0.3×105 GIST-T1, GIST430, RMS176 or LMS04 cells 

were plated for invasion assays in BD BioCoat™ Matrigel Invasion Chambers (BD 

Biosciences, Catalog # 354480) and for migration assays in BD BioCoat™ 8.0 μm PET 

Membrane 24-well Cell Culture Inserts (BD Biosciences, Catalog # 354578). The wells 

were fed with 0.5ml RPMI Media 1640 (Invitrogen) containing 15% FBS and incubated in a 

humidified incubator, at 37°C, 5% CO2 for 144 hours (GIST-T1), 72 hours (GIST430) or 24 

hours (RMS176, LMS04, and HT-1080). The media from the inside of the insert was 

aspirated, and the interiors of the inserts were gently swabbed to remove non-invasive or 

non-migratory cells. Inserts were transferred to new wells containing 400 μl Cell Stain 

Solution (Cell Biolabs, Inc) and incubated for 10 minutes at room temperature, then rinsed 

two times in a beaker of water. Then, the inserts were air dried and transferred to new wells 

containing 200 μl Extraction Solution (Cell Biolabs, Inc) and quantified at OD 560nm in a 

microplate reader.
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Radius 2-D cell migration assay

Impact of dystrophin restoration on cell migration was determined using a 2-dimensional 

gap closure radius 24-well migration assay, according to the manufacturer’s instructions 

(Cell Biolabs, Inc).

Immunofluorescence

5 ×104 cells were plated on 10-mm glass coverslips coated with 1 μg/cm2 fibronectin 

(Sigma-Aldrich). Cells were fixed in 4% paraformaldehyde (Electron Microscopy Sciences) 

for 15 min, permeabilized for 10 min. with 0.3% Triton X-100 (Thermo Fisher Scientific) 

for 10 min, incubated with primary antibodies overnight at 4°C, then with secondary 

antibody for 1 hour, and mounted on slides with FluorSave™ reagent (EMD Millipore 

Chemicals). Cells were stained for cortactin and MMP14 to identify invadopodia.

Immunohistochemistry

Immunohistochemistry was performed on tissue and tumor sections using DYS1 mouse 

monoclonal antibody (Novocastra, NCL-DYS1). Four micron slides were deparaffinized in 

xylene and hydrated in a graded series of alcohol. The deparaffinized slides were then boiled 

by microwave for 12 minutes in citrate buffer (pH 6). The IHC reactions were visualized by 

diaminobenzidine staining, using an EnVision+ system (Dako, Carpinteria, CA, USA).

Statistical analysis

Two-tailed unpaired t-tests were performed for comparison of means analysis. For 2×2 

contingency tables, two-tailed P values were calculated using Fisher’s exact test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Identification of somatic intragenic DMD deletions in human myogenic cancers. (a) dChip 

SNP log2 ratio copy number evaluations demonstrate intragenic DMD deletions in 25 of 40 

(63%) primary or metastatic myogenic cancers. M denotes male and F denotes female (full 

clinicopathological details are provided in Supplementary Table 1). Panel on right depicts 

representative SNP profile with DMD deletion in GIST from a male patient. (b) SNP 

evaluations in matched cancer and non-neoplastic cell DNAs from the same patients, 

demonstrating tumor-restricted nature of DMD deletions. (c and d) DMD deletions in 

myogenic cancers from women. (c) dChip SNP analyses showing normal DMD copy 

number (N, case 28), nullizygous DMD deletion (Null, case 44) and heterozygous DMD 

deletions (cases 40 and 57 are metastatic GISTs; case 116-4 is metastatic LMS). (d) FISH 

and Xist analysis in cases 40, 57, and 116-4, showing DMD deletion in the Xist-negative 
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active X chromosome. Probes are for DMD (red), X centromere (blue), and Xist (green). 

Scale bars, 2 μm.
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Figure 2. 
MLPA evaluations of DMD exons 1–79 show intragenic deletions in 24 myogenic cancers.

Wang et al. Page 13

Nat Genet. Author manuscript; available in PMC 2014 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. 
Loss of dystrophin 427kDa expression in most metastatic GIST, RMS and LMS. Western 

blotting with DYS1 demonstrates dystrophin expression in the normal tissue and benign 

tumor counterparts for GIST, RMS and LMS (a to d); low-risk GIST is a clinically indolent 

precursor to malignant GIST. Loss of dystrophin 427kDa expression is demonstrated in 

most metastatic GIST (b), RMS (c) and LMS (d). Patient 116 samples (d) are five 

successive LMS metastases, resected during an 8 year interval in the same patient.
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Figure 4. 
Expression of Dp71 dystrophin in myogenic tumors. Western blotting with dystrophin 

antibody 7A10 demonstrates Dp71 expression in primary GIST, metastatic GIST, and RMS 

cases, including those with loss of 427kDa dystrophin.
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Figure 5. 
Restoration of dystrophin expression inhibits invasiveness and migration in DMD-

inactivated GIST, RMS and LMS, but not in a comparator non-myogenic fibrosarcoma 

(HT-1080). Three biological replicates of each experiment were evaluated; the error bars on 

the histograms indicate standard deviation of the mean. Scale bars, 100 μm. (a) miniDMD 

restoration in GIST, RMS and LMS inhibits invasion in Matrigel assays. GIST, RMS, LMS 

and fibrosarcoma cells were seeded and invasion toward 15% FBS was measured after 144 

hours (GIST) or 24 hours (RMS, LMS and fibrosarcoma). Cells invading to the bottom of 

the membrane were stained and quantified at OD 560nm after extraction. (b) miniDMD 

restoration in GIST, RMS and LMS, but not in HT-1080 fibrosarcoma, inhibits migration, as 

assessed by Radius 2-D cell migration assay and by a complementary assay of migration 

toward 15% FBS on a polycarbonate membrane: migration was quantified at OD 560nm 

after extraction.

Wang et al. Page 16

Nat Genet. Author manuscript; available in PMC 2014 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 6. 
Restoration of dystrophin expression inhibits anchorage-independent growth and 

invadopodia formation in DMD-inactivated myogenic cancers. Three biological replicates of 

each experiment were evaluated (a) Stable miniDMD expression suppresses anchorage-

independent growth in myogenic cancers (GIST, RMS and LMS) but not in non-myogenic 

comparators (fibrosarcoma HT-1080, Ewing’s sarcoma EWS502, and HEK 293) (P<0.001). 

Representative plates and mean colony numbers are shown (± standard error of the mean). 

(b) miniDMD restoration disrupts invadopodia formation in GIST and LMS cells. Top: 

Invadopodia are dot-like structures, staining with cortactin (blue) and MMP14 (red). Scale 

bars, 10 μm. Bottom: Percentages of cells with invadopodia in control (EGFP vector) vs. 

dystrophin-restoration conditions. The error bars on the histograms indicate standard 

deviation of the mean.
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