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Loss of Cln3 Function in the Social Amoeba
Dictyostelium discoideum Causes Pleiotropic Effects That
Are Rescued by Human CLN3
Robert J. Huber*, Michael A. Myre., Susan L. Cotman.

Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America

Abstract

The neuronal ceroid lipofuscinoses (NCL) are a group of inherited, severe neurodegenerative disorders also known as Batten
disease. Juvenile NCL (JNCL) is caused by recessive loss-of-function mutations in CLN3, which encodes a transmembrane
protein that regulates endocytic pathway trafficking, though its primary function is not yet known. The social amoeba
Dictyostelium discoideum is increasingly utilized for neurological disease research and is particularly suited for investigation
of protein function in trafficking. Therefore, here we establish new overexpression and knockout Dictyostelium cell lines for
JNCL research. Dictyostelium Cln3 fused to GFP localized to the contractile vacuole system and to compartments of the
endocytic pathway. cln32 cells displayed increased rates of proliferation and an associated reduction in the extracellular
levels and cleavage of the autocrine proliferation repressor, AprA. Mid- and late development of cln32 cells was precocious
and cln32 slugs displayed increased migration. Expression of either Dictyostelium Cln3 or human CLN3 in cln32 cells
suppressed the precocious development and aberrant slug migration, which were also suppressed by calcium chelation.
Taken together, our results show that Cln3 is a pleiotropic protein that negatively regulates proliferation and development
in Dictyostelium. This new model system, which allows for the study of Cln3 function in both single cells and a multicellular
organism, together with the observation that expression of human CLN3 restores abnormalities in Dictyostelium cln32 cells,
strongly supports the use of this new model for JNCL research.
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Introduction

The neuronal ceroid lipofuscinoses (NCL) are a group of

inherited, severe neurodegenerative disorders also known as

Batten disease [1]. At the cellular level, NCL disorders charac-

teristically display aberrant lysosomal function and an excessive

accumulation of lipofuscin in neurons and other cell types [2,3].

Clinical manifestations include vision loss, seizures, the progressive

loss of motor function and psychological ability, and a reduced

lifespan [4]. Recent evidence also points to pathology outside of

the central nervous system, more specifically the cardiac and

immune systems [5–8]. North American and Northern European

populations have the highest rates of incidence, however the NCL

disorders have a worldwide distribution with varying incidence

rates depending on the region (1:14000 to 1:100000) [9].

Currently there are no effective treatments or cure for NCL

disorders.

Juvenile NCL (JNCL), the most common subtype of NCL,

occurs due to recessive mutations in the CLN3 gene with the

majority of JNCL patients carrying a ,1-kb genomic deletion

spanning exons 7 and 8 [10]. Indel, missense, nonsense, and splice

site mutations have also been documented in JNCL patients

[11,12]. In mammals, CLN3 encodes a 438 amino acid multi-pass

transmembrane protein (CLN3/battenin; ceroid-lipofuscinosis,

neuronal 3) that is primarily found in endosomes and lysosomes

with evidence that it may also traffic to other subcellular

membranes [3,13,14]. In neurons, CLN3 may be important for

events localized at the synapse [15]. Evidence from yeast and

mouse models independently suggests that CLN3 may function in

lysosomal pH homeostasis, endocytic trafficking, and autophagy

[16–20]. Despite substantial research efforts using a variety of

systems, the precise function of CLN3 remains unclear [21].

A new, unexplored approach to studying CLN3 function

involves the use of the social amoeba Dictyostelium discoideum,

which has been selected by the National Institutes of Health as a

model organism for biomedical and human disease research. This

genetically tractable model eukaryote is being used successfully to

study the function of genes linked to neurodegenerative disorders

and is particularly suited to modeling human lysosomal and

trafficking diseases [22–29]. Dictyostelium is a soil microbe that

undergoes an asexual life cycle composed of a growth phase in
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which single cells grow and divide mitotically as they feed on

bacteria and a multicellular developmental stage that is induced

upon starvation. During the early stages of Dictyostelium
development, the starving population of cells secretes cAMP in a

pulsatile manner, which serves to attract individual cells chemo-

tactically to form a multicellular aggregate also referred to as a

mound. After a series of morphological changes, the mound

develops into a slug-like structure that is capable of both photo-

and thermotaxis. When conditions are suitable, the slug, composed

of predominantly two cell types (i.e., pre-stalk and pre-spore),

completes the life cycle by forming a fruiting body comprised of a

mass of spores supported by a stalk of dead cells. When a food

source becomes available, the spores germinate allowing the

amoeba to re-start the life cycle. Thus, Dictyostelium serves as a

valuable system for studying a variety of cell and developmental

processes [30–32].

Understanding the normal function of CLN3 is a key step in

designing targeted therapies for JNCL. Therefore, in this study, we

have established new tools for research into CLN3 function by

generating a Cln3-deficient Dictyostelium mutant by targeted

homologous recombination and introducing GFP-tagged Dictyos-
telium Cln3 and human CLN3 into Dictyostelium cells. Assessment

of the knockout and overexpression cells during growth and

development strongly indicates that the function of CLN3 is

conserved from Dictyostelium to human. Furthermore, our results

strongly support a key role for CLN3 in regulating the endocytic

pathway and calcium-dependent developmental events.

Materials and Methods

Cells and chemicals
AX3 and cln32 cells were grown and maintained at room

temperature on SM agar with Klebsiella aerogenes and in HL5

medium supplemented with ampicillin (100 mg/ml) and strepto-

mycin sulfate (300 mg/ml). cln32 cells also required blasticidin S

hydrochloride (10 mg/ml), while strains carrying the extrachro-

mosomal vector pTX-GFP required G418 (10 mg/ml) [33]. HL5,

FM minimal medium, and low fluorescence HL5 were purchased

from ForMedium (Hunstanton, Norfolk, UK). The QIAquick

PCR Purification Kit, QIAquick Gel Extraction Kit, and QIAprep

Spin Miniprep Kit were used for all PCR purifications, gel

extractions, and plasmid isolations, respectively, and were all

purchased from Qiagen Incorporated (Valencia, CA, USA).

Restriction enzymes were purchased from New England BioLabs

Incorporated (Ipswich, MA). All primers were purchased from

Integrated DNA Technologies Incorporated (Coralville, IA, USA).

EGTA and FITC-dextran were purchased from Sigma-Aldrich

(St. Louis, MO, USA). Mouse monoclonal anti-p80 was purchased

from the Developmental Studies Hybridoma Bank (University of

Iowa, Iowa City, IA, USA).

Axenic growth and pinocytosis
Cells in the mid-log phase of growth (1–56106 cells/ml) were

diluted to 1–26105 cells/ml in fresh HL5 or FM and incubated at

22uC and 150 rpm. Cell concentrations were measured every 24

hours over a 120- or 144-hour growth period with a hemocytom-

eter. Pinocytosis assays were performed as previously described

[34]. Briefly, AX3 and cln32 cells (56106 cells/ml) were grown in

HL5. FITC-dextran (70,000 Mr, 100 ml of a 20 mg/ml solution)

was added to a 5-ml cell suspension, which was then incubated for

90 minutes at room temperature and 150 rpm. Equal volumes of

cells (500 ml) were harvested at the indicated times, washed 2 times

with ice-cold Sorenson’s buffer (2 mM Na2HPO4, 14.6 mM

KH2PO4, pH 6.0), and then lysed with 1 ml of buffer containing

50 mM Na2HPO4 pH 9.3 and 0.2% Triton-X. Lysates were

placed in black 96-well plates and fluorescence was measured with

a Molecular Devices SpectraMax M2 Multi-Mode Microplate

Reader (excitation 470, emission 515). For axenic growth and

pinocytosis assays, statistical significance was assessed in GraphPad

Prism 5 (GraphPad Software Incorporated, La Jolla, CA, USA)

using two-way ANOVA followed by Bonferroni post-hoc analysis.

A p-value,0.05 was considered significant (i.e., n = # of

independent cell cultures; see relevant Figure legends for

additional details). For experiments assessing the effect of cln3
knockout on the intra- and extracellular levels of AprA and CfaD,

AX3 and cln32 cells grown axenically in HL5 (as described above)

were harvested and lysed after 48 and 72 hours of growth. At each

of these time points, cells from 15 ml of culture were also spun

down and conditioned media was collected and filtered through a

0.45 mm filter unit. Samples were standardized by loading volumes

of conditioned media according to cell number (i.e., media from

100000 cells). Whole cell lysates and samples of conditioned media

were separated by SDS-PAGE and analyzed by western blotting.

Development
Development assays were performed as previously described

[35]. Briefly, cells grown in HL5 were harvested in the mid-log

phase of growth (1–56106 cells/ml) and washed two times with

ice-cold KK2 phosphate buffer (2.2 g/L KH2PO4, 0.7 g/L

K2HPO4, pH 6.5). Washed cells (36107 cells/ml) were deposited

in four individual cell droplets (25 ml each droplet) on black,

gridded, cellulose filters (0.45 mm pore size) (EMD Millipore

Corporation, Billerica, MA, USA) overlaid on four Whatman #3

cellulose filters (EMD Millipore Corporation, Billerica, MA, USA)

pre-soaked in KK2 buffer. Cells were maintained in the dark in a

humidity chamber at room temperature. Structures were viewed

and photographed at the indicated times with a Nikon SMZ800

microscope (Nikon Instruments Incorporated, Melville, NY, USA)

equipped with a SPOT Insight color camera 3.2.0 (Diagnostic

Instruments Incorporated, Sterling Heights, MI, USA). Images

were captured with SPOT for Windows (Diagnostic Instruments

Incorporated, Sterling Heights, MI, USA). For each independent

experiment, developmental phenotypes were scored for each cell

droplet (i.e., 4 total) and then averaged to obtain a mean value for

that experiment (i.e., n = # of independent experiments; see

relevant Figure legends for additional details). Statistical signifi-

cance was assessed in GraphPad Prism 5 (GraphPad Software

Incorporated, La Jolla, CA, USA). Data that satisfied parametric

requirements were analyzed using one-way ANOVA followed by

the Bonferroni multiple comparison test. Non-parametric data

were analyzed using the Kruskal-Wallis test followed by the Dunn

multiple comparison test. A p-value,0.05 was considered

significant. See relevant Figure legends for additional details.

Live cell imaging, fxation, and immunolocalization
Cells were viewed live in 6-well dishes containing water or low

fluorescence HL5. Fixation in ultra-cold methanol (for cells probed

with anti-VatM or anti-Rh50) or 4% paraformaldehyde (for cells

probed with anti-p80) followed by immunolocalization, were

performed as previously described [36,37]. Prior to fixation, cells

were grown overnight on coverslips in low fluorescence HL5. The

following primary and secondary antibodies were used; rabbit

polyclonal anti-GFP (1:1000) (Life Technologies Incorporated,

Carlsbad, CA, USA), mouse monoclonal anti-GFP (1:50) (Santa

Cruz Biotechnology Inc., Santa Cruz, CA, USA), mouse

monoclonal anti-VatM (1:10–1:25) [38], rabbit polyclonal anti-

Rh50 (1:1500–1:2000) [39], mouse monoclonal anti-p80 (1:50)

[40], donkey anti-rabbit Alexa Fluor 488, donkey anti-rabbit

Cln3 Function in Dictyostelium
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Alexa Fluor 555, donkey anti-mouse Alexa Fluor 488, and donkey

anti-mouse Alexa Fluor 555 (1:50–1:100) (Life Technologies

Incorporated, Carlsbad, CA, USA). Coverslips were mounted on

slides with Prolong Gold anti-fade reagent with DAPI (Life

Technologies Incorporated, Carlsbad, CA, USA) and sealed with

nail polish. Live cells were viewed with a Nikon Eclipse TE2000-U

microscope equipped with Nikon Digital Sight DS-Qi1Mc and

Nikon Digital Sight DS-Fi1 digital cameras (Nikon Instruments

Incorporated, Melville, NY, USA). Fixed cells were imaged either

with a Leica SP5 AOBS scanning laser confocal microscope (Leica

Microsystems, Buffalo Grove, IL, USA) or a Zeiss Axioskop2 mot

plus epifluorescence microscope equipped with a Zeiss AxioCam

MRm digital camera (Carl Zeiss Microscopy LLC, Thornwood,

NY, USA). For confocal analysis, the separate channels were

imaged using sequential scanning mode and z-sections were taken

with a pinhole setting of 1 airy unit (AU). Separate channel and

overlay (i.e., merge) images were exported from the Leica imaging

software (LAS AF), or from the Zeiss AxioVision imaging software

(version 4.6.3), as.tif files and opened into Adobe Photoshop CS5

for compilation of figures. For epifluorescence images, the merge

of the separate channel images was produced using ImageJ/Fiji

software. If minor brightness and contrast adjustments were

necessary, these were made in Photoshop uniformly for each set of

images of a given co-stain combination.

SDS-PAGE and western blotting
Cells were lysed with a buffer containing 50 mM Tris–HCl

pH 8.0, 150 mM sodium chloride, 0.5% NP-40, 5 mM EDTA,

10 mM sodium fluoride, 1 mM sodium orthovanadate, and a

protease inhibitor cocktail tablet (Roche Diagnostics Corporation,

Indianapolis, IN, USA). Proteins were separated by SDS-PAGE

and analyzed by western blotting with mouse monoclonal anti-

tubulin (1:1000) (12G10, Developmental Studies Hybridoma

Bank, The University of Iowa, IA, USA), mouse monoclonal

anti-actin (1:1000), mouse monoclonal anti-GFP (1:1000) (Santa

Cruz Biotechnology Inc., Santa Cruz, CA, USA), rabbit

polyclonal anti-AprA (1:1000) [41], and rabbit polyclonal anti-

CfaD (1:1000) [42]. Immunoblots were digitally scanned using a

GS800 Calibrated Densitometer scanner and Quantity One

software (Bio-Rad Laboratories Incorporated, Hercules, CA,

USA). Identified bands were quantified with ImageJ/Fiji and

levels were normalized to ß-actin levels. Results were pooled from

four independent experiments, each with at least two technical

replicates. Statistical significance was determined using a one-

sample t-test (mean, 100; two-tailed). A p-value,0.05 was

considered significant.

Bioinformatic and phylogenetic analysis
Sequence alignments between Dictyostelium Cln3 and human

CLN3 were performed using the dictyBase BLAST server (http://

www.dictybase.org/tools/blast). For phylogenetic analyses, the

amino acid sequence of Dictyostelium Cln3 was inputted into the

NCBI BLASTp server. Amino acid sequences for significant hits

corresponding to CLN3 orthologs from 20 different organisms

(i.e., mammals and NIH model systems) were obtained and

aligned using ClustalX version 1.83. Neighbor-Joining trees were

created using ClustalX version 1.83 and PAUP version 4.0

(Sinauer Associates Incorporated Publishers, Sunderland, MA,

USA) and viewed using TreeView version 1.6.6.

Gene knockout and validation
Targeted disruption of the cln3 gene in Dictyostelium

discoideum was accomplished using an approach that has been

previously described [26]. Targeting arms were amplified by PCR

using the Expand High-Fidelity PCR System (Roche Diagnostics

Corporation, Indianapolis, IN, USA) and cloned into vector

pLPBLP, which knocked out the gene of interest by homologous

recombination and introduced a blasticidin resistance (bsr) cassette

[43]. The 59 targeting arm was amplified using the following

primers, which incorporated KpnI and HindIII sites (underlined)

to facilitate directional cloning into pLPBLP; 59-

GGTACCTCTTTATACTATATATTATACCTCCTTCTC-39

(forward) and 59-AAGCTTCATCTTGAAACTAAAC-

CAAATGCAATATTTGC-39 (reverse). The 39 targeting arm

was amplified using the following primers, which incorporated

PstI and SpeI (underlined) to facilitate directional cloning into

pLPBLP; 59-CTGCAGAAAACAAAGATATATTCGTTGTG-

CACG-39 (forward) and 59- ACTAGTATGAAGAAT-

CAGTTTTTGGAACCTCAGAG-39 (reverse). AX3 cells were

electroporated with 10 mg of linearized gene-targeting DNA. 96

colonies resistant to blasticidin S hydrochloride (10 mg/ml) were

collected and replica-plated into a 96-well plate. Genomic DNA

was extracted using the DNeasy Blood and Tissue Kit (Qiagen

Incorporated, Valencia, CA, USA) and targeted gene disruption

was validated by nine PCR reactions using a combination of

primers (File S1, Table S1). PCR analysis identified eight positive

clones that all showed a similar growth phenotype (discussed in

Results). Two of these clones were further analyzed by Southern

blotting. Genomic DNA from each clone was isolated and digested

overnight with HindIII at 37uC, separated by agarose gel

electrophoresis, and transferred to positively charged nylon

membranes by capillary transfer. Blots were hybridized with a

DIG-labelled probe corresponding to the entire sequence of the

bsr gene using the PCR DIG Probe Synthesis Kit and the DIG

High Prime DNA Labeling and Detection Starter Kit II according

to the manufacturer’s instructions (Roche Diagnostics Corpora-

tion, Indianapolis, IN, USA). The bsr gene was amplified from

pLPBLP using the following primers; 59-ATGGATCAATTTAA-

CATTTCTCAAC-39 (forward) and 59-TTAATTTCGGGTA-

TATTTGAGTGG-39 (reverse). Based on the position of HindIII

cut sites in the Dictyostelium genome, a single 2746 bp fragment

was expected on Southern blots probed with the DIG-labelled bsr
probe (www.dictybase.org). A ,2750 bp fragment was detected in

both clones however one of the clones also contained an

unexpected ,6600 bp fragment. Since this implied an unintended

and possibly complex integration event, we chose to work with the

clone containing the single ,2750 bp fragment. We designated

this clone as the cln3 knockout strain and used these cells in all

subsequent analyses.

Construction of GFP expression constructs and cell lines
Vector pTX-GFP, which incorporates an N-terminal GFP tag,

was used to generate all GFP-fusion protein constructs [33]. Full-

length Dictyostelium cln3 was amplified from cDNA using the

following primers, which incorporated SacI and XhoI sites

(underlined) to facilitate directional cloning into pTX-GFP; 59-

GAGCTCATGGGAAAGGATTATACATT-39 (forward) and

59-CTCGAGTTATGTTGAGGATGAAGAAT-39 (reverse).

Full-length human CLN3 was amplified from cDNA using the

following primers, which also incorporated SacI and XhoI sites

(underlined); 59-GAACTTGAGCTCATGGGAGGCTGTG-39

(forward) and 59-TAATCCCTCGAGTCAGGAGAGCTGGC-

39 (reverse). To facilitate the expression of Dictyostelium GFP-Cln3

and human GFP-CLN3 at close to endogenous levels, the act15
promoter and the first 11 codons of the GFP open reading frame,

which contained the initiation methionine and an amino-terminal

8x histidine tag, was removed from pTX-GFP by digesting the

plasmid with SalI and KpnI. Three fragments containing DNA

Cln3 Function in Dictyostelium
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from the non-coding region directly upstream of cln3 were

amplified from AX3 gDNA using primers cln3_up_elem_F1,

cln3_up_elem_F2, cln3_up_elem_F3, and cln3_up_elem_R1 (File

S1, Table S1). Forward primers incorporated SalI restriction sites

and reverse primers incorporated KpnI restriction sites to facilitate

directional cloning into pTX-GFP. The longest fragment (i.e.,

upstream element 1) spanned the entire region upstream of the

cln3 start site up to the end of the preceding gene (File S1, Fig. S1).

The other two fragments (i.e., upstream elements 2 and 3) spanned

regions within upstream element 1 up to the cln3 start site. The

three upstream elements, which also included the first 36 base

pairs (12 codons) of the cln3 open reading frame, were then

separately cloned into pTX-GFP upstream and in-frame with the

GFP open reading frame. All constructs were validated by agarose

gel electrophoresis and DNA sequencing (CHGR Genotyping

Resource, Genomics Core Facility, Massachusetts General Hos-

pital, Boston, MA, USA). The ability of each cln3 upstream

element to drive GFP expression in AX3 cells was verified by

western blotting (File S1, Fig. S1). Since upstream element 1 was

the strongest driver of gene expression (File S1, Fig. S1), we used

this fragment of DNA, hereafter referred to as ‘cln3 upstream

element’, to drive gene expression in our modified version of pTX-

GFP (i.e., act15 promoter removed).

Results

Sequence analysis of Dictyostelium Cln3
The 438 amino acid sequence of human CLN3 was inputted

into the dictyBase BLASTp server (http://www.dictybase.org/

tools/blast). The highest match was a 421 amino acid protein

(Cln3; DDB_G0291157). There were 117 exact matches (27%

identical) and 197 positive matches (46% similar) within a 429

amino acid region of similarity (Fig. 1A). In comparison, the

CLN3 homolog in Saccharomyces cerevisiae, Btn1p, is 38%

identical and 49% similar to the human protein, while the

Schizosaccharomyces pombe homolog is 32% identical and 47%

similar. However, the CLN3 homologs in yeast are comparatively

smaller than Dictyostelium Cln3 (408 aa and 396 aa vs. 421 aa).

Residues that are myristoylated or glycosylated in human CLN3

are conserved in Dictyostelium Cln3 and a putative prenylation

motif near the C-terminus of the protein (i.e., 398-CFIL-401) is

present, although it does not precisely align with the prenylation

motif in the human protein, which is found at the end of the

protein (i.e., 435-CQLS-438) (Fig. 1A). Importantly, point muta-

tions (missense and nonsense) documented from JNCL patients are

highly conserved in the Dictyostelium ortholog (Fig. 1A). Together,

these similarities indicate that the function of the protein is likely

conserved from Dictyostelium to human. A phylogenetic tree

showing the relationship of Dictyostelium Cln3 to CLN3 orthologs

from 20 different organisms of interest (i.e., NIH model systems

and mammals) firmly places Dictyostelium Cln3 within the CLN3

family of proteins (Fig. 1B).

Dictyostelium Cln3 fused to GFP localizes to the
contractile vacuole network and to vesicles of the
endocytic pathway

To gain insight into the function of the CLN3 ortholog in

Dictyostelium, we transformed AX3 cells with a vector that

expressed Dictyostelium Cln3 fused to GFP. We chose to place the

GFP tag on the N-terminus since a previous study has reported the

mis-localization of CLN3 tagged with C-terminal GFP, presum-

ably due to the masking of the prenylation motif [44]. Protein

expression was verified by western blotting and a thorough

discussion and analysis of the banding pattern is provided in the

supporting information (File S1, Fig. S2). In live AX3 cells

incubated in water, Dictyostelium GFP-Cln3 localized to the

membranes of vacuolar-shaped structures and small cytoplasmic

vesicles, to tubular-like structures within the cytoplasm, and as

punctate distributions within the cytoplasm (Fig. 2A). Time-lapse

video microscopy of these cells showed multiple vacuoles

undergoing dynamic events of expansion and contraction (File

S1, Fig. S3). In free-living amoebae and protozoa, the contractile

vacuole (CV) system acts as an osmoregulatory organelle that

controls the intracellular water balance by collecting and expelling

excess water out of the cell. In Dictyostelium, the CV system

consists of tubules and vacuoles that function to collect and expel

excess water, respectively [45]. Based on our initial observations of

Dictyostelium GFP-Cln3 localization in AX3 cells, we next fixed

and probed cells expressing GFP-Cln3 with antibodies directed

against two established Dictyostelium CV system markers, the V-

ATPase membrane subunit (VatM) and the rhesus-like glycopro-

tein Rh50 [38,39]. VatM generates an acidic environment in

several intracellular compartments and is found in both the CV

and endosomal systems, however it is enriched ,10-fold in the CV

system, while Rh50 is more specific to the CV system

[38,39,46,47]. GFP-Cln3 was found to strongly localize to both

VatM- and Rh50-positive compartments (Fig. 2B). Interestingly,

much like VatM, GFP-Cln3 localized to both small cytoplasmic

vesicles and at distinct punctate distributions within the cytoplasm

(Fig. 2B). GFP-Cln3 was also observed to localize as punctate

clusters on the vacuolar membrane (Fig. 2B). Since localization of

GFP-Cln3 was observed on the smaller, VatM-positive punctate

distributions, we also assessed localization of GFP-Cln3 to p80-

positive compartments. The p80 protein localizes to late endo-

somes during Dictyostelium growth [40]. Although GFP-Cln3

localized primarily to the vacuoles of the CV system (Fig. 2A,B),

which were unstained by the p80 antibody, we did observe GFP-

Cln3 localization on the membranes of a subset of small

cytoplasmic vesicles that were also stained by the p80 antibody

(Fig. 2B).

To further support the localization of Dictyostelium GFP-Cln3

to VatM-, Rh50-, and p80-positive subcellular compartments, we

analyzed the localization of GFP-Cln3 using immunofluorescence

and confocal microscopy. Across multiple z-sections of the

amoeboid Dictyostelium cells, GFP-Cln3 localized to VatM-

positive vesicles and punctate distributions, Rh50-positive tubules

and vacuolar-shaped structures, and a subset of p80-positive

vesicles (Fig. 3). Taken together, our data strongly suggest that

Cln3 localizes to both the CV and endocytic systems in

Dictyostelium.

Cln32 cells show enhanced rates of proliferation and
increased intracellular accumulation of FITC-dextran

To further study the function of Cln3 in Dictyostelium, a cln3
knockout mutant was generated by targeted homologous recom-

bination, which deleted the entire region spanning amino acids

61–421 (Fig. 4A–C). RNA-Seq data shows that expression of cln3
mRNA decreases by ,30% during the first 4 hours of

development, but then increases dramatically during the next

8 hours (i.e., ,8-fold increase), with expression peaking after

12 hours of development [48]. Expression decreases slightly

between 12 and 20 hours (,15% decrease), but overall remains

high during the mid- to late stages of Dictyostelium development.

Since growth is a major phase of the Dictyostelium life cycle, we

first assessed the effect of Cln3 deficiency on the rate of cell

proliferation in axenic media. In HL5, cln32 cells proliferated at a

significantly enhanced rate compared to parental AX3 cells

(genotype effect, two-way ANOVA, p,0.001) (Fig. 5A). However,
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no significant difference was observed between the highest

densities attained by both strains after 120 hours of growth

(Fig. 5A). Since we were able to successfully overexpress

Dictyostelium GFP-Cln3 in AX3 and cln32 cells, we next assessed

the ability of GFP-Cln3 to alter the enhanced rate of proliferation

of cln32 cells and the effect of GFP-Cln3 overexpression on AX3

cell proliferation. GFP-Cln3 overexpression significantly sup-

pressed the enhanced proliferation of cln32 cells to levels observed

in AX3 cells (Fig. 5A). Overexpression of GFP-Cln3 in AX3 cells

had no significant effect on cell proliferation however these cells

reached a significantly lower final density after 120 hours when

compared to all other strains (Fig. 5A). Based on these results, we

then assessed the growth of cln32 cells in FM minimal media to

determine whether limiting available nutrients would suppress the

enhanced growth rate. When grown in FM, cells of both strains

proliferated at a reduced rate compared to growth in HL5

(Fig. 5A, B). We did not detect any significant differences in the

growth rates of AX3 and cln32 cells during the first 96 hours of

growth in FM (Fig. 5B). However, at the 120- and 144-hour time

points, cln32 cells were at a significantly higher density than AX3

cells, and the genotype was found to have a significant effect on the

overall growth curve, as determined by two-way ANOVA (p,

0.01) (Fig. 5B).

Since pinocytosis is required for the growth of Dictyostelium cells

in liquid media, we used a well-established assay to assess whether

this process was dysregulated in cln32 cells. AX3 and cln32 cells

were incubated with FITC-dextran, and the amount of intracel-

lular fluorescence was measured at specific time intervals over a

90-minute incubation period. At the 40-minute time point, the

intracellular fluorescence was relatively higher (,50%) in cln32

cells compared to AX3 cells (Fig. 5C). However, two-way

ANOVA analysis of the pinocytic uptake of FITC-dextran over

the entire 90-minute incubation period did not indicate a

statistically significant genotype effect (p.0.05) (Fig. 5C). Al-

though one of the pathological hallmarks of JNCL is the

accumulation of lysosomal storage material in neurons and other

cell types [2,3], we were unable to observe any autofluorescent

material in cln32 cells during growth (unpublished data).

Cln3 deficiency negatively affects the secretion and
cleavage of autocrine proliferation repressor a during
growth

In an attempt to gain further insight into the possible

mechanisms by which Cln3 deficiency leads to enhanced

proliferation, we next investigated two secreted proteins that

modulate growth in Dictyostelium by repressing cell proliferation:

autocrine proliferation repressor A (AprA) and counting factor-

associated protein D (CfaD) [41,42]. Whole cell lysates (i.e.,

intracellular) and conditioned growth media (i.e., extracellular)

from AX3 and cln32 cells were analyzed for the levels of AprA

and CfaD present in each sample. In whole cell lysates, anti-AprA

strongly detected a 60-kDa protein and weakly detected a 55-kDa

protein (Fig. 6A), consistent with the banding pattern observed in

another parental strain of Dictyostelium, AX2 [41]. After 48 and

72 hours of axenic growth, the amount of the 55-kDa protein in

cln32 whole cell lysates was significantly greater than the amount

in AX3 cells (Fig. 6A). In contrast, there were no significant

differences in levels of the 60-kDa protein (Fig. 6A). In samples of

conditioned growth media, anti-AprA detected the 60-kDa and

55 kDa proteins as well as a 37-kDa protein, which had not been

observed in whole cell lysates from either AX3 or cln32 cells

(Fig. 6A). After 72 hours of growth, the amount of 60-kDa protein

in cln32 conditioned media, was significantly reduced compared

to the amount present in AX3 conditioned media (Fig. 6A). After

48 and 72 hours of growth, the amount of 37-kDa protein in

conditioned media from cln32 cells was also significantly reduced

compared to amounts present in AX3 conditioned media

(Fig. 6A). In contrast, the 55-kDa protein was present in

significantly greater amounts at each time point in cln32

conditioned media (Fig. 6A).

In whole cell lysates and samples of conditioned growth media,

anti-CfaD detected two proteins of molecular weights 65-kDa and

Figure 1. Bioinformatic analysis of Dictyostelium Cln3. (A) Alignment of human CLN3 and the Dictyostelium ortholog. The following residues
are conserved; N-linked glycosylation sites (*), sites of missense point mutations (;), sites of nonsense point mutations (:), target for myristoylation (#),
sites that when mutated cause a slower disease progression in compound heterozygosity with the common 1.02 kb deletion mutation (‘), sites that
when mutated cause a slower disease progression in homozygosity (,) [10,13,85–87]. Dictyostelium Cln3 also contains a putative prenylation motif
(i.e., CFIL; underlined). (B) Phylogenetic tree showing the relationship of Dictyostelium Cln3 to CLN3 orthologs from 20 different organisms (i.e.,
mammals and NIH model systems).
doi:10.1371/journal.pone.0110544.g001
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Figure 2. Intracellular localization of Dictyostelium GFP-Cln3 using epifluorescence microscopy. (A) AX3 cells overexpressing GFP-Cln3
imaged live in water. Scale bar = 5 mm. (B) AX3 cells overexpressing GFP-Cln3 were fixed in either ultra-cold methanol (for VatM and Rh50
immunostaining) or 4% paraformaldehyde (for p80 immunostaining) and then probed with anti-VatM, anti-Rh50, or anti-p80, followed by the
appropriate secondary antibody linked to Alexa 555. Cells were stained with DAPI to reveal nuclei (blue). Images were merged with ImageJ/Fiji. VC,
vacuolar-shaped structures; VS, cytoplasmic vesicles; T, tubular-like structures within the cytoplasm; P, punctate distributions within the cytoplasm.
Scale bars (B, C) = 2.5 mm.
doi:10.1371/journal.pone.0110544.g002
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27-kDa, consistent with the predicted molecular weights of full-

length CfaD and its putative cleavage product (Fig. 6B) [42]. After

48 hours of growth, there was significantly more CfaD (i.e., both

65-kDa and 27-kDa proteins) in cln32 whole cell lysates compared

to AX3 lysates (Fig. 6B). However, there was no significant

difference between strains in the intracellular level of either protein

after 72 hours of growth (Fig. 6B). There was no significant effect

resulting from Cln3 deficiency on the amounts of full-length CfaD

or its cleavage product in conditioned media after 48 and 72 hours

of growth (Fig. 6B). The absence of actin and tubulin from samples

of conditioned growth media verified that the samples were not

contaminated with intracellular proteins (Fig. 6C). Together, these

data suggest that Cln3 deficiency in Dictyostelium leads to an

enhanced rate of cell proliferation that is concomitant with

alterations in secretory proteins that regulate extracellular

proliferation signaling.

Cln3 deficiency accelerates the formation of tipped
mounds and slugs during mid-development

Given the dramatic increase in cln3 expression upon entering

developmental phases of the Dictyostelium life cycle, we next

sought to extend our analysis of Cln3 function to developmental

processes. After 12 hours of development, 3365% of cln32

structures had progressed to the tipped mound stage of develop-

ment, compared to only 361% of AX3 structures (Fig. 7A,B). By

15 hours, 8363% of cln32 multicellular structures had developed

into either fingers or slugs compared to only 1963% of AX3

structures (Fig. 7A, C). Overexpression of Dictyostelium GFP-

Cln3, or expression of Dictyostelium GFP-Cln3 or human GFP-

CLN3 under the control of the cln3 upstream element in cln32

cells, suppressed the precocious development of cln32 cells at both

the 12- and 15-hour time points to levels that were not significantly

different from AX3 (Fig. 7A–C). Thus, Cln3 deficiency leads to

precocious mid-stage development of Dictyostelium and this

acceleration can be returned to near-normal levels by re-

introducing Dictyostelium Cln3 or human CLN3 in an N-terminal

fusion with GFP.

Cln3 deficiency increases slug migration and accelerates
fruiting body formation during late development

During the later stages of Dictyostelium development, a larger

number of cln32 slugs were observed to migrate outside the spot

of deposition compared to AX3 slugs (Fig. 8A). After 18 hours,

4162% of cln32 slugs migrated out of the spot of deposition

compared to only 1662% of AX3 slugs (Fig. 8B). Notably, this

could not be accounted for by the overall accelerated rate of

development observed in cln32 cells, since a significantly higher

percentage of cln32 slugs also migrated out of the spot after 21

hours compared to AX3 slugs (Fig. 8A, unpublished data).

Overexpression of Dictyostelium GFP-Cln3, or expression of

Dictyostelium GFP-Cln3 or human GFP-CLN3 under the control

of the cln3 upstream element in cln32 cells, significantly

suppressed this slug migration phenotype to levels observed for

AX3 slugs (Fig. 8A,B). Interestingly, the slug migration phenotype

could not be explained by a defect in phototaxis, since we observed

no obvious effect of cln3 knockout on slug migration in a

phototaxis assay (unpublished data).

Finally, Cln3 deficiency significantly accelerated fruiting body

formation for those structures that remained in the deposition spot.

After 18–21 hours of development, 8663% of cln32 structures

had developed into fruiting bodies compared to only 5566% of

AX3 structures (Fig. 8A, C). As it did for the slug migration stage,

overexpression of Dictyostelium GFP-Cln3 or expression of

Dictyostelium GFP-Cln3 or human GFP-CLN3 under the control

of the cln3 upstream element, in cln32 cells, significantly

Figure 3. Intracellular localization of Dictyostelium GFP-Cln3
using confocal microscopy. AX3 cells overexpressing GFP-Cln3 were
fixed in either ultra-cold methanol (for VatM and Rh50 immunostaining)
or 4% paraformaldehyde (for p80 immunostaining) and then probed
with anti-GFP (rabbit polyclonal anti-GFP for anti-VatM and anti-p80 co-
staining and mouse monoclonal anti-GFP for anti-Rh50 co-staining)
followed by anti-rabbit or anti-mouse Alexa 488. Cells were then
probed with one of anti-VatM, anti-Rh50, or anti-p80 followed by the
appropriate secondary antibody linked to Alexa 555. Two z-sections are
shown for each cell. Z-sections 1 and 2 are approximately 1 mm and
3 mm, respectively, from the bottom of each cell. VC, vacuolar-shaped
structures; VS, cytoplasmic vesicles; T, tubular-like structures within the
cytoplasm; P, punctate distributions within the cytoplasm. Scale
bars = 2.5 mm.
doi:10.1371/journal.pone.0110544.g003
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suppressed the accelerated fruiting body formation to levels that

were not significantly different from AX3 (Fig. 8C).

Taken together, these data strongly indicate that Cln3

deficiency causes an overall accelerated rate of development in

Dictyostelium, but that development nevertheless proceeds to the

fruiting body stage (Fig. 8D). The ability to rescue the precocious

development of cln32 cells by introducing human CLN3 strongly

supports the notion that these steps require a function that is

conserved between Dictyostelium and humans.

Calcium chelation restores the timing of cln32 slug
formation and suppresses the abnormal migration of
cln32 slugs

Since calcium signaling has been shown to be involved in

regulating a number of developmental processes in Dictyostelium
[49–52], the effect of calcium chelation on the substantial

acceleration of mid-developmental events in cln32 cells was

assessed. AX3 and cln32 cells were deposited on filters soaked in

EGTA at concentrations that have previously been shown to be

effective at chelating calcium during Dictyostelium development

[51,52]. The timing of slug formation and the extent of slug

migration were then assessed. Interestingly, EGTA (1 mM and

2 mM) suppressed the accelerated formation of cln32 slugs and

fingers after 15 hours of development, and suppressed the

enhanced migration of cln32 slugs at the 18-hour time point to

levels that were not significantly different from AX3 (Fig. 9A–D).

EGTA had no significant effect on the accelerated formation of

cln32 fruiting bodies (unpublished data).

Discussion

In this study, we have shown that Dictyostelium contains an

ortholog of CLN3, for which loss-of-function mutations in humans

causes the childhood onset neurodegenerative disorder JNCL. We

generated a Dictyostelium cln3 knockout mutant that was validated

by PCR and Southern blotting and have provided evidence that

links Cln3 function to axenic growth and multicellular develop-

ment. Dictyostelium GFP-Cln3 localizes primarily to the CV

system, and to a lesser extent, to compartments of the endocytic

pathway. Expression of Dictyostelium GFP-Cln3 or human GFP-

CLN3 in cln32 cells suppresses the aberrant proliferation,

precocious development, and slug migration phenotypes observed

in knockout cells. Together, our data strongly suggest that Cln3 is

Figure 4. Generation of a Dictyostelium cln3 knockout mutant. (A) Creation of a Dictyostelium cln3 knockout mutant by homologous
recombination. The pLPBLP targeting vector and sites of recombination are shown. (B) Validation of cln3 knockout by PCR analysis. Primers are
denoted by Roman numerals and arrows. The Dictyostelium gene denoted DDB_G0291155 lies downstream of cln3 and was amplified to confirm that
the insertion of the bsr cassette did not affect this gene. (C) Validation of cln3 knockout by Southern blotting. DNA ladder (in bp) is shown to the left
of the blot.
doi:10.1371/journal.pone.0110544.g004

Cln3 Function in Dictyostelium

PLOS ONE | www.plosone.org 8 October 2014 | Volume 9 | Issue 10 | e110544



Figure 5. Effect of cln3 knockout on cell proliferation and pinocytosis. (A) Axenic growth of AX3 cln32, cln32/[act15]:Cln3:GFP, and AX3/
[act15]:Cln3:GFP cells in HL5 medium. Data presented as mean concentration (6106 cells/ml) 6 s.e.m (n = 10–20). (B) Axenic growth of AX3 and cln32

cells in FM medium. Data presented as mean concentration (6106 cells/ml) 6 s.e.m (n = 8). (C) Effect of cln3 knockout on the intracellular
accumulation of FITC-dextran. Data presented as mean % fluorescence change 6 s.e.m (n = 10). Statistical significance was assessed using two-way
ANOVA followed by Bonferroni post-hoc analysis. Two-way ANOVA revealed a significant effect of genotype on the growth curves shown in panels A
and B (p,0.001 and p,0.01, respectively). **p-value,0.01 and ****p-value,0.0001 vs. AX3 as determined from Bonferroni post-hoc analysis at the
indicated time points.
doi:10.1371/journal.pone.0110544.g005
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a negative regulator of proliferation and development in

Dictyostelium. Finally, we have provided evidence linking AprA

secretion and cleavage to Cln3 function during growth, and

calcium signaling to Cln3 function during multicellular develop-

ment.

The enhanced proliferation of cln32 cells, coupled with the

observation that Dictyostelium GFP-Cln3 overexpression in AX3

cells significantly reduces the final density of stationary phase

cultures, strongly support the notion that Cln3 negatively regulates

this cellular process in Dictyostelium. In Dictyostelium, extracellular

liquid is ingested by macropinocytosis. [53]. An increased rate of

pinocytosis would conceivably allow cells to ingest nutrients

required for growth at an enhanced rate. Moreover, Journet et al.

[54] identified Cln3 in an analysis of the macropinocytic proteome

of Dictyostelium amoeba. Our pinocytosis analysis of cln32 cells

during axenic growth only revealed minor differences suggesting

further work is needed to fully elucidate the mechanisms by which

Cln3 deficiency affects cell proliferation in Dictyostelium. In other

systems, CLN3 has also been reported to localize to the endocytic

pathway and its deficiency impairs endocytosis in those systems

[19,55–59]. Together, our results, coupled with those reported by

others, indicate that further research is required to determine the

precise function of CLN3 in the endocytic pathway, which may be

organism or cell-type dependent.

Based on our observations of the intra- and extracellular

amounts of AprA and the fact that AprA negatively regulates cell

proliferation in Dictyostelium [41], it would appear that the

enhanced proliferation of cln32 cells could be at least partially

explained by the lack of full-length AprA and its putative 37-kDa

cleavage product in conditioned media. Since the intracellular

amounts of 60-kDa AprA were not significantly different between

AX3 and cln32 cells, thus excluding the possibility that aprA gene

expression or translation were affected by Cln3 deficiency, our

results suggest that Cln3 facilitates the secretion of AprA during

growth. The detection of a 37-kDa protein by the highly specific

anti-AprA antibody in conditioned media, but not whole cell

lysates, suggests that AprA is cleaved extracellularly during

growth. Since the amount of the 37-kDa protein was significantly

reduced in cln32 cells, these results suggest that Cln3 deficiency

also negatively affects the secretion of a protease required for AprA

cleavage. This is supported by previous studies that have reported

the proteolytic cleavage of extracellular proteins during growth

and development [60–63]. Furthermore, a study describing the

secreted proteome profile of growing and developing Dictyostelium
cells also reports the detection of a large number of extracellular

proteases in conditioned media [64]. Like AprA, CfaD is part of a

,150 kDa complex that functions extracellularly to repress cell

proliferation in Dictyostelium, and chromatography and pull-down

assays suggest that CfaD interacts with AprA [42]. Since increased

levels of intracellular CfaD were observed in cln32 cells during the

early stages of axenic growth, our results suggest that altered CfaD

secretion could also explain the enhanced proliferation of cln32

cells. However, we observed no correlated decrease in the

extracellular levels of CfaD over the same time period. Neverthe-

Figure 6. Effect of cln3 knockout on the intra- and extracellular
levels of AprA and CfaD. AX3 and cln32 cells grown axenically in
HL5 were harvested and lysed after 48 and 72 hours of growth. Whole
cell lysates (20 mg) (i.e., intracellular) and samples of conditioned
growth media (i.e., extracellular) were separated by SDS-PAGE and
analyzed by western blotting with anti-AprA, anti-CfaD, anti-tubulin,
and anti-actin. Molecular weight markers (in kDa) are shown to the right
of each blot. (A) Intra- and extracellular protein levels of AprA.
Immunoblots that were exposed for a longer period of time (i.e.,
longer exposure) are included to show the 55-kDa and 37-kDa protein

bands detected by anti-AprA. Note that the 37-kDa protein was
detected in samples of conditioned growth media, but not in whole cell
lysates. (B) Intra- and extracellular protein levels of CfaD. Data in all plots
presented as mean amount of protein relative to AX3 48 hour sample
(%) 6 s.e.m (n = 4 independent experimental means, from 2 replicates
in each experiment). Statistical significance was determined using a
one-sample t-test (mean, 100; two-tailed) vs. the AX3 48 hour sample.
*p-value,0.05. **p-value,0.01. (C) Detection of tubulin and actin in
whole cell lysates (WC; lanes 1–2), but not in samples of conditioned
growth media (lanes 3–6).
doi:10.1371/journal.pone.0110544.g006
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less, our data indicate that Cln3 facilitates the secretion of AprA,

and may to a lesser extent, also facilitate CfaD secretion. Taken

together, the altered secretion of these extracellular signaling

proteins could explain the enhanced proliferation of cln32 cells.

During growth, Dictyostelium GFP-Cln3 localized primarily to

the CV system in live and fixed cells, and to a lesser extent to the

endocytic system. In Dictyostelium, the CV system is dynamic and

functions in a number of cellular processes including osmoregu-

lation, calcium storage, protein transport to the plasma mem-

brane, and secretion [45,65,66]. Although Dictyostelium GFP-

Cln3 was observed to localize to the CV system, we observed no

obvious sensitivity of cln32 cells to hypo-osmotic conditions during

growth in HL5 (25% HL5, 75% double-distilled water) or during

starvation in double-distilled water (unpublished data). However,

further analysis is required to determine if there are subtle effects

of Cln3-deficiency on osmoregulation during Dictyostelium
growth. In Dictyostelium, the CV and endosomal systems appear

to be physically separated from each other. However, some

experimental evidence also indicates that controlled intracellular

transport might occur between these two systems [67–69]. The

observation that GFP-Cln3 localizes to both the CV and endocytic

systems in Dictyostelium is consistent with the localization of

mammalian CLN3 to multiple subcellular compartments

including the endocytic and lysosomal systems [13]. Notably,

endogenous Cln3 has been reported within fractions of the

macropinocytic pathway in Dictyostelium, consistent with our

localization data presented here [3,46,47,53]. Finally, since

Dictyostelium GFP-Cln3 is able to rescue growth and develop-

mental phenotypes, we are confident that we have correctly

identified the subcellular localization of Cln3 in Dictyostelium.

Phenotypes were observed in cln32 cells during mid- and late

Dictyostelium development that further support Cln3 as a negative

regulator in Dictyostelium. Consistent with the relatively higher

expression of cln3 mRNA during mid- and late development, loss

of cln3 by gene knockout significantly accelerated the formation of

mid- and late developmental structures. Precocious development

has been observed in a number of Dictyostelium knockout mutants.

Specifically, early tipped mound formation has been reported in

strains overexpressing cyclin C, cyclin-dependent kinase 8, or the

G-protein alpha 5 subunit, and in knockout mutants of histidine

kinase C, a metabotropic glutamate receptor-like protein, protein

inhibitor of STAT, and SCAR/WAVE [70–75]. Several knockout

mutants that display increased slug migration have been described,

including mutants for genes important for oxysterol binding, the

assembly of mitochondrial complex I, and the targeting of proteins

for degradation via proteasomes [76–78]. This phenotype has also

Figure 7. Effect of cln3 knockout on the formation of tipped mounds and slugs. (A) AX3, cln32, or cln32 cells overexpressing GFP-Cln3 or
expressing GFP-Cln3 or GFP-CLN3 under the control of the cln3 upstream element imaged after 12 and 15 hours of development. Images are a top-
view of developing cells. (B) Quantification of the number of tipped mounds observed after 12 hours of development. Data presented as mean %
tipped mounds 6 s.e.m (n = 10–19). (C) Quantification of the number of fingers and slugs observed after 15 hours of development. Data presented as
mean % fingers and slugs 6 s.e.m (n = 10–33). Statistical significance was assessed using the Kruskal-Wallis test followed by the Dunn multiple
comparison test (***p-value,0.001 vs. AX3). Scale bars = 1 mm. M, mound; TM, tipped-mound; F, finger; S, slug.
doi:10.1371/journal.pone.0110544.g007
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been observed in cells overexpressing histidine kinase C or in cells

where calcium-binding protein 3 expression has been knocked

down by RNAi [72,79]. The diversity of functions associated with

these proteins as well as those discussed above for the other

developmental phenotypes in cln32 cells, highlight the importance

of elucidating the signal transduction pathways underlying the

function of Cln3 during Dictyostelium development.

The ability to completely restore the timing of cln32 slug

formation and the enhanced slug migration through the chelation

of calcium provides some mechanistic insight into the signaling

pathways affected by Cln3 deficiency during these stages of the life

cycle. These results are interesting given that Dictyostelium GFP-

Cln3 localizes predominantly to the CV system, which has been

shown to be a highly efficient store of intracellular calcium, and to

be required for cAMP-induced calcium influx [65]. In addition,

the primary sensor of intracellular calcium, calmodulin, is found

predominantly on the membranes of the CV system [80,81]. Our

results are consistent with studies in mammalian systems that have

reported altered calcium homeostasis in the absence of functional

CLN3, which may lead to synaptic dysfunction and neuronal

apoptosis [82–83]. Furthermore, CLN3 has been shown to bind to

the neuronal calcium-binding protein, calsenilin, in a calcium-

dependent manner [84].

Taken together, our data strongly supports Cln3 as a negative

regulator of proliferation and development in Dictyostelium.

Furthermore, our study indicates that cln3 knockout in Dictyos-
telium compromises the cell’s ability to respond to extracellular

and/or environmental cues. This first report of a Dictyostelium
model to study NCL should spur further research using this

important model organism. In addition to CLN3, Dictyostelium
also possesses homologs to most of the other known NCL genes

(e.g., CLN1-5, CLN7, CLN10-14) indicating that the NCL

biological pathway is likely to be conserved in this model system.

The cellular processes and signaling pathways that regulate the

Figure 8. Effect of cln3 knockout on slug migration and fruiting body formation. (A) AX3, cln32, or cln32 cells overexpressing GFP-Cln3 or
expressing GFP-Cln3 or GFP-CLN3 under control of the cln3 upstream element imaged after 18 and 21 hours of development. (B) Quantification of the
number of slugs that migrated outside the spot of deposition after 18 hours. Data presented as mean outside structures/total structures (%) 6 s.e.m
(n = 10–28). (C) Quantification of the number of fruiting bodies observed after 18–21 hours of development. Data presented as mean % fruiting
bodies 6 s.e.m (n = 10–32). (D) Fruiting bodies formed after 24 hours of development. Images in A and D are a top-view of developing cells. Statistical
significance in B was assessed using one-way ANOVA (p,0.0001) followed by the Bonferroni multiple comparison test (****p-value,0.0001 vs. AX3).
Statistical significance in C was assessed using the Kruskal-Wallis test followed by the Dunn multiple comparison test (**p-value,0.01 vs. AX3). Scale
bars = 1 mm. S, slug; FB, fruiting body.
doi:10.1371/journal.pone.0110544.g008
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behavior of Dictyostelium cells are remarkably similar to those

observed in human cells, strengthening the argument that

investigation of NCL gene function in this model organism offers

something unique to the study of this devastating group of

inherited neurodegenerative disorders.

Supporting Information

Figure S1 Analysis of gene expression driven by endog-
enous cln3 upstream elements. AX3 cells were transformed

with the appropriate construct (pTX-GFP; act15 promoter

replaced with cln3 upstream element 1, 2, or 3) and grown in

HL5. Cells were harvested and lysed. Proteins (20 mg) were

separated by SDS-PAGE and analyzed by western blotting with

anti-GFP, anti-tubulin (loading control), or anti-actin (loading

control). Molecular weight markers (in kDa) are shown to the right

of each blot.

(TIF)

Figure S2 Western blot analysis of Dictyostelium
strains expressing Dictyostelium GFP-Cln3 or human
GFP-CLN3 under the control of the act15 promoter or
cln3 upstream element 1. (A–C) AX3 and cln32 cells were

transformed with the appropriate construct (gene expression

driven by the act15 promoter) and grown in HL5. Cells were

lysed and sample loading buffer was added to whole cell lysates

which were either loaded directly into polyacrylamide gels or

heated for 5 minutes at 95uC prior to loading into gels. Proteins

(20 mg) were separated by SDS-PAGE and analyzed by western

blotting with anti-GFP, anti-tubulin (loading control), or anti-actin

(loading control). (D) AX3 and cln32 cells were transformed with

Figure 9. Effect of calcium chelation on AX3 and cln32 slug formation and migration. (A) AX3 and cln32 cells developed in the presence of
KK26 EGTA and imaged after 15 hours of development. Scale bar = 1 mm. (B) Quantification of the number of fingers and slugs observed after 15
hours of development. Data presented as mean % fingers and slugs 6 s.e.m (n$4). (C) AX3 and cln32 cells developed in the presence of KK26 EGTA
and imaged after 18 hours of development. Scale bar = 1 mm. (D) Quantification of the number of slugs that migrated outside the spot of deposition
after 18 hours. Data presented as mean outside structures/total structures (%) 6 s.e.m (n$5). Images in A and C are a top-view of developing cells.
Statistical significance in B was assessed using the Kruskal-Wallis test followed by the Dunn multiple comparison test (*p-value,0.05 vs. AX3).
Statistical significance in D was assessed using one-way ANOVA (p,0.0001) followed by the Bonferroni multiple comparison test (**p-value,0.01 vs.
AX3). F, finger; S, slug.
doi:10.1371/journal.pone.0110544.g009
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the appropriate construct (gene expression driven by cln3
upstream element 1) and grown in HL5. Cells were lysed and

samples were prepared and analyzed as described above.

Molecular weight markers (in kDa) are shown to the left of each

blot.

(TIF)

Figure S3 Video of Dictyostelium GFP-Cln3 localization
in AX3 cells incubated in water. AX3 cells expressing

Dictyostelium GFP-Cln3 were grown overnight in low-fluorescence

HL5. Cells were washed two times with double distilled water and

then resuspended in double distilled water.

(MPG)

Table S1 List of primers used for cln3 knockout
validation and amplification of cln3 upstream elements.
The following primers were designed to amplify gDNA from AX3

and cln32 cells to validate the knockout of the cln3 gene in the bsr
resistant clone and to amplify fragments upstream of the cln3 start

site. The Dictyostelium gene denoted DDB_G0291155 lies

downstream of cln3 and was amplified to confirm that the

insertion of the bsr cassette did not affect gene DDB_G0291155.

(DOCX)

File S1 Results, Discussion, and References specific to
the Supplemental Table and Figures.

(DOCX)
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