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HIGHLIGHTED ARTICLE
MULTIPARENTAL POPULATIONS

Identification of a Novel Gene for Diabetic Traits in
Rats, Mice, and Humans
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ABSTRACT The genetic basis of type 2 diabetes remains incompletely defined despite the use of multiple genetic strategies.
Multiparental populations such as heterogeneous stocks (HS) facilitate gene discovery by allowing fine mapping to only a few
megabases, significantly decreasing the number of potential candidate genes compared to traditional mapping strategies. In the
present work, we employed expression and sequence analysis in HS rats (Rattus norvegicus) to identify Tpcn2 as a likely causal gene
underlying a 3.1-Mb locus for glucose and insulin levels. Global gene expression analysis on liver identified Tpcn2 as the only gene in
the region that is differentially expressed between HS rats with glucose intolerance and those with normal glucose regulation. Tpcn2
also maps as a cis-regulating expression QTL and is negatively correlated with fasting glucose levels. We used founder sequence to
identify variants within this region and assessed association between 18 variants and diabetic traits by conducting a mixed-model
analysis, accounting for the complex family structure of the HS. We found that two variants were significantly associated with fasting
glucose levels, including a nonsynonymous coding variant within Tpcn2. Studies in Tpcn2 knockout mice demonstrated a significant
decrease in fasting glucose levels and insulin response to a glucose challenge relative to those in wild-type mice. Finally, we identified
variants within Tpcn2 that are associated with fasting insulin in humans. These studies indicate that Tpcn2 is a likely causal gene that
may play a role in human diabetes and demonstrate the utility of multiparental populations for positionally cloning genes within
complex loci.

TO date, human genome-wide association studies (GWAS)
have identified .60 genes involved in type 2 diabetes

(T2D) (Zeggini et al. 2008; Voight et al. 2010; Morris et al.
2012; DIAbetes Genetics Replication and Meta-analysis
(DIAGRAM) Consortium et al. 2014) and an additional
53 involved in related metabolic traits such as fasting glucose
and insulin levels (Dupuis et al. 2010; Scott et al. 2012).

Despite the relative success of human GWAS, when combined,
these genes explain only a small percentage of the heritable
variance (So et al. 2011; Morris et al. 2012), indicating many
more genes have yet to be identified. Improving power with
increased sample size, deep sequencing to identify rare
variants, and identification of gene–gene and gene–environment
interactions will help to identify at least some of this missing
heritability in humans (Hu and Daly 2012). Animal models,
however, offer an additional, complementary, method for
identifying candidate genes and their related pathways.
Advantages of animal models include the ability to control
environment and genetics and assess gene expression levels
in tissues that are not readily available from humans. Im-
portantly, genes found for complex traits in animal models
are frequently translated to humans (Swanberg et al. 2005;
Aitman et al. 2006; Samuelson et al. 2007; Behmoaras et al.
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2008; Petretto et al. 2008), demonstrating the utility of
animal models for uncovering at least some of the missing
heritability in humans.

Particularly useful are multiparental or outbred popula-
tions such as heterogeneous stocks (HS). HS animals are
derived from crossing eight inbred strains and outbreeding
them for many generations (see Flint and Eskin 2012 or
Solberg Woods 2014 for a review on HS populations). The
genetic makeup of the resulting progeny represents a random
mosaic of the founder animals, with each HS rat being phe-
notypically and genetically distinct. The distance between
recombination events decreases with each generation of
breeding, such that HS mice and rats have been used to
map multiple complex traits to generally ,5 Mb (Talbot
et al. 1999, 2003; Demarest et al. 2001; Valdar et al. 2006;
Solberg Woods et al. 2010, 2012; Johnsen et al. 2011; Baud
et al. 2013). This fine-resolution mapping significantly de-
creases the number of potential candidate genes within each
locus relative to those in conventional mapping methods
(such as those using an F2 intercross or backcross). Once
narrowed, HS founder sequence can be used to rapidly iden-
tify potentially causative genes within at least some of these
loci (Keane et al. 2011; Baud et al. 2013), thus making these
populations ideal for positional cloning of genes involved in
complex traits.

We have used HS rats to fine-map traits involved in
diabetes and related traits. Our work has shown that HS rats
harbor alleles for glucose tolerance (Solberg Woods et al.
2010), as well as insulin resistance and b-cell dysfunction,
the underlying causes of type 2 diabetes (Solberg Woods et al.
2012). We have identified a 3.1-Mb region on rat chromo-
some 1 that maps both fasting and postprandial glucose
(Solberg Woods et al. 2010, 2012), and this region overlaps
a larger 7-Mb region that maps fasting insulin and insulin
sensitivity (Solberg Woods et al. 2012). Although a great im-
provement over previous mapping studies in F2 intercrosses
(Galli et al. 1996; Gauguier et al. 1996; Chung et al. 1997;
Kanemoto et al. 1998; Wei et al. 1999; Nobrega et al. 2009;
Solberg Woods et al. 2009; Wallis et al. 2009), this region still
contains a relatively large number of genes: 86 within the
3.1-Mb glucose region and .200 genes in the insulin region.
Although a few plausible genes (including Kcnq1 and Igf2)
stand out as likely candidates within the 7-Mb insulin region,
none of the 86 genes within the 3.1-Mb region present them-
selves as obvious potential biological candidate genes.

The goal of the present study was to use expression
analysis and next-generation sequencing to evaluate posi-
tional candidate genes within this 3.1-Mb glucose locus,
located on rat chromosome 1: 204.38–207.48 Mb, a
complex region that may harbor multiple causal genes
(Granhall et al. 2006; Solberg Woods et al. 2010, 2012).
Expression and sequence analysis in the HS rats identified
two-pore segment channel 2 (Tpcn2) as a plausible candi-
date gene within this region. We confirm the role of Tpcn2
by demonstrating that Tpcn2 knockout mice exhibit altered
fasting glucose and insulin in response to a glucose chal-

lenge. We also demonstrate significant association between
SNPs in Tpcn2 and fasting insulin in humans. Together this work
indicates that Tpcn2 is a strong candidate for being a causal gene
that underlies the glucose and insulin phenotypes at this QTL.

Materials and Methods

Animals

Heterogeneous stock colony: The NMcwi:HS colony, here-
after referred to as HS, was initiated by the National Institutes
of Health (NIH) in 1984, using the following eight inbred
founder strains: ACI/N, BN/SsN, BUF/N, F344/N, M520/N,
MR/N, WKY/N, and WN/N (Hansen and Spuhler 1984). This
colony has been maintained at the Medical College of Wis-
consin (MCW) since 2006 and has been through .60 gener-
ations of breeding (see Solberg Woods et al. 2010 for history
of the breeding colony).

Founding inbred substrains: Expression analysis was con-
ducted in the following substrains (abbreviated names used
throughout the article are in parentheses): ACI/Eur (ACI),
BN/SsnHsd (BN), BUF/NHsd (BUF), F344/NHsd (F344),
M520/N, and WKY/NHsd (WKY). Other than M520/N,
which is the original founder of the HS colony, substrains
were chosen based on origin similarities to the original
founders, as determined by data obtained from the Rat Genome
Database: http://rgd.mcw.edu/strains/. The M520 and ACI
rats are maintained at MCW. All other substrains were or-
dered from Harlan Sprague Dawley (Indianapolis). We were
unable to identify substrains for two of the founders (MR/N
and WN/N), so these strains were not tested.

Cluster analysis of glucose and insulin levels in HS rats

Rats for expression analysis were chosen from a group of
522 HS rats previously used to map glucose tolerance
(Solberg Woods et al. 2010) (see Supporting Information,
File S2). As previously described, HS rats underwent an intra-
peritoneal glucose tolerance test (IPGTT) test at 16 weeks of
age in which blood glucose and plasma insulin were mea-
sured at fasting and at 15, 30, 60, and 90 min after a 1-g/kg
glucose injection (Solberg Woods et al. 2010, 2012). Glu-
cose area under the curve (glucose_AUC) and insulin_AUC
were determined using a trapezoidal analysis. The quanti-
tative insulin sensitivity check (QUICKI), a measure of in-
sulin sensitivity that has been validated in both rats and
humans (Katz et al. 2000; Cacho et al. 2008), was calculated
as 1=½log I0 þ logG0�; where I0 is fasting insulin and G0 is
fasting glucose (Solberg Woods et al. 2012). HS rats were
killed at 17 weeks of age, 1 week after the glucose toler-
ance test. Fasting cholesterol, triglycerides, and c-peptide
were determined from plasma at the time the animals were
killed. Livers were immediately removed and frozen in liquid
nitrogen for subsequent determination of transcript abun-
dance. Rats were killed by decapitation to avoid gene expres-
sion changes that can occur when using inhalant drugs such
as CO2 or isoflurane (Kadar et al. 2011; Taylor and Cummins
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2011). All protocols were approved by the Institutional Ani-
mal Care and Use Committee at MCW.

To determine how many phenotypic groups existed within
the HS colony, a K-means cluster analysis was conducted.
Clusters were determined using the following glucose and
insulin measurements: glucose_AUC, insulin_AUC, peak time,
the difference between baseline and the peak value, the slope
of the line from right before the peak to peak time, and slope
from peak time to right after the peak. The K-means cluster-
ing has an animal’s phenotype values added to a cluster based
on minimizing differences from the means of the K clusters.
Canonical discrimination using SAS 9.1 was used to deter-
mine how the clustering related to the phenotype measures.

Expression analysis

Expression analysis was conducted in 46 male HS rats and
2 males from each of six inbred substrains, for a total of 58
animals. Total RNA was extracted from frozen liver tissue,
using TRIzol reagent [Invitrogen (now Life Technologies),
Carlsbad, CA]. Purified RNA (50 ng) was amplified using an
Affymetrix two-cycle cDNA synthesis kit, and complementary
RNA was synthesized, labeled, fragmented, and hybridized to
the Gene-Chip rat genome 230_2.0 array in accordance with
standard protocols (Affymetrix, Santa Clara, CA). The rat
genome 230_2.0 array contains .31,000 probe sets repre-
senting .17,734 unique UniGenes, containing probes for 57
of the 86 genes (66.3%) within our region of interest [rat
chromosome 1: 204.38–207.48 Mb (Solberg Woods et al.
2010, 2012)]. After hybridization, arrays were washed and
stained with an Affymetrix Wash and Stain kit plus an Affy-
metrix GeneChip Fluidics Station 450 and scanned with an
Affymetrix 7G laser scanner. Data were analyzed with Expres-
sion Console 1.1.2 software (Affymetrix) and normalized with
robust multichip analysis (RMA) (http://www.bioconductor.
org/) to determine signal log ratios (log2R). The statistical
significance of differential gene expression was determined
through ANOVA, using Partek (St. Louis) Genomics Suite
6.5. Differential expression (DE) was defined as those genes
with P# 0.05 and log2R $ 0.5. Because we planned to verify
differential expression of genes of interest with quantitative
RT-PCR (qRT-PCR), we did not correct for multiple testing
(Hessner et al. 2004).

Real-time qRT-PCR

We initially confirmed differential expression of Tpcn2 using
qRT-PCR in 10 HS rats with glucose intolerance and 10 with
normal glucose regulation. qRT-PCR was also conducted in the
founder strains, using 2 animals from each inbred strain. Upon
confirming Tpcn2 as a plausible candidate gene, we used qRT-
PCR to assess gene expression levels in a total of 120 male
HS rats. qRT-PCR was conducted on an ABI Prism 7900HT
Sequence Detection System (Applied Biosystems, Foster
City, CA). Specific oligonucleotide primers were designed
with Primer3 (http://binoinfo.ut.ee/primer3-0.4.0/primer3/)
(Koressaar and Remm 2007; Untergasser et al. 2012). To avoid
differences in expression levels based on sequence variation

(Huang et al. 2009), we ensured no sequence variants were
present in any of the HS founders at the location of the Tpcn2
primers. The primers for Tpcn2 were forward 59-TATGTGTTCGC
CATGATTGG-39 and reverse 59-AGCAGCAAAGTCGTCGAAGT
(Integrated DNA Technologies). We used primers for GAPDH,
forward 59-CATGGAGAAGGCTGGGGCTC-39 and reverse
59-AACGGATACATTGGGGGTAG-39, and b-2 microglobulin
(B2M), forward 59-CCGTGATCTTTCTGGTGCTT-39 and reverse
59-TTTTGGGCTCCTTCAGAGTG-39 (Integrated DNA Techno-
logies), as internal controls. We used iQ SYBR Green Supermix
(Bio-Rad, Hercules, CA) according to the manufacturer’s
instructions. Synthesis of first-strand cDNA from 3 mg of RNA
per animal was accomplished with random hexamers (Invitro-
gen, now Life Technologies) and Superscript III (Invitrogen,
now Life Technologies), according to the manufacturer’s
instructions. Triplicate Tpcn2 and GAPDH or B2M were per-
formed for each sample in 20-ml reactions, which included 1 ml
of cDNA and 10 ml of iQ SYBR Green Supermix (Bio-Rad)
possessing 1.2 ml of Tpcn2 (10 mM), GAPDH, or B2M specific
primers and 7.8 ml of deionized water. Reactions were cycled
as follows: stage 1, 95�, 3 min; stage 2, 55 cycles of 95�,

Figure 1 (A and B) Cluster analysis of (A) glucose and (B) insulin levels
during an intraperitoneal glucose tolerance test in .500 HS rats. Values
are expressed in means 6 SE. We identified six clusters based on glucose
and insulin values. Because cluster 5 included only one animal, however,
it is not included in the graphs or in subsequent analyses. Note that
clusters with similar glucose values (clusters 1 and 6 or 3 and 4) have
drastically different insulin values. Based on this cluster analysis, we se-
lected animals for the expression analysis, choosing glucose intolerant HS
from cluster 1 and HS with normal glucose from clusters 2 and 4.
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30 sec, 55�, 30 sec, 72�, 30 sec; and stage 3, melt curve of
95�, 10 sec, 60�, 1 min, 95�, 1 sec, 40�, 10 sec. Standard
curves were created using 1:10, 1:100, and 1:1000 concen-
trations of Tpcn2. Specificity for a qRT-PCR was verified by
a melting curve analysis. The data were analyzed with Se-
quence Detection System 2.3 software (Applied Biosystems),
using the cycle threshold (ct) for quantification. Relative gene
expression data (fold change) between samples was accom-
plished using the mathematical model described by Pfaffl
(2001), using the mean ct score of 120 animals as the
reference.

Genome-wide genotyping

Tail samples from the original eight inbred founders were
obtained from the NIH. We extracted DNA from tail tissue from
HS and founder strains, using the QIAGEN (Valencia, CA)
DNeasy kit. All eight original founder inbred strains and the 46
HS rats used for expression analysis were genotyped using
the Affymetrix GeneChip Targeted Genotyping technology on
a custom 10K SNP array panel as previously described (Saar
et al. 2008). The samples were genotyped by the Vander-
bilt Microarray Shared Resource center at Vanderbilt
University in Nashville, Tennessee (currently VANTAGE:
http://vantage.vanderbilt.edu). From the 10,846 SNPs
that are on the array, 7634 were informative and pro-
duced reliable results in the HS rats. From these final
informative markers, the average spacing was 353 kb
apart, with an average heterozygosity of 28.8%. These
data have been deposited in the Gene Expression Omni-
bus (GEO) database under accession no. GSE57118 (see:
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=
sjmjgkwulbebtmd&acc=GSE57118).

Genetic mapping of expression QTL

Expression mapping was conducted for all genes on the
expression array that were located within the QTL (57 of
86). Genome-wide fine mapping was conducted by linkage
disequilibrium mapping, testing for the significance of
association between expression levels and inferred haplo-
type descent at each locus, as previously described (Solberg
Woods et al. 2010, 2012). Briefly, haplotype descent along
each HS rat genome was inferred using the haplotype recon-
struction method HAPPY (Mott et al. 2000), which applies

a hidden Markov model simultaneously to the genotypes of
the eight founder strains and the 46 HS rats. At each interval
m ¼ 1;   . . .  ; 7634 between adjacent pairs of markers,
HAPPY produces for each rat i a vector giðmÞ containing
the probabilities of descent from each of the 8ð8þ 1Þ=2 ¼
36 unique haplotype pairs (diplotypes) (Valdar et al. 2009).
Using Bagpipe software (Valdar et al. 2009), this is then
used in the following mixed-model regression to predict
rat i’s expression levels yi;

fðyiÞ ¼ QTLiðmÞ þ sibshipk½i� þ residuali; (1)

where f ðyiÞ is a transformed version of the expression levels,
QTLiðmÞ ¼ bTgiðmÞ models the putative effect of the QTL,
sibshipk½i� is the (random) effect of the sibship k to which i
belongs, and residuali accounts for individual variation (fur-
ther parameters defined as in Solberg Woods et al. 2010).
Models were fitted by restricted-estimate maximum likeli-
hood, and the significance of association at each interval m
was assessed by comparing the fit of Equation 1 with that of
the null model, which is Equation 1 without the QTL term.
Genome-wide significance thresholds were estimated by
parametric bootstrap from the fitted null model (Valdar
et al. 2009; Solberg Woods et al. 2010). Prior to genetic
analysis, expression levels for each gene were normalized
using a van der Waerden normal score.

Sequencing and analysis

We sequenced 5 Mb within rat chromosome 1: 200–208 Mb
in the eight inbred founder strains of the HS colony. We
designed a custom 385K NimbleGen array that included
all coding regions and all regions that are highly conserved.
The array was composed of 385,000 long oligonucleotide
probes and used a tiling design to target our unique genomic
region. Five to eight mg of genomic DNA from each strain
was nebulized and polished, and linkers were added accord-
ing to the manufacturer’s standards (Roche NimbleGen).
Samples were then hybridized to the custom NimbleGen
385K array. DNA not specific to these regions were washed
off and targeted DNA sequences were eluted and amplified
by emulsion PCR. To calculate whether targeted sequences
were enriched, both pre- and postcapture DNAs were
analyzed by qRT-PCR, using four real-time PCR assays

Figure 2 (A and B) Differential expression of Tpcn2
by qRT-PCR in (A) HS rats and (B) HS founder sub-
strains. Bars show the mean6 SE. Glucose intolerant
HS rats exhibit an approximately twofold decrease in
expression levels of Tpcn2 relative to HS rats with
normal glucose levels (*P = 0.05). Large variation is
seen in HS founder substrains with BN exhibiting the
greatest levels of Tpcn2 and the F344 strain exhibit-
ing the least. All fold-change differences are relative
to the F344 founder strain. Note that the scales in A
and B are the same.
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developed and optimized by our laboratory. The region was
then sequenced on the Roche GS-FLX 454 system (Roche
454, Branford, CT) according to the manufacturer’s protocol.
Briefly, Roche “A” and “B” adapters were annealed onto cap-
tured fragments of template DNA. The library was single
stranded and quantified on an Agilent 2100 Bioanalyzer. Li-
brary fragments were annealed to beads and emulsion PCR
was performed. After clonal amplification by PCR, the emul-
sion was broken chemically and beads were collected and
enriched. Enriched beads were then inserted into the Roche
Picotiter Plate, using the appropriate gasket, and loaded onto
the machine. Nucleotides flowed over the plate in a specific
order and enzymatic cascade reaction caused incorporation of
the specific nucleotides to illuminate. An image of every flow
was taken with a CCD camera and images were strung to-
gether into a flowgram, which was transformed into usable
sequence data.

Reads were separated by their multiplex identifiers, using
the program sfftools (Roche). For each sample, demulti-
plexed reads were then trimmed and assembled against the
rat chromosome 1 reference sequences (Rn4), using the GS
Reference Mapper (http://454.com/products/analysis-software/
index.asp). Variant detection was performed using the high-
confidence differences strategies implemented in GS Refer-
ence Mapper software. The high-confidence differences
(HCDiff) strategy requires the following criteria for a variant
to be reported: (1) There must be at least three reads with
the difference; (2) there must be both forward and reverse
reads showing the difference, unless there are at least five
reads with quality scores .20 (or 30 if the difference
involves a 5-mer or higher); and (3) if the difference is
a single-base overcall or undercall, then the reads with the
difference must form the consensus of the sequenced reads.

Since the time of this work, all founder strains have been
fully sequenced (Baud et al. 2013), and this information is
currently available in the Rat Genome Database (http://rgd.
mcw.edu). We have compared our sequence to what is avail-
able online. Some discrepancies were noted between the
data sets. To determine the accurate sequence, these regions
were sequenced using Sanger sequence technology.

Taqman genotyping

We genotyped 18 SNPs within the 3.1-Mb QTL in 508 male
HS rats and all eight inbred founders. SNPs were chosen

based on the founder strain distribution pattern (SDP) as
a means of defining general haplotype blocks (Yalcin et al.
2004a). To ensure most haplotyes were represented, we
used a measure of entropy as previously described (Yalcin
et al. 2005). Briefly, a sliding window was used in which
each SNP within the window is prioritized based on its abil-
ity to explain the diversity between the founder strains.
SNPs were then given a score and those with the highest
scores were chosen for genotyping. In addition to SNPs with
high entropy scores, we also genotyped nonsynonymous
coding variants in the F344 strain, the founder that contrib-
utes the susceptibility allele at the QTL (Solberg Woods et al.
2010, 2012). SNPs were spaced an average of 164.5 kb
apart.

Samples were genotyped using 59-exonuclease TaqMan tech-
nology (Applied Biosystems) with differently fluorescence-
labeled probes. Custom TaqMan SNP Genotyping Assays
(Applied Biosystems) were used. Ten nanograms of DNA
was used in a total volume of 5 ml containing 2 ml of 5ng/ml
DNA, 2 ml 13 TaqMan Universal PCR Master Mix (Applied
Biosystems), 0.125 ml probe, and 0.875 ml water for each
sample. PCR was carried out on a GeneAmp PCR System
9700 (Applied Biosystems) and the post-PCR plate was read
on the ViiA 7 real-time PCR system (Applied Biosystems),
following the manufacturer’s instructions. ViiA 7 RUO ver-
sion 1.2.1 software was used to assign genotypes, applying
the allelic discrimination test. The overall call rate was
98.8%.

Glucose tolerance test in Tpcn2 knockout mice

Wild-type and knockout mice were created using embryonic
stem cells from the 129P2 strain carrying a gene trap vector
and injected into C57BL/6 blastocysts, as previously de-
scribed (Calcraft et al. 2009). We confirmed that Tpcn2 is
not transcribed in the knockout mice by running qPCR on
multiple tissues in knockout and wild-type mice (see Figure
S1). PCR was conducted as described above, using primers
for GAPDH (forward 39-CTGAAGGGCATCTTGGGCTA-59
and reverse 39-GCCGTATTCATTGTCATACCA-59) and Tpcn2
(forward 39-CCAGGCTACCTGTCCTACCA-59 and reverse 39-
CAGGAAGCGAAACACAATCA-59). Heterozygous mice were
bred and set up as breeder pairs. Male Tpcn2 knockout,
heterozygote, and wild-type mice from the heterozygote
breeders were phenotyped at 9–13 weeks of age (n = 5–7

Figure 3 Genome-wide eQTL scan of Tpcn2 ex-
pression levels using 10K SNP markers. The x-axis
shows chromosome number and position in centi-
morgans. The y-axis gives the –log10 P-value of
association. The dashed lines represent the ge-
nome-wide significance thresholds (bottom line
represents the suggestive threshold at P = 0.1
and the top line represents significance at P =
0.05). Tpcn2 expression levels map to within 1
Mb of the gene itself on rat chromosome 1, indi-
cating this gene is cis-regulated.
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in each group), using the IPGTT, described above and in
Solberg Woods et al. (2010, 2012). Blood was collected after
an overnight fast and at 15, 30, 60, 90, and 120 min after a
1-g/kg glucose injection. We used the Ascensia Elite system
for reading blood glucose values (Bayer, Elkhart, IN). We also
collected blood at each time point for subsequent analysis of
plasma insulin levels, which was assayed using an ultrasensi-
tive ELISA kit from Alpco Diagnostics (Salem, NH).

Statistical analysis

A mixed model was used to determine association between
18 SNPs within the chromosome 1 QTL and diabetic phe-
notypes that map to this region (glucose_AUC, fasting
glucose, fasting insulin, insulin_AUC, and QUICKI) and
Tpcn2 expression levels (as determined by qPCR). The
model included all appropriate covariates (location, injector,
collector, and number of glucose injections) and accounted
for the complex family relationships of the HS, as previously
described (Solberg Woods et al. 2010, 2012). The signifi-
cance threshold was determined using the Bonferroni
method to account for multiple comparisons (18 SNPs by
six traits). Correlations between Tpcn2 expression levels (as
determined by qRT-PCR) and these traits were assessed us-
ing Pearson’s correlation coefficient. Pearson’s correlation
coefficient was also used to determine correlations between
all microarray probes within the chromosome 1 region and
metabolic traits, using a Bonferroni correction to determine
significance. A one-way ANOVA was used to determine
whether there were statistical differences between wild-
type, heterozygote, and Tpcn2 knockout mice. If a trend to-
ward significance was noted, a t-test was used to assess
significance between wild-type and knockout mice only.

Tpcn2 lookup in human GWAS

We used data from two large consortiums to determine
whether Tpcn2 may play a role in human diabetes. Diabetes
Genetics Replication and Meta-analysis (DIAGRAM) has col-
lected 2.4 million SNPs in.47,000 cases and controls (Zeggini
et al. 2008; Voight et al. 2010), with 34,840 cases and 114,981
controls recently genotyped on the customMetabochip (Morris
et al. 2012). The Meta-Analyses of Glucose and Insulin-related
traits Consortium (MAGIC) has collected phenotypic informa-
tion for quantitative glycemic traits such as glucose and insulin

in .40,000 individuals (Dupuis et al. 2010), with 133,010
individuals genotyped on the custom Metabochip (Scott
et al. 2012). Both DIAGRAM and MAGIC cohorts consist of
males and females mainly of European descent. Through col-
laboration with these investigators, we inquired whether a sub-
set of 39 SNPs within Tpcn2 was associated with diabetic traits
in humans. The 39 SNPs were chosen based on information
from the HapMap project (www.hapmap.org), choosing SNPs
with an average r2 . 0.8. All but 2 SNPs had an average r2 .
0.9. Fourteen of the 39 SNPs were upstream and 4 were down-
stream of the Tpcn2 gene (see Table S1). For those SNPs that
reached an unadjusted level of significance at P # 0.05, we
used the Benjamini and Hochberg (1995) false discovery rate
to account for multiple comparisons.

Results

Glucose and insulin phenotypes in HS rats separate into
five main clusters

Although we initially identified six clusters based on glucose
and insulin values, one of the clusters (cluster 5) contained
a single animal and was excluded from subsequent analysis.
There are two dominant phenotypic factors that characterized
the clusters. The first (which explained 65% of the variability
between clusters) consists of the magnitude of the peak of the
insulin curve and the glucose curve, the rate of increase of the
glucose from baseline to peak, the rate of increase of insulin
from baseline to peak, and glucose_AUC. The second factor
(which explained 31% of the variability between the clusters)
consists of the rate of decrease of the insulin curve after the peak
and the rate of decrease of the glucose curve after the peak.

The five clusters are shown in Figure 1 and demonstrate
the importance of taking into account both glucose and in-
sulin in the clustering. Note that animals in clusters 2 and 3
exhibit very similar plasma insulin levels, but differ signifi-
cantly in blood glucose levels. Similarly, animals from clus-
ters 3 and 4 exhibit similar blood glucose levels, but differ
significantly in plasma insulin levels. For the expression
analysis, glucose intolerant HS rats were chosen from cluster
1 (high glucose, moderate insulin) and HS rats with normal
glucose regulation were chosen from clusters 2 and 4 (low
glucose and insulin and moderate glucose and insulin, respec-
tively). The glucose intolerant group is highly significantly

Table 1 HS rat SNPs that pass the region-wide significance threshold for fasting glucose and/or Tpcn2 expression levels

SNP location (bp)
Gene/functional

location Trait (2log P) Variant
Founder strain(s)

with variant
Amino acid change

(Polyphen and SIFT predictions)

205,653,821 Rmt1/intron Fasting glucose (3.62) T to C ACI, BUF, M520, MR,
WKY, WN

NA

Tpcn2 expression (6.58)
205,715,459 Tpcn2/exon Fasting glucose (3.35) G to A F344 P to L (benign/tolerated)

Tpcn2 expression (6.17)
205,898,738 Cpt1a/exon Tpcn2 expression (4.90) G to A ACI, BUF, M520, MR, WN V to I (benign/tolerated)
206,242,238 RGD1311946/exon Tpcn2 expression (3.69) G to A F344 A to T (unknown/tolerated)
206,726,856 Gpr152/exon Tpcn2 expression (4.43) C to T F344 Q to * (unknown/unknown)

* indicates a stop codon.
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different from the normal glucose group (glucose_AUC =
13,458.9 vs. 9061, F1,44 = 398.7, P , 2e-16). Animals in
the glucose intolerant group also exhibit differences in sev-
eral other phenotypes, including significantly higher levels
of body weight (349.1 vs. 314.4 g, F1,44 = 15.47, P=0.000294),
fasting glucose (90.3 vs. 77.5 mg/dl, F1,44 = 42.65, P = 5.59e-
08), fasting insulin (1.8 vs. 1.1 ng/ml, F1,44 = 7.52, P = 0.009),
insulin_AUC (311.3 vs. 204.3, F1,44 = 17.10, P = 0.000157),
QUICKI (0.48 vs. 0.54, F1,44 = 7.96, P= 0.007) fasting c-peptide
(1808.0 vs. 1505.8 pg/ml, F1,44 = 5.75, P = 0.021), and fasting
triglycerides (86.2 vs. 72.3 mg/dl, F1,44 = 8.0, P = 0.007). No
differences are seen between the groups for fasting cholesterol
or fat pad weights (see Table S2).

Tpcn2 is the only gene measured within the 3.1-Mb QTL
that is differentially expressed between HS rats with
different glucose profiles

We identify 48 probes genome-wide that are differentially
expressed between HS rats with glucose intolerance and
those with normal glucose regulation, 3 of which had an
unknown location (see Table S3). These data have been de-
posited in the GEO database under accession no. GSE57118
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=
sjmjgkwulbebtmd&acc=GSE57118). Of these 48 genes, only
one falls within the 3.1-Mb glucose region on rat chromo-
some 1: Tpcn2. Statistics for the other probes within the
3.1-Mb region are listed in Table S4. Using qRT-PCR, we
confirm differential expression of Tpcn2 against both GAPDH
(F1,19 = 4.36, P = 0.05; see Figure 2A) and B2M (F1,18 =
7.03, P = 0.017; data not shown). HS founder strains also
show different levels of Tpcn2 expression, with the F344
strain showing the least amount of Tpcn2 expression and
the BN strain showing the greatest amount of Tpcn2 expres-
sion (see Figure 2B). All fold-change differences are expressed
relative to the F344 founder substrain.

Tpcn2 maps as a cis-eQTL to the same region as the
physiological QTL

Using haplotype reconstruction and mixed-model linear
regression, which takes into account sibship relationships,

we identify a single sharp peak (marker interval gko.18d13.
rp2.b1.157 and Cpn.1207450582, 205.22–207.45 Mb; log
P= 12.09) for expression levels of Tpcn2 (see Figure 3). Only
one other gene within this region, Acy3, maps as a cis-eQTL,
but with a much lower log P (marker interval WKYOa01b03.
r1.818 and rat106.025.f16.p1ca.195, 204.32–207.50 Mb;
log P = 6.28). The genome-wide significance threshold is
log P = 5.95 for both Tpcn2 and Acy3 expression levels,
where 2log P is defined as –log10(P-value).

Nonsynonymous coding variants are identified within
three genes, including Tpcn2

As expected, we identify �2000–3000 SNPs between each
strain and the BN reference genome (Saar et al. 2008).
Within the 3.1-Mb glucose locus, we identify three genes with
a nonsynonymous amino acid change in the F344 founder
strain: Tpcn2, RGD1311946, and Gpr152 (see Table 1). We
focused on variants in the F344 strain because our previous
work demonstrates that the F344 strain contributes to the
susceptibility allele at the QTL for glucose tolerance (Solberg
Woods et al. 2010) as well as for fasting glucose and insulin
(Solberg Woods et al. 2012). It is important to note that loci
for fasting glucose and insulin exhibit a complex genetic ar-
chitecture with several other founder haplotype combinations
leading to an increase in fasting glucose or insulin. Because of
this, we were unable to run a simple haplotype analysis, as
demonstrated by other groups (Svenson et al. 2012; Logan
et al. 2013). The variants within Tpcn2 and RGD1311946 are
not predicted to be damaging by PolyPhen or SIFT. The var-
iant within Gpr152, however, results in a premature stop co-
don and could potentially lead to changes in protein function.

Variants within and near Tpcn2 are significantly
associated with fasting glucose and Tpcn2
expression levels

Using a Bonferroni-adjusted region-wide threshold of 3.33, we
found that 2 SNPs, located at 205,653,821 bp (2log P= 3.62)
and 205,715,459 bp (2log P = 3.35), are significantly associ-
ated with fasting glucose (see Figure 4, Table 1, and Table S5).
The SNP at 205,715,459 bp harbors the nonsynonymous

Figure 4 Association analysis between 18 SNPs
within the 3.1-Mb QTL and all traits that map to
this region, including five diabetic traits and Tpcn2
expression levels. A mixed model, which takes into
account the complex family structure of the HS,
was used. The nonsynonymous coding variant
within Tpcn2, which is significant for both fasting
glucose and Tpcn2 expression levels, has been
marked with a black square. The x-axis shows the
position in megabases, and the y-axis give the
–log10 P of association. The solid line represents
the Bonferroni-adjusted region-wide significance
threshold (3.33). Expression levels are based on
fold change from the qPCR data, n = 120 HS rats;
for all other phenotypes, n = 508 HS rats.

Novel Gene for Diabetic Traits 23

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.162982/-/DC1/TableS2.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.162982/-/DC1/TableS3.docx
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=sjmjgkwulbebtmd&acc=GSE57118
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=sjmjgkwulbebtmd&acc=GSE57118
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.162982/-/DC1/TableS4.docx
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.162982/-/DC1/TableS5.docx


coding variant within Tpcn2, while the SNP at 205,653,821 bp
is located in the intron of the neighboring mammary cancer-
associated protein Rmt1 gene. These SNPs and 3 additional
SNPs are also associated with Tpcn2 expression levels:
205,653,821 bp (2log P = 6.58), 205,715,459 bp (2log P =
6.17), 205,898,738 bp (2log P= 4.90), 206,242,238 bp (2log
P = 3.69), and 206,726,856 bp (2log P = 4.43). The addi-
tional SNPs include the nonsynonymous coding variants
within RGD1311946 and Gpr152, as well as a coding variant
within Cpt1a. No associations are found between the 18
SNPs and glucose_AUC, fasting insulin, insulin_AUC, or
QUICKI. Genotypes for the 18 SNPs can be found in File S3.

Tpcn2 expression levels negatively correlate with
fasting glucose

Using the qRT-PCR data in 120 HS rats, we demonstrate
a significant negative correlation between Tpcn2 expression
levels and fasting glucose and glucose_AUC (r=20.302, P=
0.001 and r=20.246, P= 0.007, respectively; see Figure 5).
After removing 6 animals that have extremely high expres-
sion values (.2 SD from the mean), only fasting glucose
remains significantly correlated with expression levels (r =
20.232, P = 0.013). Tpcn2 expression levels are not sig-
nificantly correlated with fasting insulin, insulin_AUC, and
QUICKI (r = 20.034, 20.063, and 0.078, respectively).
qRT-PCR data can be found in File S4. To determine whether
any other genes in the region are correlated with the diabetic
traits, we determined correlation coefficients between expres-
sion levels of the microarray probes within the chromosome 1
region and six metabolic traits. We confirm the significant
negative correlation between fasting glucose and Tpcn2 ex-

pression levels (r = 20.559, P = 0.0000549). Based on a
Bonferroni-adjusted significance level of 0.00009, we also find
a marginally significant correlation between RGD1307603,
a gene with no known function, and QUICKI (r = 0.544,
P = 0.00000925). Correlation coefficients and unadjusted
P-values are reported in Table S6.

Tpcn2 knockout mice exhibit decreased fasting glucose
and insulin_AUC

We find a significant main effect of genotype on insulin_AUC
(F2,15 = 4.41, P = 0.031), with knockout mice exhibiting
significantly decreased insulin response relative to wild-type
mice (KO = 126.2, Het = 147.2, WT = 165.4, P = 0.029,
Tukey’s post-hoc test; see Figure 6 and Table S7). There is
a trend toward significance for fasting glucose (KO = 96.2,
Het = 116.3, WT = 111.0, F2,15 = 3.56, P = 0.056) and
QUICKI (KO = 0.54, Het = 0.49, WT = 0.49, F2,15 = 3.32,
P = 0.066). Upon running a t-test between knockout and
wild-type mice only, we find that Tpcn2 knockout mice ex-
hibit significantly decreased fasting glucose levels relative to
wild-type mice (t(8.9) = 2.28, P = 0.048). Tpcn2 knockout
mice do not differ significantly from wild-type mice in fast-
ing insulin levels or glucose_AUC. Means for all traits are
reported in Table S7. Raw data for the knockout, wild-type,
and heterozygote mice can be accessed in File S5.

Association between Tpcn2 and fasting insulin and
HOMA_IR in humans

Although we looked up associations in 39 SNPs, MAGIC was
able to provide statistics on only 14 SNPs and DIAGRAM
provided statistics on 11 SNPs (see Table S1). Information

Figure 5 (A–D) Expression of Tpcn2 in
liver of 120 HS rats as determined by
qRT-PCR and correlations with (A) fast-
ing glucose, (B) glucose_AUC, (C) fast-
ing insulin, and (D) QUICKI. Fold change
is relative to the mean ct of all HS ani-
mals. The black line represents the best
fit. A significant negative correlation is
found between Tpcn2 expression levels
and fasting glucose (r = 20.302, P =
0.001) and glucose_AUC (r = 20.246,
P = 0.007). When the outliers are re-
moved, fasting glucose remains signifi-
cant (r = 20.232, P = 0.013).
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was not available for the other SNPs likely because they
were either rare variants or failed imputation quality control
for other reasons. Of the 14 SNPs from MAGIC, 4 SNPs reach
unadjusted levels of significance for fasting insulin, 2 of
which remain marginally significant after accounting for mul-
tiple comparisons (rs10736671, P = 0.051, and rs11604251,
P = 0.051; see Table 2). Three of the 4 SNPs reach unad-
justed levels of significance for HOMA_IR, a measure of in-
sulin sensitivity (Matthews et al. 1985), but do not remain
significant after adjusting for multiple comparisons. Signifi-
cance is not found between SNPs within Tpcn2 and type 2
diabetes or fasting glucose (data not shown).

Discussion

In our previous work, we used HS rats to identify a 3.1-Mb
region that contains a QTL for glucose tolerance and fasting
glucose (Solberg Woods et al. 2010, 2012) and that overlaps
larger QTL for fasting insulin and insulin sensitivity (Solberg
Woods et al. 2012). In the present study, we use both anal-
ysis of gene expression and association analysis to identify
Tpcn2 as a likely causal gene within this locus. These find-
ings are supported by altered glucose and insulin levels in
a Tpcn2 knockout mouse, as well as by an association be-
tween variants within Tpcn2 and fasting insulin levels in
humans.

The role of Tpcn2 in regulating glucose and insulin levels
is currently unknown. Tpcn2 channels localize to the lyso-
some and are likely receptors for the calcium-mobilizing
agent NAADP (Brailoiu et al. 2009; Calcraft et al. 2009;
Schieder et al. 2010). Several studies indicate that NAADP

may play a role in insulin signaling of the b-cells (Kim et al.
2008; Naylor et al. 2009; Shawl et al. 2009; Alejandro et al.
2010; Arredouani et al. 2010), and a recent study suggests
NAADP is involved in glucose homeostasis (Park et al.
2013). It is also interesting to note that Tpcn2 and other
calcium-handling genes (Tpcn1 and IP3R1) have recently
been found to be differentially expressed in patients with
heart failure (Garcia-Rua et al. 2012). Although previous
studies have not looked at the role of Tpcn2 in liver, alter-
ations of calcium channels such as CaMKII have been shown
to lead to impaired liver gluconeogenesis (Ozcan et al.
2012), while Cav2.3 calcium channel knockout mice exhibit
altered glucose levels, likely as a result of reduced insulin
sensitivity (Matsuda et al. 2001). Together these studies
suggest a possible role for Tpcn2 in both the b-cell and the
liver. Future studies will test the hypothesis that Tpcn2
is involved in glucose-stimulated insulin secretion of the
b-cells as well as probe a potential role of this gene in reg-
ulating insulin sensitivity and gluconeogenesis.

Global gene expression analysis in HS rats was used to
initially identify Tpcn2 as a candidate gene within the glu-
cose QTL. We show that Tpcn2 is differentially expressed in
HS rats with glucose intolerance relative to those with nor-
mal glucose regulation and demonstrate that this gene maps
as a cis-eQTL to the same region as the physiological QTL.
Several previous studies have found that genes that map as
cis-eQTL within previously identified physiological QTL can
be considered prime candidate genes (Hubner et al. 2005;
Chen et al. 2008; Morrissey et al. 2011). Demonstrating
a correlation between expression levels and fasting glucose
levels further supports that this gene may be playing a causal

Figure 6 (A–D) Glucose and insulin lev-
els after a glucose tolerance test (A and
B) and at fasting (C and D) in wild-type
(WT) and Tpcn2 knockout (KO) mice.
Knockout mice exhibit significantly lower
fasting glucose levels (*P = 0.048). Al-
though fasting insulin levels do not differ
significantly between wild-type and
knockout mice, insulin_AUC is highly
significantly different (P = 0.031).
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role at the QTL (Farber et al. 2009; Leduc et al. 2011; Morrissey
et al. 2011).

Upon assessing association between 18 SNPs within the
QTL and traits that map to this region (including five
metabolic traits and Tpcn2 expression levels), we find that
the nonsynonymous coding variant within Tpcn2, as well as
an intronic variant in the neighboring Rmt1 gene, exhibits
the highest level of association with fasting glucose levels
and Tpcn2 expression levels, further supporting a potential
causal role for this gene. Despite having a slightly higher
level of association, we do not believe that Rmt1 plays
a causal role in diabetes because it is neither correlated with
the diabetic traits nor exhibits expression differences. It is
interesting to note that three additional SNPs in the region
exhibit significant association with Tpcn2 expression levels,
indicating that Tpcn2 expression may be regulated by other
genes in the region. Three of these SNPs, including the
Tpcn2 SNP, are from the F344 founder, the strain that exhib-
its very low Tpcn2 expression levels (Figure 2) and that
contributes the susceptibility allele at this locus (Solberg
Woods et al. 2010, 2012). It is unlikely that any of the
identified variants are causal, however, because the signifi-
cance levels of these SNPs do not surpass that of the haplo-
type mapping for either fasting glucose (Solberg Woods
et al. 2012) or Tpcn2 expression levels (Figure 3). A merge
analysis, in which genotypes for all SNPs in the region are
imputed, may be useful to identify the causative variant
(Yalcin et al. 2005; Keane et al. 2011; Baud et al. 2013).
However, because this method is most successful when a sin-
gle causative variant underlies the locus (Baud et al. 2013),
it may prove less useful for the current region in which
multiple genes/variants may be playing a role.

Upon investigating glucose and insulin levels in Tpcn2
knockout mice, we find that knockout mice exhibit signifi-
cantly decreased fasting glucose and decreased insulin re-
sponse to a glucose challenge relative to wild-type mice.
These findings contrast with the results in the HS rats, in
which decreased Tpcn2 expression levels are associated with
increased, as opposed to decreased, fasting glucose and in-
sulin levels. There are several possible reasons for this dis-
crepancy. Because the mice were created on a mixed C57/
129 background, we cannot rule out the possibility that
alleles from the 129 strain, as opposed to the gene knockout,
are causing the differences in phenotype. To minimize this

effect, however, only siblings from heterozygous breeder
pairs were tested. Another possibility is related to the fact
that a full gene knockout can have a very different effect on
a phenotype than natural allelic variation (Flint and Eskin
2012). Furthermore, several studies have shown that differ-
ent variants within the same gene, or within the same GWAS
location, can have opposite effects on a single phenotype
(Cohen et al. 2005; Flister et al. 2013). To test the role
specifically of the F344 variant on glucose and insulin reg-
ulation, quantitative complementation can be used (Yalcin
et al. 2004b, 2010). Alternatively, if we are able to identify
the causal variant(s) within this region, we can use genetic
techniques to investigate the specific role of this (or these)
variant(s) (Katter et al. 2013).

To determine whether Tpcn2 may be playing a role in
human diabetes, we collaborated with investigators from
the DIAGRAM and MAGIC consortiums. Tpcn2 has not pre-
viously reached significance levels in any of the published
genome-wide scans (Morris et al. 2012; Scott et al. 2012).
However, genome-wide thresholds are conservative because
of the need to account for the multiple testing across the
genome. In the present study, we were able to assess 14 of
39 SNPs within the Tpcn2 gene and find that two are mar-
ginally significantly associated with fasting insulin levels in
humans. Although no significant associations were found
between these SNPs and diabetes or fasting glucose levels,
the majority of SNPs that we investigated were not repre-
sented within the MAGIC or DIAGRAM meta-analyses. A
potential reason for this is that some of these SNPs may
be rare variants and thus could not be properly imputed.
It is therefore possible that rare variants within Tpcn2 may be
associated with diabetes and related traits (see Steinthorsdottir
et al. 2014; Zuk et al. 2014). The fact that variants within
all three species alter diabetic phenotypes, however, is
strong evidence that this gene plays a role in metabolic
regulation.

This work demonstrates the power of highly recombinant
animal models such as the HS for relative rapid identifica-
tion of a candidate gene within a QTL. Despite relatively
complex genetic architecture at the QTL, we were able to
identify a highly plausible causal gene within only a few
years. It is important to recognize, however, that we are not
able to rule out any other genes within this QTL at this time,
particularly the 29 genes that were not assessed on the

Table 2 Association between Tpcn2 SNPs and diabetic traits in humans

Fasting insulin HOMA_IR

SNP Location
Unadjusted P-value

(effect)
BH adjusted

P-value
Unadjusted P-value

(effect)
BH adjusted

P-value

rs11604251 chr11: 68,820,429 0.0073 (+) 0.0511 0.6643 (+) 0.6643
rs7127082 chr11: 68,822,023 0.02475 (2) 0.0937 0.0392 (2) 0.2415
rs753559 chr11: 68,851,605 0.02676 (+) 0.0937 0.03936 (+) 0.2415
rs10736671 chr11: 68,858,907 0.0038 (+) 0.0511 0.05174 (2) 0.2415

Only the 4 most significant SNPs (of 14) are reported. Statistics on the additional SNPs are reported in Table S1. SNPs that remain marginally
significant after adjusting for multiple comparisons using the Benjamini and Hochberg FDR method (BH) are in boldface type.
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expression array. In fact, our mapping studies indicate
that more than one gene likely underlies the insulin locus
(Solberg Woods et al. 2012), and it is reasonable to ex-
pect that Tpcn2 may interact with one or more genes
within this region. Of particular interest is Gpr152, a
G-protein coupled receptor in which the F344 variant en-
codes a premature stop codon, thus likely affecting protein
function. The variant within Gpr152 was also significantly
associated with Tpcn2 expression levels, suggesting a po-
tential interaction between these genes. Future studies
will investigate a potential role for these other genes, as
well as potential interactions between genes within this
region.

In sum, we have identified Tpcn2 as a highly plausible
causal gene within a QTL for both glucose and insulin
traits. We have used expression and sequence analysis in
a highly recombinant population to identify this gene in
only a few years. A causal role for this gene is supported
by alterations in both glucose and insulin in a Tpcn2
knockout mouse as well as data from clinical cohorts. Fu-
ture work will identify the causative variant within this
gene and begin to unravel the underlying mechanisms
involved, as well as investigate a potential role for other
genes in the region. The gene expression data, association
analysis, and confirmation in both mice and humans dem-
onstrate Tpcn2 as a new gene contributing to glucose and
insulin regulation.
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Figure S1   PCR on RNA from multiple tissues in wild‐type and knock‐out Tpcn2 mice.  Results confirm that the knock‐out mice 

do not transcribe Tpcn2. 
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File S1 

** List of MAGIC (Meta‐Analysis of Glucose and Insulin‐Related traits) Consortium investigators 

File S1 is available for download as a pdf at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.162982/‐/DC1. 
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File S2   Phenotype data used for the cluster analysis 

File S3   HS genotype data for 18 SNPs within the 3.1 Mb QTL on rat chromosome 1 

File S4   Quantitative rt‐PCR data for Tpcn2 and GAPDH in 120 HS rats 

File S5   Glucose and insulin levels during the IPGTT in Tpcn2 knock‐out, heterozygous and wild‐type mice 
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Table S1   Association between Tpcn2 SNPs and diabetic traits in humans    

      Fasting Insulin HOMA_IR 

SNP  Location (Mb) 
Functional 

location 

Unadjusted 

p‐value 

(effect) 

BH 

adjusted 

p‐value 

Unadjusted 

p‐value 

(effect) 

BH 

adjusted p‐

value 

rs2376554  Chr 11:68811445  upstream   

rs749363  Chr. 11:68812024  upstream   

rs7932947  Chr. 11:68812781  upstream   

rs55918435  Chr. 11:68813015  upstream   

rs35678276  Chr. 11:68814544  upstream   

rs59234009  Chr. 11:68814545  upstream   

rs56932042  Chr. 11:68814568  upstream   

rs10792010  Chr. 11:68814887  upstream   

rs3018679  Chr. 11:68814894  upstream   

rs59427626  Chr. 11:68815258  upstream   

rs35443329  Chr. 11:68815437  upstream   

rs10750836  Chr. 11:68815523  upstream  0.5689 0.5689 0.6327 0.6643 

rs12790685  Chr. 11:68815948  upstream   

rs12791187  Chr. 11:68815949  upstream  

rs4930642  Chr. 11:68816370  UTR  5’  

rs4453241  Chr. 11:68816825  intron   

rs11823877  Chr. 11:68819011  intron   

rs11228458  Chr. 11:68819204  intron   

rs11604251  Chr. 11:68820429  intron  0.0073 0.0511* 0.6643 0.6643 

rs10792012  Chr. 11:68820569  intron  0.5117 0.5689 0.6216 0.6643 

rs6591367  Chr. 11:68821947  intron   

rs7127082  Chr. 11:68822023  intron  0.02475 0.0937 0.0392 0.2415 

rs7942690  Chr. 11:68823940  intron  0.5004 0.5689 0.6251 0.6643 

rs3019776  Chr. 11:68826155  intron  0.5221 0.5689 0.2321 0.6499 

rs7930211  Chr. 11:68827717  intron   

rs11228469  Chr. 11:68829638  intron  0.0868 0.2430 0.1142 0.3997 

rs3829236  Chr. 11:68838028  intron  0.3042 0.5689 0.3242 0.6643 

rs4930263  Chr. 11:68847005  intron   

rs2290418  Chr. 11:68847687  intron   

rs2376558  Chr. 11:68851414  missense  

rs753559  Chr. 11:68851605  intron  0.02676 0.0937 0.03936 0.2415 

rs3750967  Chr. 11:68855112  intron  0.4648 0.5689 0.5844 0.6643 

rs1060435  Chr. 11:68855595  UTR  3’ 0.2497 0.5689 0.507 0.6643 
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rs4930265  Chr. 11:68855954  UTR  3’ 0.5297 0.5689 0.5493 0.6643 

rs3018681  Chr. 11:68856224  UTR  3’  

rs3168115  Chr. 11:68858090  downstream  0.5077 0.5689 0.5037 0.6643 

rs10736671  Chr. 11:68858907  downstream  0.0038 0.0511* 0.05174 0.2415 

rs3018673  Chr. 11:68859608  downstream   

rs7930709  Chr. 11:68860223  downstream   

39 human SNPs within or near Tpcn2 were used to determine association with diabetes and related traits.   DIAGRAM assessed 

association between 11 SNPs (in italics) and diabetes while MAGIC assessed association between 14 SNPs (in bold) and fasting 

glucose, fasting insulin and the homeostatic model assessment of insulin resistance (HOMA_IR).  Associations between 14 SNPs 

and fasting insulin and HOMA_IR, as assessed by MAGIC, are listed above.  Multiple comparisons were adjusted for using the 

Benjamini and Hochberg FDR method (BH).  No significant associations were found between the SNPs and diabetes or fasting 

glucose.   Associations could not be determined for SNPs that are not in bold because of insufficient data.  * p = 0.051 after 

adjusting for multiple corrections.  
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Table S2   Phenotypic differences between glucose intolerant and normal glucose HS rats 

Trait  Normal Glucose HS

(mean + SD) 

Glucose Intolerant HS

(mean + SD) 

Glucose_AUC  9061.0 + 209.1 13,458.9 + 1,035.5***

Insulin_AUC  204.3 + 63.3 311.3 +  106.7***

Fasting glucose (mg/dL)  77.5 + 6.6 90.3 + 6.7***

Fasting insulin (ng/ml)  1.1 + 0.5 1.8 + 1.2**

Fasting c‐peptide (pg/ml)  1505.8 + 479.8 1808.0 + 367.8*

Fasting cholesterol (mg/dL)  100.1 + 46.8 125.5 + 56.0

Fasting triglycerides (mg/dL)  72.3 + 20.1 86.2 + 12.2**

QUICKI (1/(logI0 + logG0))  0.54 + 0.06 0.48 + 0.08**

Body Weight (g)  314.4 + 25.8 349.1 + 33.5***

Retroperitoneal fat pad weight (g)  0.014 + 0.004 0.014 + 0.005

Epidydimal fat pad weight (g)  0.015 + 0.005 0.016 + 0.005

***p < 0.0001, **p < 0.01, *p < 0.05, see manuscript for full statistics 
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Tables S3‐S6 

Available for download as .docx files at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.162982/‐/DC1 

Table S3   Differentially Expressed Genes between Glucose Intolerant and Normal Glucose HS rats (Genome‐wide) 
 
Table S4   Mean expression levels for all probes within the 3.1 Mb chromosome 1 region 
 
Table S5   Significance of association (‐log10P) between 18 SNPs within the 3.1 Mb QTL on rat chromosome 1 and all traits that 
map to this locus 
 
Table S6   Correlations between probes within the chromosome 1 region and six diabetic traits  
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Table S7   Phenotypic differences in Tpcn2 knock‐out, heterozygote and wild‐type mice 

Trait  Wild‐type (mean + SD) Heterozygotes (mean + SD)  Knock‐out (mean + SD)

Glucose_AUC  22,917.5 + 4,384.2 21,811.2 + 1,609.2 20,700.0 + 3,660.1

Insulin_AUC  165.4 + 13.4 147.2 + 35.8 126.2 +  6.4**

Fasting glucose (mg/dL)  111.0 + 12.0 116.3 + 15.5 96.2 + 9.6*

Fasting insulin (ng/ml)  1.04 + 0.22 1.03 + 0.51 0.80 + 0.25

QUICKI (1/(logI0 + logG0))  0.49 + 0.02 0.49 + 0.04 0.54 + 0.04

Body Weight (g)  25.3 + 2.1 24.3 + 2.4 27.0 + 3.6

**p = 0.031 (wild‐type mice differ from knock‐out mice based on a Tukey‐post‐hoc based after an ANOVA between all three 

genotypes), *p = 0.048 (t‐test between wild‐type and knock‐out mice only)  

 


