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Abstract
Histone deacetylase (HDAC)-inhibitors (HDACis) are well characterized anti-cancer agents with
promising results in clinical trials. However, mechanistically little is known regarding their
selectivity in killing malignant cells while sparing normal cells. Gene expression-based chemical
genomics identified HDACis as being particularly potent against Down syndrome associated
myeloid leukemia (DS-AMKL) blasts. Investigating the anti-leukemic function of HDACis
revealed their transcriptional and posttranslational regulation of key autophagic proteins, including
ATG7. This leads to suppression of autophagy, a lysosomal degradation process that can protect
cells against damaged or unnecessary organelles and protein aggregates. DS-AMKL cells exhibit
low baseline autophagy due to mTOR activation. Consequently, HDAC inhibition repressed
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autophagy below a critical threshold, which resulted in accumulation of mitochondria, production
of reactive oxygen species, DNA-damage and apoptosis. Those HDACi-mediated effects could be
reverted upon autophagy activation or aggravated upon further pharmacological or genetic
inhibition. Our findings were further extended to other major acute myeloid leukemia subgroups
with low basal level autophagy. The constitutive suppression of autophagy due to mTOR
activation represents an inherent difference between cancer and normal cells. Thus, via autophagy
suppression, HDACis deprive cells of an essential pro-survival mechanism, which translates into
an attractive strategy to specifically target cancer cells.
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HDAC inhibitor; autophagy; AML; Down syndrome; ATG7

Introduction
Pediatric acute myeloid leukemia (AML) is a heterogeneous disease, characterized by
recurrent cytogenetic and molecular genetic aberrations that result in alterations in the
transcriptional program of normal hematopoietic cells. Most frequently, numerical and
structural aberrations involving chromosome 21 can be detected. Despite the recent progress
in AML therapy, a high percentage of patients succumb to this fatal disease or to the
consequences of high-dose polychemotherapy. Particularly, children with Down syndrome
(DS; i.e. trisomy 21), which are at high risk to develop acute megakaryoblastic leukemia
(AMKL) [1], suffer from chemotherapy related toxicity and mortality [2; 3]. Thus, DS-
AMKL patients would especially benefit from less toxic but equally effective treatment
alternatives. DS-AMKL and the antecedent transient leukemia (DS-TL) are characterized by
GATA1 mutations and over-activation of mammalian target of rapamycin (mTOR), as a
consequence of aberrant activation of insulin-like growth factor (IGF) signaling cascade [4].
Novel insights into this well-characterized AML subgroup would also guide the
identification of novel treatment modalities in other AML subtypes harboring aberrations in
chromosome 21 or constitutive mTOR activation [5; 6].

Protein acetylation is a reversible process regulated by histone acetyl transferases (HATs)
and histone deacetylases (HDACs) [7]. Histone acetylation is an important epigenetic
modification regulating the transcription of various genes [7]. In addition, several non-
histone proteins can serve as a substrate for HATs and HDACs, whereby their activity and
stability is modified [8]. This important posttranslational modification has been found to be
deregulated in many tumors [9; 10]. Thus, targeting this process by FDA-approved HDAC
inhibitors (HDACis), such as vorinostat and romidepsin, has been the focus of many clinical
studies [11–14]. Different mechanisms of HDACi-induced apoptosis in cancer cells have
been proposed, such as acetylation of p53 [15; 16]. However, despite the promising results
in clinical trials, little is known regarding their selectivity in killing malignant cells while
sparing normal cells. Thus, the precise mechanism of action of these inhibitors in human
malignancies is still unclear.

In this study, we identified HDACis as potent anti-leukemic agents in DS-AMKL. In
addition to known anti-cancer effects [14], we found a previously unrecognized effect of
HDACis in blocking autophagy, a lysosomal degradation process that takes place
constitutively at a basal level [17]. This is achieved via acetylation and suppression of ATG7
and other proteins of the autophagy interaction network. Those observations were
unexpected as previous studies proposed HDACis as autophagy activators [18–22]. Our
findings suggest that repression of autophagy by HDACis below a critical threshold in tumor
cells with a low basal level of autophagy may constitute an effective treatment option.
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Materials and Methods
Cell lines and patients samples

Human leukemia cell lines were obtained from the German Collection of Microorganisms
and Cell Cultures (DSMZ). Culturing and maintenance were performed according to the
supplier's instructions. For in vitro studies, patient samples were provided by the
AML-'Berlin-Frankfurt-Münster' Study Group (AML-BFM-SG, Hannover, Germany).
CD34+-HSPCs from donors were positively selected by immunomagnetic labeling with
corresponding magnetic cell-sorting beads (Miltenyi Biotech). Cells were maintained or
used for colony-forming assays (MethoCult GF H4434, StemCell Technologies) as
described [23; 24]. All investigations had been approved by the local Ethics Committee.
VPA (SIGMA Life Science), SAHA (Biomol) and TSA (Applichem) were dissolved
according to the manufacturer’s instructions and used in the indicated concentration. JQ2
was kindly provided by Dr. Bradner (Boston) and dissolved in DMSO.

Microarray data collection and analysis
Microarray expression profiles were collected using Affymetrix chips and analyzed using
dChip [25] and GSEA [26]. Gene expression based chemical genomics was performed using
the Connectivity Map [27] and the previously published DS-AMKL gene signature [28]. All
microarray data have been deposited in NCBI’s Gene Expression Omnibus (GEO; http://
www.ncbi.nlm.nih.gov/geo/) with GEO Series accession number GSE30517.

Xenograft mouse model
NOD.Cg-Rag1tm1Mom Il2rgtm1Wjl/SzJ mice (Jackson Laboratory) were maintained in a
pathogen free environment. All experimental procedures using these mice were performed
in accordance with protocols approved by the local authorities (Niedersächsisches
Landesamt für Verbraucherschutz und Lebensmittelsicherheit). For the in vivo drug trial, 1
× 107 CMY cells or 5×106 K562LC3-GFP cells were injected i.f. per animal into a cohort of
recipients that were treated with 400 mg/kg/d VPA i.p. or PBS for 28 days starting 7 days
post transplantation or 10 mg/kg/d Panobinostat i.p. or vehicle for 3 days. Recipients were
randomly assigned. K562LC3-GFP-transplanted mice were finally analyzed on day four.

Statistics
The statistical analyses were done by unpaired Student's t-test. Comparisons of more than
two groups was performed by ANOVA with Duncan’s post-hoc analysis. The level of
significance was set at P<0.05. All data are presented as mean±s.d. Calculations were
performed using GraphPad Prism 4 or 6.

Results
HDACis revert the DS-AMKL gene expression signature

We previously defined the DS-AMKL gene expression signature compared to non-DS-
AMKL consisting of 500 up- and 500 down-regulated genes [28]. In order to identify novel
treatment options against DS-AMKL, we connected the DS-AMKL gene expression
signature to a reference collection of gene-expression profiles from cultured human cells
treated with bioactive small molecules (Connectivity Map) [27]. Using this approach, the
HDACis Valproic acid (VPA), Trichostatin A (TSA) and vorinostat (SAHA) were identified
to reverse the DS-AMKL gene expression program (Figure 1a and data not shown). In fact,
Gene Set Enrichment Analysis (GSEA) [26] validated the conversion of the transcriptome of
DS-AMKL cell lines (CMK and CMY) upon VPA treatment. Thus, the top 500 up-regulated
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genes of the DS-AMKL signature were repressed and the top 500 down-regulated genes
were activated (Supplementary Figure 1).

DS-AMKL cell lines and primary patient samples are highly sensitive to HDACi treatment
Next, we sought to understand the biologic effects of the reversion of the DS-AMKL gene
signature by HDACis. Growth curves and colony-forming assays revealed an exceptional
sensitivity of DS-AMKL cell lines (CMK, CMY; IC50: both 1mM) to VPA treatment
compared to control cell lines K562 (IC50: 4.75mM), M07 (IC50: 6.75mM) and CD34+-
HSPCs from healthy donors (IC50: 4.75mM; Figure 1b–c).

Most importantly, in vitro growth and colony-forming capacity of primary DS-AMKL and
DS-TL blasts were greatly reduced upon VPA treatment, whereas normal CD34+-HSPCs
were moderatly affected (Figure 1d–e). We found that VPA treatment induced apoptosis in
DS-AMKL cells by performing Annexin V/ 7-AAD, caspase 3/7 activity assays and
hypodiploidy staining (Figure 1f–g, Supplementary Figure 2a–b). In addition, BrdU-
incorporation and CFSE assays showed that VPA treatment triggered cell cycle arrest in
CMK and CMY cell lines (Figure 1h–j, Supplementary Figure 2c). Thus, VPA exerts its
growth inhibitory effect on DS-AMKL cells by inducing apoptosis and cell cycle arrest. On
the other hand, although K562 and M07 cells were resistant to VPA-induced apoptosis, they
still have undergone cell cycle arrest (Figure 1j and Supplementary Figure 2c). The decrease
in the proliferation of DS-AMKL cell lines upon VPA treatment is not due to differentiation
(Supplementary Figure 2d), which is in accordance to previous studies in AML [29].

Several studies reported the presence of aberrant p53 expression in a fraction of DS-AMKL
patients [5; 13; 30]. In addition to that, p53 can serve as a direct substrate of HDACs [8; 16].
However, we did not detect any differences in the expression level or the acetylation status
of p53 upon VPA treatment. Moreover, shRNA-mediated knockdown of p53 did not rescue
HDACi-induced apoptosis or cell cycle arrest, implicating that both are p53-independent
(Supplementary Figure 2e–f).

To further confirm that the observed effects reflect VPA’s function in inhibiting HDACs, we
assessed acetylation of histones H3 and H4. Both were highly acetylated by dose and timing
of VPA (Supplementary Figure 2e). Accordingly, we observed similar effects on growth,
cell cycle and viability of DS-AMKL cells using the HDAC class I/II inhibitors TSA, SAHA
and Panobinostat (Figure 2a–c and Supplementary Figure 3a–b; for overview about the
selectivity of the inhibitors see Supplementary Table 1). More specifically, CMK and CMY
cells were highly sensitive to HDAC class I inhibitor Apicidin, the selective HDAC1-3
inhibitor MS-275 [31] and the selective HDAC1/2 inhibitor JQ2 (Figure 2a–c), but not to
HDAC8 inhibitor PCI-34051 [32] or the HDAC6 inhibitor Tubastatin A (Supplementary
Figure 3c–d). Consistently, shRNA- or siRNA-mediated knockdown of either HDAC1 or
HDAC2 partially recapitulated HDACis’ pro-apoptotic effects on CMY cells
(Supplementary Figure 4a–c). It also synergized with low doses of VPA to induce apoptosis
(Supplementary Figure 4a–b).

Taken together, our data support the conclusion that HDACis efficiently invert the DS-
AMKL gene signature by inhibition of HDAC1/2, thus resulting in cell cycle arrest and
apoptosis.

HDACis transcriptionally and posttranslationally repress ATG7
To gain more insights into the molecular mechanisms of the anti-leukemic effects of
HDACis, we performed GSEA in CMK and CMYs cell lines. Upon HDAC inhibition, a set
of 409 genes belonging to the autophagy interaction network was significantly
downregulated (Figure 3a). This gene set was defined by a proteomic approach done by
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Behrends et al. [33]. Autophagy requires the evolutionarily conserved autophagy-related
(ATG) proteins that are essential to envelope intracellular organelles in autophagosomes
fusing to lysosomes. Among the leading edge dataset was ATG7 [34], which functions in the
ATG12-ATG5-ATG16L1 complex and the LC3-conjugation complex. Both complexes play
important roles in the elongation and closure of the autophagosome [35]. It was shown that
ATG7 is regulated by acetylation [36; 37]. In fact, upon integration of the AML blasts’
acetylome [38] and the autophagy interaction network [33], we identified, besides ATG7,
130 proteins belonging to the autophagy interaction network to be acetylated in response to
HDAC inhibition (Figure 3b). Blocking autophagy by acetylation of ATG7 has been linked
to NAD-dependent deacetylase Sirt1 (HDAC Class III) [36; 37]. However,
immunoprecipitation of ATG7 followed by immunoblotting with an acetyl-Lysine specific
antibody confirmed a SIRT1-independent acetylation of endogenous ATG7 in VPA-treated
CMK cells (10h) (Figure 3c–d). Therefore, HDACis can transcriptionally and
posttranslationally modulate the autophagy interaction network including the core protein
ATG7.

HDACis repress autophagy
We hypothesized that HDACis exert an anti-leukemic effect through interference with
autophagy and assessed this connection more directly. To quantify autophagic flux we used
a GFP-tagged LC3 reporter. In cells expressing LC3-GFP, increased autophagic flux leads
to a progressive delivery of LC3-GFP to autolysosomes. Upon the fusion with the lysosome,
LC3 is degraded by lysosomal enzymes leading to a decrease in the level of LC3-GFP.
Conversely, decreased autophagic flux results in LC3-GFP accumulation [34]. Consistent
with previous reports [18–22; 39], we detected an initial dose-dependent decrease in total
LC3-GFP cellular abundance 12h after VPA treatment (Figure 4a and data not shown),
indicating the induction of autophagy. Additionally, we validated our results using mCherry-
LC3 reporter. We could observe an increase in mCherry-LC3 punctae - i.e. formation of
autophagosomes - by VPA (Supplementary Figure 5).

However, prolonged exposure to VPA up to 24h led to a block of autophagy shown by a
gradual accumulation of LC3-GFP (Figure 4a). The accumulation of total LC3-GFP signal
upon chloroquine-mediated blockage of autophagolysosomal degradation (ΔMFI LC3-GFP)
was reduced in cells pretreated with VPA, indicating a reduction in autophagic flux by VPA
(Figure 4b). The results using the LC3-GFP reporter were confirmed by directly labeling the
autophagic compartment (pre-autophagosomes, autophagosomes, and autophagolysosomes)
with a previously published selective dye (Figure 4c and Supplementary Figure 6) [40].

HDACis lead to autophagic substrate accumulation
Autophagy participates in the removal of damaged mitochondria, which prevents the
initiation of intrinsic apoptotic pathway or DNA damage by increased ROS generation [41–
43]. To test whether the observed blockage of autophagy by VPA is functionally relevant,
we tested the effects of VPA on mitochondrial mass, ROS formation, DNA damage and the
cellular oxygen consumption rate. Our results demonstrated a dose-dependent accumulation
of mitochondrial mass and increased ROS formation (Figure 4d). This was mostly
pronounced in CMK and CMY cells, which are highly sensitive to HDACi-induced
apoptosis, and moderately in the resistant K562 and M07 cells (Figure 1b–c, f–g and Figure
2). The increase in ROS formation due to VPA treatment in CMK cells led to an increase in
phosphorylated H2AX (γH2AX; Supplementary Figure 2e), a marker for DNA-double
strand breaks (DSBs).

Using real-time measurement of the oxygen consumption rate (OCR), we noticed an
increase in the maximal mitochondrial respiratory capacity of CMK cells after VPA
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treatment (Figure 4e). Neither the basal OCR nor the ATP content per cell were increased,
indicating that the mitochondrial mass accumulation was not a consequence of increased
energy consumption (Figure 4e and Supplementary Figure 7). This is underscored by the
observation that the ATP production in CMK cells is mainly dependent on aerobic
glycolysis (Warburg effect); the cellular ATP level only dropped specifically after addition
of glycolysis inhibitor 2-deoxy-D-glucose (2-DG) and not upon addition of mitochondrial
electron chain inhibitor oligomycin (Supplementary Figure 7). Thus, mitochondrial mass
accumulation is not beneficial to the leukemic cells, but causes DNA damage due to ROS
production.

Similar to VPA, the global HDACis SAHA, TSA and Panobinostat as well as the specific
HDAC1/2 inhibitor JQ2 blocked autophagy and led to autophagic substrate accumulation
(i.e. dysfunctional mitochondria; Figure 4f–k). Again, shRNA-mediated knockdown of
HDAC2 reduced autophagic flux and synergized with low doses of VPA (Supplementary
Figure 4a–b).

Re-activation of autophagy reverts the effects of HDACis
If autophagy inhibition is a critical step in mediating HDACis’ anti-leukemic function, then
other autophagy inhibitors should recapitulate HDACis’ effects. On the other hand,
autophagy activation should mitigate it. In fact, similar to HDACis, pharmacological
inhibitors of either autophagosome maturation (vinblastine and nocodazole) or acidification
(ammonium chloride, chloroquine and hydroxychloroquine) suppressed leukemic growth,
induced apoptosis, resulted in mitochondrial mass accumulation and increased ROS
formation in DS-AMKL cell lines (Figure 5a–d). In contrast, physiological autophagy
activation through starvation [34] reversed VPA-mediated suppression of autophagic flux
(Figure 6a). This resulted in the rescue of ROS accumulation and a complete prevention of
apoptosis in DS-AMKL cell lines (Figure 6b–c). We chose not to use pharmacological
activators such as rapamycin and PP242 to rescue HDACi-mediated apoptosis due to their
nonspecific toxic effects on leukemic blasts [23; 44–46].

Despite the fact that studying primary leukemic blasts is particularly challenging, they are
crucial to validate the effects observed in cell lines. Treatment of DS-AMKL (n=2) and DS-
TL (n=3) blasts with VPA resulted in the induction of apoptosis and accumulation of
mitochondria (Figure 6d–e). Similar to the effects seen in cell lines, starvation abrogated the
effect of VPA on both processes (Figure 6d–e).

These results highlight the existence of a threshold for the basal level of autophagy below
which cells undergo apoptosis.

Knockdown of ATG7 recapitulates the effects of HDACis
Our results led us to hypothesize that inhibition of ATG7 by acetylation is, at least in part,
responsible for the proapoptotic effect of HDACis. Indeed, siRNA-mediated knockdown of
ATG7 resulted in increased apoptosis in CMY cells (Figure 7a). Autopahgic flux was
decreased (Figure 7b and Supplementary Figure 6c), suggesting that the elevated rate of
apoptosis was due to autophagy inhibition by ATG7 knockdown. Consequently, this caused
an increase in mitochondrial mass accumulation and ROS formation (Figure 7c–d) in CMY
cells. These data suggest that HDACis transcriptionally and posttranslationally regulate
autophagy by modulating the acetylation status of ATG7.
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Low constitutive autophagic activity determines the susceptibility of AML blasts to
HDACis

Our results indicate that maintaining a certain level of autophagy is important for the
survival and growth of DS-AMKL cells. Recently, it has been shown that the activation of
the IGF/IGF1R/PI3K/mTOR pathway is a distinguishing feature of DS-AMKL and DS-TL
[23]. In order to confirm a lowered basal autophagic level in DS-AMKL cells due to mTOR
activation, we measured endogenous LC3-I to LC3-II conversion levels, a specific
posttranslational modification during autophagy [34], by Western blot (Figure 8A). We
found that DS-AMKL cells exhibited significantly less LC3-II compared to control cell
lines, K562 and M07 (Figure 8a). This suggests the presence of a lowered basal autophagic
activity [34]. Consistently, we observed a weaker stimulation of autophagy by PP242
(mTOR inhibitor) in CMK and CMY cells as compared to M07 and K562 cells
(Supplementary Figure 6b and 8a) and a weaker increase of mCherry-LC3 punctae
(Supplementary Figure 5) in CMK and CMY. Collectively, these results prove the presence
of a lower basal autophagy level in DS-AMKL cells associated with the activation of the
IGF/IGF1R/PI3K/mTOR pathway.

Thus, constitutive autophagic activity might be an indicator of the cancer cell’s
susceptibility to HDACis; i.e. low constitutive autophagic activity determines susceptibility
to HDACis while high constitutive autophagic activity confers resistance. To further
confirm this hypothesis, we investigated six additional AML cell lines and additional
pediatric AML patient samples (AML FAB M4eo with inv(16) [n=2], AML with MLL
rearrangement [n=2], AML FAB M3 with t(15;17) [n=2], AML FAB M7 [or AMKL; n=1],
AML FAB M2 with t(8;21) [n=2]). In the cell lines, we observed a positive correlation
between the IC50 of VPA and the LC3-II/ACTB coefficient (Supplementary Figure 3a and
8b; r2=0.735; p=3.1×10−3). All AML patient samples except two AML FAB M3 samples
with t(15;17) had a lower LC3-II level than CD34+-HSPCs from a healthy donor (Figure
8b). Accordingly, the two AML FAB M3 samples did not respond to VPA treatment. In
contrast, the AML FAB M4eo, AML FAB M7 and the MLL rearranged patient samples
with a low baseline level of autophagy were highly sensitive to VPA (Figure 8b and
Supplementary Figure 8c; r2=0.897; p=4×10−4). Cell death was accompanied by
mitochondrial mass accumulation and ROS production (Supplementary Figure 9a–b). Only
in two patients with AML FAB M2 and t(8;21), the response to VPA was not correctly
predicted by the LC3-II level, suggesting an alternative mechanism of resistance in this
subgroup.

If a low constitutive autophagic activity determines the susceptibility of cancerous cells to
HDACis, then lowering it by pharmacologic and genetic interaction should render resistant
cells susceptible to HDACi-induced apoptosis. Consistent with this hypothesis and previous
reports [20; 21], suppression of autophagy by chloroquine or nocodazol sensitized the
resistant K562 cells to the proapoptotic effects of HDACis such as VPA and SAHA (Figure
8c). The same effects were observed by siRNA-mediated knockdown of ATG7 (Figure 7A
and data not shown).

These results indicate the possibility of targeted therapy by VPA against leukemic cells with
low basal autophagy level. On the other hand, they indicate that lowering the basal
autophagy level can resensitize resistant cells against HDACi-induced apoptosis.

HDACis inhibited the growth of DS-AMKL in xenograft mouse model
To confirm our results in vivo, we transplanted CMY cells intrafemorally into NRG-mice.
VPA treatment for 28 days (starting 7 days post transplantation) prolonged the survival of
these mice (Figure 8d). In addition, we could show that treatment of NRG-mice with
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Panobinostat for 3 days repressed autophagy of transplanted K562 cells, which is confirmed
by the accumulation of the LC3-GFP reporter signal (Figure 8e).

These results led us to conclude that VPA-induced inhibition of autophagic flux promotes
anti-leukemic activity of HDACis in vivo.

Discussion
In this study, we have identified HDACis as potent anti-leukemic agents in DS-AMKL. We
showed that autophagy inhibition is a critical step in mediating HDACis’ anti-leukemic
function, which is achieved by targeting ATG7 -the core autophagic component. Thereby,
HDACis induce apoptosis specifically in AML cells with a low basal level of autophagy
[47]. The constitutive suppression of autophagy by PI3K/mTOR activation represents an
inherent difference between cancer and normal cells (Figure 8f). This specific vulnerability
can be exploited to eliminate malignant cells while sparing normal cells [43]. We
hypothesize that, in AML with PI3K/mTOR activation, basal autophagy is reduced to a
critical threshold that still allows the equilibrium of organelle’s turnover or clearance.
Further suppression of basal autophagy by HDACis breaks this equilibrium, resulting in
accumulation of dysfunctional mitochondria. This triggers ROS production and DNA
damage, which induces the intrinsic pathway of apoptosis. In turn, the leukemic cells with
low basal level of autophagy will undergo apoptosis.

ROS production, DNA damage and induction of apoptosis upon HDACi treatment have
previously been shown in various hematologic and non-hematologic malignancies [11; 14;
48–50]. Therefore, our results can provide a molecular explanation to the HDACis’
mechanisms of action in different malignancies. HDACis are particularly potent against
several lymphoid malignancies, including cutaneous T-cell lymphoma (CTCL), with
constitutive PI3K/mTOR activation [51]. Thus, the autophagic level of different cancerous
cells might explain the cell context-dependent effects of HDACis and various outcomes of
clinical studies testing HDACi-treatment.

Autophagy requires the evolutionarily conserved ATG proteins, which includes ATG7, to
envelope intracellular organelles in autophagosomes fusing to lysosome [34]. We uncovered
that HDACis transcriptionally and posttranslationally modulate the autophagy interaction
network [33] including the core protein, ATG7. The knockdown of ATG7 in DS-AMKL cell
lines recapitulates the effects of HDACis. This is consistent with previous reports showing
that ATG7 knockdown sensitizes cells to HDACis [21]. However, to what extent
transcriptional and posttranslational modulation of the autophagy interaction network
accounts for HDACi-mediated autophagy repression requires further investigation. The
importance of transcriptional regulation of autophagy by histone acetylation was recently
underscored by Füllgrabe et al [52]. Interestingly, we have found that DS-AMKL blasts
express autophagy genes despite their low basal autophagy activity. We speculate that this
transcriptional program is required to ensure basal autophagy above a critical threshold
despite posttranslational repression of autophagy by PI3K/mTOR activation [53]. Our
findings that Atg proteins are involved in HDACis mediated inhibition of autophagy argue
against the possibility that HDACis only target mitophagy, the specific autophagic
elimination of mitochondria. The methods applied measure autophagy in general and not a
specific subset of autophagy. Thus, further studies need to be conducted to understand which
type of autophagy is mainly affected by HDACis.

Potent anticancer therapies, such a radiotherapy and certain cytotoxic drugs, trigger the pro-
survival activity of autophagy, which protects cancer cells against their killing action [54].
In this context, HDACis have been shown to trigger their antineoplastic effects by inducing
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metabolic stress in cancerous cells with high metabolic demand [54]. Thus, when used in
combination, autophagy inhibitors can enhance the anticancer activity of those agents by
depriving malignant cells of this pro-survival mechanism [48]. Similarly, autophagy
inhibitors such as chloroquine can sensitize HDACi-resistant cancerous cell lines (with high
or normal autophagy level) to HDACis. Here we showed that this synergism further
suppresses autophagy to a level lower than the critical threshold, which consequently results
in cell death. This synergism is represented in studies done on colon cancer cell lines,
chronic myeloid leukemia and mouse embryonic fibroblasts [20–22]. Those studies
demonstrated that autophagy inhibition by chloroquine enhances SAHA-induced apoptosis
[20–22].

Whether HDACis induce [18–22] or inhibit autophagy [55] has been a controversial issue.
Our study demonstrated a dual effect of HDACis on the autophagy of leukemic blasts: after
an initial period of activation, HDAC inhibitors reduced autophagic flux. Based on this
initial phase, previous studies proposed HDACis as autophagy activators [18–22]. In
contrast, we provide strong evidence that HDACi-mediated autophagy repression, at a later
time point, is responsible for apoptosis in leukemic cells. First, HDACis caused dose-
dependent autophagic substrate accumulation, which was replicated using pharmacological
and genetic inhibition of autophagy. In contrast, pharmacological induction did not lead to a
later breakdown of autophagic flux (Figure 4B and 4G). Secondly, and most importantly,
physiological activation of autophagy through starvation reversed the effect of HDACis. We
validated these results by using xenotransplantation models and primary samples from AML
patients, which excludes confounding variables introduced by studyin cell lines. Moreover,
inhibition of autophagy upon prolonged treatment with multiple HDACis or combined
knockout of Hdac1 and Hdac2 was previously reported in the context of cardiomyocytes
[56; 57]. Also Oehme et al. recently reported the ability of HDAC10 to induce autophagy
[55]. We speculate that the initial activation of autophagy upon HDAC inhibitory treatment
may represent a general unspecific cellular pro-survival response. The second stage of
autophagy inhibition might represent a time point at which drug-mediated suppression
overcomes the pro-survival effect. Accordingly, we observed acetylation of the key
autophagic protein ATG7 in response to HDAC inhibition only after a latency period of 10h.

In conclusion, in the context of AML we identified autophagy inhibition as a novel
mechanism of HDACi-induced apoptosis that selectively targets leukemic cells with low
basal autophagic activity. In addition, we could show that the fine tuning of autophagy to a
level lower than the critical basal level level can specifically target cancerous cells.
Understanding those context-dependent networks resulted in the initiation of the VPA DS-
AMKL 2011 trial (EudraCT: 2011-001838-42) and will open the avenue for new
personalized cancer therapies.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Gene expression-based chemical genomics identifies Down syndrome leukemia to be
highly sensitive against HDACis
(a) Scheme illustrating the setup of the gene expression-based chemical genomic screening,
which identified VPA, TSA and SAHA to reverse the DS-AMKL gene signature (17). (b)
Number of cells 48h after incubation with the indicated concentrations of VPA relative to
the untreated control (=100%). (c) Number of CFUs per 5×102 plated CMK and K562 cells
with and without VPA (2mM) relative to the untreated control (=100%). (d) Number of
blasts from patients with DS-AMKL (n=3), DS-TL (n=4) and of CD34+-HSPCs (n=2)
grown in liquid culture 48h after addition of VPA (2 and 4mM) in relation to the untreated
control (white bar; =100%). (e) Number of CFUs of DS-AMKL (n=2) and DS-TL (n=3)
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blasts as well as CD34+-HSPCs (n=2) in the presence of VPA (2mM) in relation to the
untreated control cells (=100%). (d–e) Data are presented as mean±s.d. (f–g) Representative
dot plots of Annexin V/ 7-AAD apoptotic assay (f) and diagram showing the percentage of
Annexin V+/ 7-AAD- apoptotic and 7-AAD+ dead cells (g) 48h after addition of VPA in
comparison to the untreated control cells. (h–j) Representative dot plots (h) and diagram (j)
of BrdU/ 7-AAD cell cycle analysis of cells 48h after addition of VPA in comparison to the
untreated control cells. (b–c; f–j) All experiments are presented as mean±s.d of at least two
independent experiments performed in replicates.
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Figure 2. Global and specific HDACis induce cell cycle arrest and apoptosis in DS-AMKL cell
lines
(a) Fractional change of the number of viable CMK, CMY, K562, M07 cells 48h after
incubation with the indicated HDACis relative to the untreated control (=0). (b) Percentage
of Annexin V+ CMK, CMY, K562 and M07 apoptotic cells 48h after incubation with the
indicated HDACis. (c) BrdU/ 7-AAD cell cycle analysis of CMK, CMY, K562 and M07
cells 48h after incubation with increasing concentrations of the indicated HDACis in
comparison to the untreated control. All experiments are presented as mean±s.d. and are
representative for at least two independent experiments performed in replicates.
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Figure 3. HDACis target the autophagy interaction network
(a) GSEA of CMY and CMK cells with (VPA) and without (ctr) VPA treatment using a set
of 409 genes of the autophagy interaction network, as determined by a proteomic approach
(20). GSEA indicated the repression of those key autophagy genes by VPA. Cells were
treated for 24h and 48h with 1mM or 2mM VPA. Left - heat map. Right – inlet showing
selected genes including ATG7 (red arrow), enrichment plots and statistics. (b) Venn
diagram showing the overlap of 409 proteins of the autophagy interaction network (20) and
4780 proteins which are acetylated in response to HDACi treatment of leukemic cell lines
(25). (c) Western blots of immunoprecipitated ATG7 using ATG7 and acetyl-Lysin antibody
of CMK cells with or without incubation with 2mM VPA for 6h and 10h. (d) SIRT1 activity
was measured using the SIRT1 Fluorometric Drug Discovery Kit. Recombinant human
SIRT1 was pre-incubated with Panobinostat (2µM), SAHA (2 µM) or VPA (2mM) for 2h.
Resveratrol and suramin sodium were included as positive controls for SIRT1 activation and
inhibition, respectively. Experiments are presented as mean±s.d. and are representative for at
least three independent experiments with two replicates.
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Figure 4. HDACis inhibit autophagy leading to the accumulation of mitochondria and ROS
(a) Flow cytometric analysis (MFI±s.d) of autophagic flux in CMY, CMK, K562 and M07
cells expressing LC3-GFP after VPA (2mM) treatment. The bar graph represents the level of
LC3 GFP cellular abundance with respect to the control. Values above 0 indicate inhibition
of autophagic flux, while values below 0 indicate activation of autophagic flux. (b)
Autophagic flux of LC3-GFP cells treated with VPA (0.2, 2 mM) or PP242 (2, 5µM) in the
presence or absence of chloroquine (CQ). ΔMFI LC3-GFP= MFI LC3-GFP (+CQ) - MFI
LC3-GFP (-CQ). Values below 0 indicate inhibition of autophagic flux, while values above
0 indicate autophagy activation. (c) ΔMFI Cyto-ID measured in CMY cells incubated with
VPA (0.4 and 2mM). ΔMFI Cyto-ID= MFI Cyto-ID (+NH4Cl) - MFI Cyto-ID (-NH4Cl).
Values below 0 indicate inhibition of autophagic flux, while values above 0 indicate
autophagy activation. (d) Mitochondrial pool (left) or ROS production (right) analyzed by
flow cytometry (MFI±s.d.) of MitoTracker Green (MTR)-stained or CM-H2DCFDA treated
CMY, CMK, K562 and M07 cells (VPA: 2 and 10mM), respectively. (e) Diagram showing
the oxygen consumption rate (OCR). The basal respiration rate, oligomycin-sensitive
respiration rate (A), the maximal respiration rate (B) and the non-mitochondrial respiration
rate (C+D) measured in CMK cells. PANOVA= 5×10−7 (AUC 2mM VPA vs AUC 0mM
VPA). (f) Flow cytometric analysis of autophagic flux in CMY cells expressing LC3-GFP
(MFI±s.d) after SAHA (0.5 and 1µM), TSA (0.05, 0.4µM) or JQ2 (1, 3µM) treatment. As in
(A), values above 0 indicate inhibition of autophagic flux, while values below 0 indicate
activation of autophagic flux. (g) Autophagic flux of LC3-GFP expressing cells treated with
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SAHA (0.2 and 2µM), Panobinostat (0.2 and 2µM) or PP242 (2, 5µM) in the presence and
absence of CQ. (h) ΔMFI Cyto-ID signal in CMY cells treated with SAHA (0.4, 2) or
Panobinostat (0.1, 0.4). (j–k) Diagrams showing the (j) mitochondrial pool (MTR; MFI
±s.d.) and (k) ROS production (CM-H2DCFDA; MFI ±s.d.) analyzed by flow cytometry of
CMY, CMK, K562 and M07 cells treated with SAHA (0.5, 1µM), TSA (0.05, 0.4µM) or
JQ2 (1, 3µM). (a–d) and (f–k) Data are presented as change relative to the control (=0). (a–
k) Data are representative for three independent experiments with two to eight replicates.
*P<0.05; **P<0.01.
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Figure 5. Pharmacologic inhibition of autophagy recapitulates the effects of HDACis on DS-
AMKL cells
(a) Number of viable cells 48h after incubation with VPA (2mM), inhibitors of
autophagosome maturation (iAM: vinblastine and nocodazole) and inhibitors of
autophagosome acidification (iAA: ammonium chloride, chloroquine and
hydroxychloroquine) in relation to the untreated control cells (ctr; =100%). (b) Percentage of
Annexin V+ cells 48h after addition of VPA (2mM), iAM or iAA in comparison to the
untreated control cells (ctr). (c–d) Diagrams showing (c) the mitochondrial pool of (MTR;
MFI±s.d.) and (d) ROS production (CM-H2DCFDA; MFI±s.d.) of CMY, CMK, K562 and
M07 cells after addition of iAM or iAA as analyzed by flow cytometry (MFI±s.d.). (a–d) All
experiments are presented as mean±s.d of at least two independent experiments with two to
four replicates. *P<0.05; **P<0.01; ***P<0.001.
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Figure 6. Starvation reversed VPA-mediated suppression of autophagic flux
(a) Flow cytometric analysis of autophagic flux in CMY and CMK cells expressing LC3-
GFP (MFI±s.d.) after incubation with VPA (0.5, 2mM) for 24h in cell culture or starvation
medium. (b) Percentage of apoptotic CMY and CMK cells treated with VPA (2, 10mM) for
30h in cell culture or starvation medium. The subdiploid fraction was detected by flow
cytometry after PI nuclear staining. (c) ROS production as analyzed by flow cytometry (MFI
±s.d.) of CM-H2DCFDA-treated CMK and CMY cells 30h after treatment with VPA (2,
10mM) in cell culture or starvation medium. (d) Bars represent the mean percentage of
apoptotic primary DS-AMKL (n=2) or DS-TL cells (n=3) 16 to 24h after treatment with
VPA (10mM) under normal or starvation condition in relation to the untreated control
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(=100%). The subdiploid fraction was detected by flow cytometry after PI nuclear staining.
(e) Mitochondrial pool analyzed by flow cytometry (MFI±s.d.) of MTR-stained DS-AMKL
(n=2) or DS-TL cells (n=3) 16 to 24h after treatment with VPA (10mM) in cell culture or in
starvation medium in relation to the untreated control (=100%). (d–e) Data from one
experiment with triplicates presented as distribution of the mean value.

Stankov et al. Page 22

Leukemia. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7. ATG7 knockdown mimics the effect of HDACis on apoptosis and autophagy
(a) Percentage of apoptotic cells after ATG7 knockdown. VPA treatment was performed for
the last 48h. Right: Western blots showing the knockdown of ATG7 by siRNA. (b) Basic
and PP242 activated autophagic flux (compared to si-Ctr [=0]). Values below 0 indicate
inhibition of autophagic flux, while values above 0 indicate autophagy activation. (c)
Mitochondrial pool (MTR; MFI±s.d.) and (d) ROS production (CM-H2DCFDA; MFI ±s.d.)
as analyzed by flow cytometry of siATG7 or the empty vector control (si-Ctr) transfected
cells 72h after electroporation.
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Figure 8. Low constitutive autophagic activity determines the susceptibility to HDACis in vitro
and in vivo
(a) Immunoblot analysis of LC3-I and LC3-II isoforms in CMY, CMK, M07 and K562 cells
using anti-LC3B antibody, normalized to ACTB. The right diagram shows quantification of
LC3-II expression relative to ACTB assessed by densitometry. Data are representative for at
least three independent experiments performed in replicates. *P<0.05; **P<0.01. (b)
Diagram showing the level of LC3-II normalized to ACTB assessed by densitometry (blue
bars and blue Y-axis) and the percent of viable cells determined by luminescent cell viability
assay (red bars and red Y-axis) from patients with AML FAB M4eo (n=2), AML with MLL
rearrangement (n=2), AML FAB M3 (n=2), AML FAB M2 (n=2), AML FAB M7 (or non-
DS-AMKL; n=1) and in CD34+-HSPCs (n=1) samples. Viability was determined for cells
grown in liquid culture for 48h after addition of 2mM VPA in relation to the untreated
control (100%). (c) Percentage of Annexin V+ apoptotic K562 cells treated with indicated
concentrations VPA or SAHA for 48h with or without addition of chloroquine (CQ) or
nocodazol. (a–c) The data is a representative of at least two independent experiments with
two replicates. (d) Kaplan-Meier analysis of NRG mice transplanted i.f. with CMY cells
treated with PBS (n=3) or 400mg/kg/day VPA (n=3) i.p. for 28 days, starting 7 days after
transplantation. (e) Flow cytometric analysis (MFI±s.d.) of autophagic flux in K562 cells
expressing LC3-GFP isolated from NRG mice transplanted i.f. and treated with PBS (n=3)
or 10 mg/kg/day Panobinostat (n=4) i.p. for 3 days, starting 28 days after transplantation. (f)
Model illustrating the mechanism of VPA-induced apoptosis in DS-AMKL cells with PI3K/
mTOR overactivation. In comparison to normal cells (left), PI3K/mTOR activation
suppresses basal autophagy to a critical threshold that still allows equilibrium of organelle/
mitochondria and protein aggregate turnover or clearance. Further suppression by HDAC
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inhibition results in the accumulation of dysfunctional mitochondria, which trigger the
intrinsic pathway of apoptosis and ROS production, that causes DNA-damage (right). The
repair of DSBs is hampered by direct inhibition of key repair enzymes by HDAC inhibition
(16;34).
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