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Abstract

Objective—Many confirmed genetic loci for obesity are expressed in regions of the brain that

regulate energy intake and reward-seeking behavior. Whether these loci contribute to the

development of specific eating behaviors has not been investigated. We examined the relationship

between a genetic susceptibility to obesity and cognitive restraint, uncontrolled and emotional

eating.

Design and Methods—Eating behavior and body mass index (BMI) were determined by

questionnaires for 1471 men and 2381 women from two U.S cohorts. Genotypes were extracted

from genome-wide scans and a genetic-risk score (GRS) derived from 32 obesity-loci was

calculated.

Results—The GRS was positively associated with emotional and uncontrolled eating(P<0.002).

In exploratory analysis, BMI-increasing variants of MTCH2, TNNI3K and ZC3H4 were positively

associated with emotional eating and those of TNNI3K and ZC3H4 were positively associated with

uncontrolled eating. The BMI-increasing variant of FTO was positively and those of LRP1B and

TFAP2B were inversely associated with cognitive restraint. These associations for single SNPs

were independent of BMI but were not significant after multiple-testing correction.

Conclusions—An overall genetic susceptibility to obesity may also extend to eating behaviors.

The link between specific loci and obesity may be mediated by eating behavior but larger studies

are warranted to confirm these results.
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INTRODUCTION

Obesity represents a major public health issue contributing to risk of cardiovascular

diseases, type 2 diabetes, and various cancers (1). Although environmental factors play an

important role in the development of obesity, genetic factors also make a significant

contribution to its etiology (2). With the advent of genome-wide association studies

(GWAS) we have gained significant knowledge on the common genetic variants underlying

the condition (3). However, the mechanisms by which many of these loci affect the

development of obesity are not well understood.

A review of the current list of candidate loci points to a key role of the central nervous

system (CNS) in body weight regulation. For example, FTO, MC4R, TMEM18, GNPDA2,

SH2B1, KCTD15 and BDNF are expressed particularly in the hypothalamus, a crucial center

for energy balance and regulation of food intake (4). Furthermore, variants in/near FTO,

MC4R, SH2B1, KCTD15, BDNF, TNN13K, MTCH2 and NEGR1 have been linked to energy

intake and/or nutrient-specific preferences in humans (5–12). Behavioral factors specific to

eating may link these loci to obesity but few epidemiological studies have been conducted

on this topic. FTO and MC4R variants have been implicated in feelings of hunger and satiety

(9, 13, 14), while common variants in BDNF have been linked to clinical eating disorder-

related traits (15).

The Three-Factor Eating Questionnaire (TFEQ) was developed for healthy populations to

assess three aspects of eating behavior: uncontrolled eating, emotional eating, and cognitive

restraint (16, 17). Uncontrolled eating refers to a tendency to overeat, with the feeling of

being out of control. Emotional eating reflects a propensity to overeat in response to

negative emotions (i.e. when feeling lonely, anxious or depressed). Cognitive restraint refers

to a tendency to consciously restrict one’s food intake instead of using physiological cues

(i.e. hunger and satiety) as regulators of intake. Four studies examined genome-wide

significant risk variants for obesity and their relationship to eating behaviors, but these were

limited to FTO and MC4R (9, 13, 18, 19). We therefore conducted a more comprehensive

investigation by examining the effect of 32 previously confirmed GW significant obesity

loci on eating behavior in two populations of U.S. men and women.

METHODS AND PROCEDURES

Study sample

The Nurses’ Health Study (NHS) was established in 1976 when 121,700 female registered

nurses aged 30–55 years and residing in 11 large U.S. states completed a mailed

questionnaire on medical history and lifestyle characteristics (20). Every two years, follow-

up questionnaires have been sent to update information on exposures and newly diagnosed

diseases and every 2 to 4 years diet is assessed using a validated semi-quantitative FFQ.

Blood was collected from 32,826 NHS members between 1989 and 1990. DNA was

Cornelis et al. Page 2

Obesity (Silver Spring). Author manuscript; available in PMC 2014 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



extracted from white blood cells using the QIAmp™ (QIAGEN Inc., Chatsworth, CA) blood

protocol and all samples were processed in the same laboratory. Women contributing to the

current analysis were those previously selected as a control for one of 4 independent GWAS

in nested case-control studies of the NHS cohort, initially designed for outcomes of type 2

diabetes (T2D), coronary heart disease (CHD), breast cancer (BrCa) and kidney stone

disease (KS). Details pertaining to study design have been reported elsewhere (21).

The Health Professionals Follow-Up Study (HPFS) was initiated in 1986 when 51,529 male

health professionals between 40 and 75 years of age years and residing in the U.S.

completed an FFQ and a questionnaire on lifestyle and medical history. The participants

have been followed with repeated questionnaires on lifestyle and health every 2 years and

FFQs every 4 years. Between 1993 and 1996, a blood sample was requested from all active

participants in the HPFS and collected from 18,225 men (22). DNA was extracted from

white blood cells using the QIAmp™ blood protocol and all samples were processed in the

same laboratory. Men contributing to the current analysis were those previously selected as

a control for one of 3 independent GWAS in nested case-control studies of the HPFS cohort,

initially designed for outcomes of T2D, CHD and KS disease.

Study protocols were approved by the institutional review boards of Brigham and Women’s

Hospital and Harvard School of Public Health.

Measures

Three Factor Eating Questionnaire (TFEQ)-R18—The TFEQ-R18 was developed on

the basis of a factor analysis of the original 51-item TFEQ in a large sample of obese

subjects (16) and was also shown to be applicable to the general population (17). In 2010,

the TFEQ-R18 was included on a supplementary questionnaire mailed to NHS and HPFS

subjects previously selected for GWAS to acquire additional information amendable to

genetic investigation. Scores for ‘cognitive restraint’, ‘uncontrolled eating’ and ‘emotional

eating’ were calculated as previously described by de Lauzon et al (17) and correspond to

the ‘cognitive restraint’, ‘hunger’ and ‘disinhibition’ scales of the original 51-item TFEQ

(16). Accordingly, each of the 18 items was scored from 1 to 4, and the scores were summed

to obtain scale scores. The theoretical ranges for the items were 6–24 for cognitive restraint,

9–36 for uncontrolled eating, and 3–12 for emotional eating. The factor structure of the

TFEQ-R18 was explored using Principal Components Analysis with a Varimax rotation. A

cut-off point of 0.35 was used for the factor loadings. As shown in Table S1 the original

factor structure of the TFEQ-R18 was replicated in both our NHS and HPFS samples.

Cronbach’s alpha values for NHS were 0.80 for cognitive restraint, 0.87 for uncontrolled

eating, and 0.92 for emotional eating. Corresponding values for HPFS were 0.79, 0.85 and

0.91.

Other Covariates—Additional characteristics of the participants were obtained from

questionnaires administrated to the entire NHS and HPFS cohorts preceding the 2010

supplementary questionnaire. Current self-reported anthropometrical data, physical activity

and smoking status were available in 2008. Physical activity was expressed as metabolic

equivalent task (MET) hours of moderate to vigorous exercise per week. Self-administered
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questionnaires assessing body weight and physical activity have been validated as described

previously (23–25). Total dietary energy intake, proportion of energy from carbohydrate,

protein, total fat and saturated fat as well as intakes of alcohol and energy-adjusted cereal

fiber were calculated based on the mean of self-administered FFQs in 2002 and 2006.

Genotyping, quality control and imputation—Genotyping was performed using the

Affymetrix Genome-Wide Human (Affy) 6.0 array (NHS-T2D, HPFS-T2D, NHS-CHD,

HPFS-CHD), Illumina Human-Hap550 array (NHS-BrCa) or Illumina 610Q array (NHS-

KS, HPFS-KS). Genotyping, quality control (QC) and imputation for each data set have

been described in detail previously (21). Although exact QC protocols varied by sample set,

at a minimum DNA samples that did not meet a 90% completion threshold, and SNPs with

low call rates (<90%), were dropped. Any self-reported “white” samples that had substantial

genetic similarity to non-European reference samples (either the HapMap YRI or CHB+JPT

samples) were also excluded.

For each of the 7 GWAS data sets we used MACH (26) to impute up to ~ 2.5 million

autosomal SNPs with NCBI build 36 of Phase II HapMap CEU data (release 22) as the

reference panel. Genotypes were imputed for SNPs not present on the genome-wide arrays

or for those where genotyping had failed to meet the QC criteria.

For the current analysis we selected 32 genotyped or imputed SNPs previously associated

with obesity traits in GWAS (3). SNP quality matrices by GWAS set varied and are detailed

in Table S2. Approximately 72% of the SNPs were imputed and among those imputed the

average SNP quality score (MACH’s derived ‘Rsq’(26)) for imputation was 0.95. Genotype

frequencies were tested for Hardy-Weinberg equilibrium (HWE) by using a χ2 test with 1

DF. Only rs3810291 (near ZC3H4) deviated from HWE in men (P=0.005); with fewer

homozygote minor allele carriers than expected.

Genetic risk score—The combined effect of the 32 SNPs was assessed by calculating a

genetic risk score (GRS) for each participant. We assumed an additive genetic model for

each SNP, applying a linear weighting of 0, 1, and 2 to genotypes containing 0, 1, or 2

alleles previously associated with higher BMI (3), respectively. The GRS theoretically

ranges from 0 to 64, with higher scores indicating a higher genetic susceptibility to obesity.

Statistical analysis

All statistical analyses were performed using the SAS statistical package (version 9.1 for

UNIX; SAS Institute, Cary, NC) unless indicated otherwise. 2782 men and 4964 women

returned the 2010 supplementary questionnaire. We excluded individuals selected as a case

in any one of the GWAS sets (1127 men, 2100 women) or with missing data for any of the

TFEQ items (109 men, 102 women). Of those remaining, 1,471 men and 2,381 women had

available genetic data passing QC and therefore constituted the final sample for analysis. We

calculated Pearson correlation coefficients between each of the scores and with other dietary

factors. Linear regression was used to analyze the association between the GRS and each of

the eating behavior scores, adjusting for current age and GWAS-set. To facilitate

interpretation of results and comparison with the magnitude of the GRS-BMI association

(see below), we standardized each eating behavior score [i.e. mean of 0 and standard
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deviation (SD) of 1]. We further examined whether associations were independent of

adiposity by adjusting for BMI in multivariable models. We subsequently explored each

individual SNP included in the GRS in relation to BMI and eating behaviors by linear

regression analysis. Meta-analyses of gender-specific results were conducted using a fixed

effects model and inverse-variance weighting as implemented in METAL(27). Between-

gender heterogeneity was tested using the Q-statistic. All tests were two-tailed and P values

<0.017 (0.05/3 traits) were considered statistically significant for our analysis of the GRS in

relation to eating behaviors. For our analysis of individual SNPs, we did not adjust for

multiple testing given the exploratory nature of this secondary analysis. For these analyses,

we present all associations with P values <0.05. Power estimates for these analyses are also

provided in Table S3.

In a sensitivity analysis, we excluded currently obese (BMI ≥ 30 kg/m2) participants because

reporting of eating behaviors may be less accurate in this group (28). We also examined the

impact on results when adjusting our primary models for dietary energy and cereal fiber

intake, alcohol consumption, physical activity and smoking status.

RESULTS

Characteristics of NHS and HPFS participants included in the current study are shown in

Table S4. As shown in Table 1, all three eating behavior scores were positively correlated

with one another and with BMI and protein intake in both men and women. On absolute

score scales, each point of the cognitive restraint score (18-point scale) was associated with

a BMI increase of 0.07 kg/m2 and 0.06 kg/m2 for women and men, respectively.

Corresponding increases in BMI for the emotional (9-point scale) and uncontrolled (27-point

scale) eating scores were 0.73 and 0.34 kg/m2 among women and 0.45 and 0.25 kg/m2

among men. In addition, all eating behavior scores were inversely correlated with age.

Cognitive restraint was inversely correlated with total and saturated fat intake. Uncontrolled

eating was positively correlated with energy and fat intake and inversely correlated with

physical activity and alcohol intake. Emotional eating was positively correlated with fat

intake and inversely correlated with alcohol intake.

Table S5 presents the main effects of each of the 32 obesity SNPs (herein referenced by

their closest gene) on current BMI. In a meta-analysis of men and women combined, FTO,

GPRC5B, NEGRI, MTCH2, FAIM2, FANCL, SLC39A8 and BDNF were associated with

BMI (P<0.05) and showed directional consistency with those previously reported (3). When

combining all 32 variants into a genetic risk score (GRS), the mean (range) score for women

and men were 28.6 (17–41) and 28.5 (18–39), respectively. As expected, a significant

association was observed between the GRS and BMI (Figure 1).

The obesity GRS was positively associated with emotional (P=0.005) and uncontrolled

(P=0.002) eating in the combined analysis of men and women after correction for multiple

testing (Table 2, Figure 1). Each additional BMI increasing allele of the GRS was associated

with a 0.016 and 0.013 SD increase in emotional and uncontrolled eating, respectively. By

comparison, each additional BMI increasing allele of the GRS was associated with a 0.025

SD increase in BMI.
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We next explored the individual SNPs that were included in the obesity GRS to gain

additional insight to the association between the obesity-related genes and self-reported

eating behaviors. Table 2 and Figure 2 presents obesity SNPs that were associated

(uncorrected P value <0.05) with eating behavior scores in the combined analysis of men

and women (complete results are available from authors upon request). The MTCH2

(P=0.002), TNNI3K (P=0.01), FTO (P=0.01), and ZC3H4 (P=0.01) alleles previously

associated with higher BMI were also positively associated with emotional eating, while the

BMI-increasing allele of QPCTL (P=0.04) was inversely associated with emotional eating.

Each effect allele of MTCH2, TNNI3K, FTO, ZC3H4, and QPCTL was associated with a

0.12 to 0.15 point difference in emotional eating score (corresponding to a 0.06 to 0.07 SD

difference).

BMI-increasing alleles of TNNI3K (P=0.007), MTCH2 (P=0.007), FANCL (P=0.02), FTO

(P=0.03), FAIM2 (P=0.03) and ZC3H4 (P=0.03) were positively associated with

uncontrolled eating; each effect allele being associated with a 0.21 to 0.27 point higher score

(corresponding to a 0.05 to 0.06 SD difference).

The FTO allele linked to higher BMI was also positively associated with cognitive restraint

(P=0.0002), whereas BMI-increasing alleles of LRP1B (P=0.01) and TFAP2B (P=0.03)

were inversely associated with cognitive restraint. Each BMI-increasing allele of FTO,

LRP1B and TFAP2B was associated with a 0.24 to 0.33 point difference in the 18-point

cognitive restraint scale (corresponding to a 0.06 to 0.09 SD difference).

Figure 2 shows genetic loci reported in Table 2 in relation to both eating behavior scores and

current BMI. All these loci, with the exception of MTCH2, were more strongly associated

with one or more eating behaviors than with current BMI.

Adjusting for BMI abolished the association between the GRS and eating behaviors (Table

S6). However, the associations between MTCH2, TNNI3K, and ZC3H4 variants and

emotional eating remained after adjusting for BMI (all P≤0.01). Associations between

TNNI3K and ZC3H4 variants and uncontrolled eating and between FTO, LRP1B and

TFAP2B and cognitive restrained also persisted with BMI-adjustment (all P≤0.04).

A post-hoc analysis of the GRS-BMI association (β =0.025), revealed modest attenuation in

this association upon adjustment for the three eating behaviors (β=0.020). Similar results

were observed after excluding obese participants (Table S6) with the exception of the

associations for FTO with cognitive restraint that became substantially stronger both before

(P=0.00005) and after (P=0.0001) adjusting for BMI. Results were also similar when further

adjusting for dietary factors, physical activity and smoking status (data not shown).

DISCUSSION

The mechanisms by which genetic loci for obesity lead to increased adiposity are not well

understood. Many of the genes mapping to or near these loci are expressed in regions of the

brain regulating energy balance, appetite, and reward-seeking behavior (4). In the current

study, we examined the effect of thirty-two previously confirmed genome-wide significant

obesity loci on self-reported eating behaviors including cognitive restraint, emotional eating,
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and uncontrolled eating in two populations of U.S. men and women. A genetic risk score for

obesity based on all thirty-two variants was significantly associated with emotional and

uncontrolled eating. In further exploratory analyses, variants in/near FTO, LRP1B, TFAP2B,

MTCH2, TNNI3K, ZC3H4 and QPCTL were associated with one or more eating behaviors;

independent of current BMI, suggesting their link to obesity may, in part, be mediated by

eating behaviors. We discuss these findings below but acknowledge the need for careful

interpretation of results as none of the individual SNP-eating behavior associations remain

statistically significant after correcting for multiple testing.

Our reported associations of eating behaviors with BMI are consistent with previous

literature obtained from populations of varying characteristics; thus supporting the

appropriateness of the NHS and HPFS cohorts for the current study. Uncontrolled and

emotional eating and cognitive restraint are positively correlated with each other and

positively associated with current BMI and weight change (29–32). In both NHS and HPFS

these patterns of associations were also observed: all three eating behaviors were directly

correlated with BMI and with one another. With respect to the main effects of obesity loci

on BMI in our population, we did not replicate all previous reported associations but similar

directional effects were observed for 27 of the 32 examined loci. Accounting for the number

of SNPs tested, the current study had more than 80% power to detect an effect estimate as

small as that reported for the FTO variant in stage 2 of the BMI GWAS reported by

Speliotes et al (3) but less than 27% for the remaining 31 loci (Supplementary Table). These

findings are in accordance to other reports of replication studies on obesity loci identified by

large scale efforts (5, 33).

The association between the GRS and BMI is only modestly attenuated by adjustment for

the studied eating behaviors. The reason for this may be that only part of the SNPs included

in the GRS affect BMI though the studied eating behaviors, whereas other included SNPs

affect BMI through independent biological pathways such as energy expenditure. Our

analysis of individual SNPs supports this notion; some variants were associated with eating

behaviors with a similar or greater strength of association as for BMI, whereas other SNPs

were not associated with eating behaviors.

FTO has been the strongest and most consistent signal in GWAS and follow-up studies of

obesity traits to date. In our study the BMI-increasing variant of FTO was positively

associated with all three studied eating behaviors. Interestingly, only the association with

cognitive restraint remained after adjusting for current BMI and was stronger than the

association with BMI in our population. Although all three eating behaviors are

characterized by lack of control of eating by physiological cues, it is possible that FTO’s

effects on emotional and uncontrolled eating are strongly correlated with its effects on BMI,

whereas the effects FTO has on cognitive restraint may be more distinct.

SNPs recently associated with BMI in MTCH2, TNNI3K and ZC3H4 (3) were associated

with higher emotional and uncontrolled eating scores in the current study, with minimal

attenuation after BMI adjustment. These findings suggest that the effects of these genetic

variants on the development of obesity may be mediated through emotional and

uncontrolled eating possibly reflecting lack of homeostatic control or greater sensitivity to
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food reward feedback. The potential impact of the genetic variations on these pathways

merits further study as the mechanisms through which these loci affect the development of

obesity are currently unknown.

Several limitations need to be considered when interpreting the results. Associations

between the GRS and emotional and uncontrolled eating were no longer significant after

adjusting for BMI. If part of the effect of the GRS on BMI is a consequence of an effect of

the GRS on emotional and uncontrolled eating then adjustment for BMI represents over-

adjustment. Alternatively, effects of the GRS on eating behaviors may be mediated by BMI

with changes in BMI resulting in changes in eating behavior. Although we excluded

participants with obesity from our study, we cannot exclude the possibility that the effect of

the GRS on eating behaviors was secondary to an effect of the GRS on BMI. The TFEQ

may overestimate restraint in obese subjects, thus potentially augmenting the effect of

obesity-associated genetic variants on cognitive restraint scores (28). Recognizing potential

TFEQ response differences in currently obese and non-obese participants, we assessed the

robustness of our findings when excluding obese subjects (in addition to adjusting for BMI

in our statistical models). In most cases, associations between genetic variants and eating

behavior scores were strengthened. Within-person variation in eating behaviors (for example

due to dieting) may have weakened the observed associations between genetic variants and

eating behaviors. We did not consider a history of over-weight/obesity or weight-cycling or

other factors that could impact development of eating behavior, thus we cannot exclude the

possibility that the effects of genetic loci on eating behavior are not independent of weight

history. We also cannot discount the possibility that eating behavior was associated with

misreporting of body weight, as previously described (34). How these issues may have

impacted our findings is unclear. Our sample consisted predominately of healthy older

health professionals of European ancestry, which may limit the generalizability of our

findings to younger individuals of other social or racial demographics. One advantage in

studying older adults is potential for capturing more stabilized eating behaviors (29, 35).

There is growing evidence suggesting that obesity is related to an imbalance of homeostatic

as well as hedonic systems (36). Our study shows that previously confirmed obesity variants

combined in a risk score substantially affect habitual eating behaviors. For a subset of these

genetic variants, the studied eating behaviors may reflect mechanisms underlying their

association with BMI. Indeed, several previous studies have suggested substantial

heritability for dietary restraint (heritability 0.23–0.59), disinhibition (heritability 0–0.60)

and perceived hunger (heritability 0.23–0.45) (37–39). Moving forward, a focus on genetic

underpinnings of dietary behaviors may be one approach to identify factors contributing to

obesity. Our findings thus suggest that eating behaviors may contribute importantly to the

link between genetic variation and the development of obesity and motivate future

investigations on the role these loci play in eating behavior.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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What is already known about this subject?

• Many of the confirmed obesity loci are expressed in regions of the brain that

regulate energy intake and reward-seeking behaviors

• Variants in/near FTO, MC4R, SH2B1, KCTD15, BDNF, TNN13K, MTCH2 and

NEGR1 have been linked to energy intake and/or nutrient-specific preferences in

humans

• FTO and MC4R variants have been implicated in feelings of hunger and satiety,

while common variants in BDNF have been linked to clinical eating disorder-

related traits

What does this study add?

• The authors conducted a more comprehensive investigation by examining the

combined and individual effects of 32 previously confirmed genome-wide

significant obesity loci on eating behaviors in men and women.

• A genetic-risk score for obesity was positively associated with emotional eating

and uncontrolled eating. Further, several loci were associated with cognitive

restraint, emotional eating and uncontrolled eating independent of current BMI.

A subset of these loci were more strongly associated with one or more eating

behaviors than with current BMI

• Findings suggest that an overall genetic propensity for obesity may also extend

to eating behaviors and that the link between some obesity loci and the

development of obesity may be partly mediated by eating behaviors
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Figure 1.
Association between the obesity genetic risk score and standardized measures of BMI and eating behaviors. Results from meta-

analysis of sex-specific linear regression models adjusted for age and GWAS-set.
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Figure 2.
Associations between variants in/near a) FTO b) LRP1B c) ZC3H4 d) TNNI3K e) QPCTL f) MTCH2 and g) TFAP2B and

standardized measures of BMI and eating behaviors. Results from meta-analysis of sex-specific linear regression models

adjusted for age and GWAS-set. * P<0.05 (not corrected for multiple testing)
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