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Abstract 

Circulating tumor cells (CTCs) enter peripheral blood from primary tumors and seed metastases. 

The genome sequencing of CTCs could offer non-invasive prognosis or even diagnosis, but has 

been hampered by low single cell genome coverage of scarce CTCs. Here we report the use of the 

recently developed Multiple Annealing and Looping-Based Amplification Cycles (MALBAC) for 

whole genome amplification of single CTCs from lung cancer patients. We observed characteristic 

cancer-associated single nucleotide variations (SNVs) and insertions/deletions (INDELs) in 

exomes of CTCs. These mutations provided information needed for individualized therapy, such 

as drug resistance and phenotypic transition, but were heterogeneous from cell to cell. In contrast, 

every CTC from an individual patient, regardless of the cancer subtypes, exhibited reproducible 

copy number variation (CNV) patterns, similar to those of the metastatic tumor of the same patient. 

Interestingly, different patients with the same lung cancer adenocarcinoma (ADC) shared similar 

CNV patterns in their CTCs. Even more interestingly, patients of small cell lung cancer (SCLC) 

have CNV patterns distinctly different from those of ADC patients. Our finding suggests that 

CNVs at certain genomic loci are selected for the metastasis of cancer. The reproducibility of 

cancer-specific CNVs offers potential for CTC-based cancer diagnostics. 
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Significance 

In a few milliliters of blood from a cancer patient, one can isolate a few circulating tumor cells 

(CTCs). Originating from the primary tumor, CTCs seed metastasis, which account for the 

majority of cancer-related deaths. We demonstrate the analyses of the whole genome of single 

CTCs, which are highly needed for personalized treatment. We discovered that copy number 

variations (CNVs), one of the major genomic variations, are specific to cancer types, reproducible 

from cell to cell, and even from patient to patient. We hypothesize that CNVs at certain genomic 

loci are selected for and lead to metastasis. Our work shows the prospect of noninvasive 

CTC-based cancer diagnostics. 
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Introduction 

As a genomic disease, cancer involves a series of changes in the genome, starting from primary 

tumors, via circulating tumor cells (CTCs), to metastases that cause the majority of mortalities 

(1-3). These genomic alterations include copy number variations (CNVs), single nucleotide 

variations (SNVs), and insertions/deletions (INDELs). Regardless of the concentrated efforts in 

the past decades, the key driving genomic alterations responsible for metastases are still elusive 

(1).  

For non-invasive prognosis and diagnosis of cancer, it is desirable to monitor genomic 

alterations through the circulation system. Genetic analyses of cell-free DNA fragments in 

peripheral blood have been reported (4-6), and recently extended to the whole genome scale (7-9). 

On the other hand, it may be advantageous to analyze CTCs, as they represent intact functional 

cancer cells circulating in peripheral blood (10). While previous studies have shown that CTC 

counting was able to predict progression and overall survival of cancer patients (11,12), genomic 

analyses of CTCs could provide more pertinent information for personalized therapy (13). 

However, it is difficult to probe the genomic changes in DNA obtainable from the small number 

of captured CTCs. To meet this challenge, a single cell whole genome amplification (WGA) 

method, MALBAC (14), has been developed to improve the amplification uniformity across the 

entire genome over previous methods (15,16), allowing precise determination of CNVs and 

detection of SNVs with a low false positive rate in a single cell. Here we present genomic 

analyses of CTCs from 11 patients (SI Appendix, Table S1) with lung cancer, the leading cause 

of worldwide cancer-related deaths. CTCs were captured with the CellSearch platform using 

antibodies enrichment after fixation, further isolated with 94% specificity (Materials and 

Methods), and then subjected to WGA using MALBAC prior to next generation sequencing. 
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Results 

Single Cell Exome Sequencing Reveals SNV/INDEL Profiles in Individual CTCs and 

Provides Information Needed for Personalized Therapy. To detect SNVs/INDELs, we 

performed exome sequencing of 24 individual CTCs from 4 lung adenocarcinoma (ADC) 

patients (Patients 1-4), and compared them with the exomes of their primary and/or metastatic 

tumors. Unlike the other three ADC patients, Patient 1 had undergone a phenotypic transition 

from lung ADC to small cell lung cancer (SCLC) in the liver, which was evidenced by H&E and 

immunohistochemical staining (Fig. 1).  

Bulk exome sequencing identified 54 non-synonymous SNVs and INDELs, mutations that 

cause amino acid changes in proteins, in the primary and metastatic tumors of Patient 1 (Fig. 

2A). Single cell sequencing of eight individual CTCs from Patient 1 showed a total of 44 

non-synonymous SNVs and INDELs (Fig. 2A), each of which was called if a SNV or INDEL in 

a CTC was also detected in two other CTCs or in primary/metastatic tumors in order to eliminate 

false calls due to amplification errors (Materials and Methods). CTCs showed large similarity 

with metastatic but not the primary tumor in SNVs/INDELs. This difference was partially due to 

the low abundance of a given SNV/INDEL in the primary tumor. The Venn diagram showed the 

overlap of non-synonymous SNVs and INDELs across primary tumors, CTCs, and the metastatic 

tumor in Patient 1 (Fig. 2B). Similar results have been seen in the other ADC patients: 

sequencing of Patient 2’s (Patient 3’s) six (five) CTCs identified 106 (145) out of 146 (170) 

non-synonymous SNVs/INDELs in the metastatic tumor. Although a few key SNVs/INDELs 

were enriched in CTCs, other point mutations (Fig. 2A and SI Appendix, Fig. S1) are 

heterogeneous from cell to cell, as previously reported for solid tumors (16, 17). 
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We now focused on those SNVs/INDELs reported in the Catalogue of Somatic Mutations in 

Cancer (COSMIC) (18), which may play critical roles in cancer. In Patient 1, all COSMIC 

mutations that appeared in the primary and/or metastatic tumors have been detected in CTCs, as 

shown in the Venn diagram (Fig. 2C). Among these mutations, one INDEL in the epidermal 

growth factor receptor (EGFR) gene (p.Lys746_Ala750del), which is a target for tyrosine kinase 

inhibitors (TKIs) (19), was identified in the primary and metastatic tumors as well as in CTCs. 

This illustrated an example for the utility of CTC sequencing for identifying therapeutic target 

for personalized treatment.  

The other three COSMIC mutations in the phosphatidylinositol 3-kinase catalytic subunit α 

(PIK3CA) (p.Glu545Lys), tumor protein 53 (TP53) (p.Thr155Ile), and retinoblastoma (RB1) 

(p.Arg320*) genes were only shared between the liver metastatic tumor and CTCs. The fact that 

these three mutations were not detected in the primary tumor was due to their low abundance. 

Indeed, the use of PCR amplification together with deep sequencing revealed these mutations in 

the primary tumor (SI Appendix, Fig. S2). Regardless of its low abundance in the primary tumor, 

the PIK3CA mutation was detected in 7 of 8 CTCs from Patient 1. The PIK3CA mutation has 

been implicated in drug resistance of erlotinib (20). Consistently, Patient 1 underwent rapid 

disease progression in the liver metastasis after one-month of EGFR TKI treatment with 

erlotinib.  

Concurrent mutations in RB1 and TP53 were commonly found in SCLC (21) and have been 

reported to be able to efficiently transform other cells to SCLC (22). We observed RB1 and TP53 

mutations in most of the CTCs in this lung ADC patient. Subsequent needle-biopsy of the liver 

confirmed this transition (Fig. 1). A standard SCLC treatment with etoposide plus cisplatin for 6 

cycles led to a dramatic clinical response. This demonstrated again that CTC sequencing might 
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provide an a priori indication of phenotypic transition and guide the selection of therapeutic 

regimens.  

CNV Patterns of Individual CTCs in Each Patient Are Highly Reproducible. Capitalizing 

on MALBAC’s ability to precisely determine a single cell’s CNVs (14), another major form of 

genetic variations in cancers (23-26), we now examine whether CNVs also exhibit heterogeneity 

from cell to cell. We performed whole-genome sequencing (~0.1x sequencing depth) of CTCs 

from Patient 1. Fig. 3A shows the CNV patterns (segmented with a hidden Markov model) across 

the genome for the eight CTCs of Patient 1, along with the bulk sequencing of her primary and 

metastatic tumors. As a control experiment, the CNV patterns in the single leukocyte were 

consistent with that of the blood bulk DNA, confirming the uniformity of single cell WGA with 

MALBAC and excluding the possibility that the amplification procedure produced artifacts in 

CNVs. The CNV patterns in each CTC were distinctly different from the normal single 

leukocyte as shown in SI Appendix, Fig. S3. Surprisingly, we found that all CTCs of Patient 1 

exhibited reproducible gain and loss CNV patterns (an average of 83% of the gain and loss 

regions was shared between any two CTCs).  

Such reproducible global CNV patterns were hidden in bulk sequencing analyses of tumors, 

and only made visible by the high accuracy afforded by MALBAC. The gain and loss regions 

accounted for ~33% and ~8% of the entire genome of CTCs from Patient 1, respectively. The 

CNV patterns of CTCs in Patient 1 resembled more closely those of the metastatic tumor than 

those of the primary tumor, raising the possibility that our captured CTCs came from the 

metastatic tumor. However, we observed that EGFR mutation was homozygous in bulk 

sequencing of the liver metastatic tumor, but was 50% heterogeneous in the eight CTCs. A 

mixture of wild-type and homozygous mutant genotypes led to an appearance of heterozygous 
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EGFR mutations in the primary tumor. The EGFR mutation frequency in CTCs is close to that in 

the primary tumor, suggesting that a large proportion of CTCs originated from the primary tumor 

and were in an intermediary for metastasis. Furthermore, both primary and metastatic tumors had 

more than 70% of tumor cell content (SI Appendix, Table S1), which excluded the possibility of 

low tumor content in complicating our observation. 

Our finding suggests that during the metastatic process gain and loss of copy numbers at 

certain chromosome regions are selected for cancer cells to enter or survive in the circulation 

system, becoming CTCs. The reproducible CNV patterns might come from the possibility that 

CTCs originated from one subclone in the primary tumor or due to the CTC selection criterion. 

This is unlikely given the heterogeneity of SNVs in single CTCs. 

We examined the reproducibility of the CNV patterns among five other patients (Patients 

2-6) with ADC and one patient (Patient 7) with a mixture of ADC and SCLC in the lung. Again, 

individual CTCs from the same patient showed reproducible CNV patterns (SI Appendix, Figs 

S4-S9). These commonly occurring CNVs were discernible in bulk sequencing of the matched 

metastases (SI Appendix, Figs S4 and S5). The mean CNVs (average over all CTCs in each 

patient) of Patients 2-6 were plotted and segmented in Fig. 3B.  

CTC’s CNV Patterns of Different Patients of the Same ADC Are Similar. Patients 2-6 with 

ADC exhibited almost identical global CNV patterns; an average of 78% of the gain and loss 

regions was shared between any two of these patients. Giving the different clinical characteristics 

of these patients, such as different sexes and ages, the observation of 5 ADC patients with almost 

identical global CNV patterns is striking, providing not only the basis for potential diagnosis of 

ADC via CTCs, but also clues for metastasis.    
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We listed the common copy number gain (in >16 CTCs) and loss (in >7 CTCs) regions, 

together with some important cancer-related genes, of the 5 ADC patients’ CTCs in SI Appendix, 

Table S2. Most of these regions were consistent with the previous statistical analysis of CNVs on 

528 snap-frozen lung adenocarcinoma resection specimens (25). The statistical significance of 

the CNVs in 19 CTCs from these 5 patients is illustrated in SI Appendix, Fig. S10. While CNVs 

spanned a large portion of the chromosome arm, a few genes in the common CNV regions have 

crucial roles in cancer. For example, the gain region in Chromosome 8q contains the c-Myc gene, 

which is associated with cell proliferation and differentiation. Likewise, all 5 ADC patients 

showed significant gain in Chromosome 5p, which contains the telomerase reverse transcriptase 

(TERT) gene that prevents the chromosome ends from degradation. We confirmed the 

amplification of c-Myc gene and TERT gene in a CTC but not in the normal leukocyte with 

digital PCR (SI Appendix, Fig. S11). Four particular chromosomal regions, 3q29, 17q22, 

17q25.3, 20p13, have significant gain in all 19 CTCs of ADC patients 2-6 we sequenced. None 

of the genes in these regions are listed in the Cancer Gene Census (27). The functional roles of 

those genes in metastasis of adenocarcinoma warrant further investigation.   

CTC’s CNV Patterns of Patients with Different Cancer Subtypes Are Dissimilar. Patients 1 

and 7 are different from Patients 2-6 with ADC in that Patient 1 underwent ADC to SCLC 

transition whereas Patient 7 has a mixture of ADC and SCLC in the lung. Interestingly, the CNV 

patterns of Patients 1 and 7 were dissimilar to Patients 2-6 with ADC. Such dissimilarity is 

further proven by hierarchical clustering analyses of their CNV patterns (Fig. 3C), confirming 

the distinction among Patients 1 and 7 and the other five ADC Patients 2-6. In particular, a 

significant response following standard SCLC treatment in Patient 1 was observed, indicating the 

potential for a therapeutic stratification of ADC patients based on CTCs’ CNV patterns.  
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Fig. 4A shows the CNV patterns of CTCs from Patients 8-11 with SCLC without phenotypic 

transitions, yielding further evidence for different cancer subtypes exhibiting distinct CNV 

patterns. The SCLC patients showed global CNV patterns different from ADC Patients 2-6. An 

average of 42% of the gain and loss regions was shared between any two patients. Inter-patient 

heterogeneity is generally associated with aggressive cancer subtypes, such as is the case for 

SCLC, which is prone to metastasis and has poor prognosis (21). Nevertheless, similarity still 

existed among all ADC and SCLC patients. For example, a common copy number gain spanning 

Chromosome 6p, the human leukocyte antigen (HLA) region, was seen and has been associated 

with the tumor progression (28). Regardless of the heterogeneity among SCLC patients, it is 

important to note that the CNV patterns of individual CTCs from the same patient were still 

reproducible (SI Appendix, Figs S12-S15). The fact that CNV patterns of ADC and SCLC were 

different implied these patterns were cancer subtype-specific, which is of diagnostic significance.    

The SNVs/INDELs in CTCs Change During Treatment, Whereas the CNV Patterns 

Remain Constant. Important to predict disease progression during drug treatment is the ability 

to monitor the genomic changes of CTCs over time, given that repeat biopsy is not desirable. We 

performed sequential CTC isolation and sequencing on one SCLC patient (Patient 8) at three 

time points: before chemotherapy, after partial response (PR) to first-line chemotherapy with 

etoposide plus platinum, and after disease progression (PD) to second-line chemotherapy with 

topotecan. Tumor responses were evaluated according to the RECIST1.1 criteria. Mutation 

frequencies of SNVs/INDELs across CTCs clearly varied with time (Fig. 4B and SI Appendix, 

Fig. S16). For the twenty-three genes with significantly increased mutation frequencies in 

response to chemotherapy, we performed a gene ontology (GO) analysis using GeneCodis 3.0 

(29), which revealed that six genes (ALPK2, KIF16B, TP53, MYH7, TTLL2, PAK2) were 
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enriched in the GO category of “ATP binding” (GO: 0005524) and perhaps responsible for the 

disease progression in this patient. Interestingly, the CTCs’ CNV patterns, at a whole genome 

scale, do not change at different therapeutic stages (Fig. 4C), indicating that the reproducible 

CNV patterns observed were not affected by drug treatment. This further supports that CNVs at 

certain chromosomal loci are not only selected for the onset of metastasis but also remain 

constant throughout. 

Discussion 

Monitoring the emergence and alteration of SNVs/INDELs is essential in the process of targeted 

therapy. Consistent with previous work (30), our present work showed that the genomic profiles 

in the metastatic tumors are distinct from those of the primary tumor. Genomic analyses of 

multiple metastatic sites could provide important information related to treatment (31). However, 

it is difficult in clinical practice for most patients to undertake repeat biopsies at multiple tumor 

regions. While the SNVs/INDELs in CTCs are heterogeneous from cell to cell (32), genomic 

analyses of a few CTCs can provide the overall SNVs/INDELs profiles that are present in the 

metastatic tumor tissues during the treatment. Noticeably, some important tumor-related genes, 

including those involved in drug resistance and phenotypic transitions, were frequently mutated 

in CTCs. Such enrichment may represent a selective advantage of CTCs to escape targeted 

therapy. 

Given the above observations of highly reproducible CNVs in the CTCs of individual (and 

even different) patients, we hypothesize that copy number changes are the key events of 

metastasis: in the evolution of cancer, gain and loss in copy numbers of certain chromosome 

regions are selected for metastases. The CNVs at a certain combination of gene loci (such as 

c-Myc, TERT, HLA) could alter the gene expression of different pathways, conferring a selective 
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advantage for metastasis. With regard to the underlying selection mechanism, one possibility is 

that cancer cells in the primary tumor with certain CNVs affecting a large-scale of genes could 

invade the surrounding tissues and intravasate more efficiently. It is also possible that this 

selection happens in the circulation system where CTCs survive the immune surveillance. For 

example, the common gain region in Chromosome 6p could elevate the expression levels of HLA 

proteins and inhibit natural killer (NK) cells (33). This gain could be a critical requirement to 

become a CTC, given the plenty of NK cells in blood as compared to their scarcity in the 

primary tumor.     

A broad survey of CNV patterns in CTCs of different cancers is underway to examine 

whether the same degree of reproducibility also occurs in other types of cancers. Although the 

underlying molecular mechanism is yet to be illustrated, the observation of reproducible genomic 

alterations is highly instructive for the understanding of metastasis or even genesis of cancer. 

The reproducible CNV patterns that are characteristic of different cancers might allow 

non-invasive cancer diagnostics and classification through sequencing of CTCs.  

 

Materials and Methods 

This study was approved by the institutional ethics committee at Peking University Cancer 

Hospital & Institute and the Committee on the Use of Human Subjects in research at Harvard 

University. Written informed consent was obtained from all patients. A total of 16 patients were 

enrolled. Among them, 11 patients were chosen for sequencing study. A summary of patient 

information was listed in SI Appendix, Table S1. The patient recruitment and clinical information 

were described in SI Appendix. 

CTC Capture and Isolation. Circulating tumor cells from 7.5 ml of blood sample were 

captured with the CellSearch@ Epithelial Cell Kit (Veridex, LLC a Johnson and Johnson 
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company, Raritan, NJ) using magnetic bead conjugated to anti-EpCAM (Epithelial Cell 

Adhesion Molecule) antibodies. The captured CTCs were stained with 4ʹ, 

6-diamidino-2-phenylindole (DAPI), anti-Cytokeratin-Phycoerythrin and 

anti-CD45-Allophycocyanin antibodies to distinguish cancer cells from carry-over leukocytes. 

We then isolated individual CTC (DAPI+, anti-Cytokeratin+, anti-CD45-) and leukocyte 

(DAPI+, anti-Cytokeratin-, anti-CD45+) under fluorescence microscope by separating individual 

cells manually through micro-pipetting. An additional fluorescein isothiocyanate (FITC) channel 

was added to ensure that fluorescence signal in the anti-Cytokeratin-Phycoerythrin channel was 

not due to other fluorophors. ~30% of CTCs (DAPI+, anti-Cytokeratin+, anti-CD45-) originally 

captured with CellSearch were further excluded as potential false positives by this procedure. 

Each selected CTC was washed multiple times in droplets of UV-exposed water to minimize 

DNA contamination. A total number of 72 CTCs were sequenced. Four CTCs were later 

determined to be normal leukocytes based on their CNVs and SNVs/INDEL profiles and were 

excluded from further analyses, which gave a specificity of 94%. 

Whole Genome Amplification. The DNA in single CTC was amplified following the steps in 

Ref.14. Quantitative PCR (qPCR) was performed in 8 randomly selected loci to check for the 

genomic integrity of the amplification product. DNAs with 7 out of 8 loci amplified with 

reasonable Ct number in qPCR can be used for further sequencing study. 70% CTCs have passed 

this filter.    

Exome Library Preparation and Sequencing. The coding exons plus UTRs were captured 

with SureSelect All Exon V4 (Agilent Technologies, Palo Alto, Calif.) according to Ref. 34 with 

a few modifications. 150 ng – 1 µg of DNA extracted from tumor tissues or amplified from CTC 

by MALBAC was sheared into fragments around 175 bp using the Covaris system (Covaris, 
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Woburn, Massachusetts). The sheared DNA was purified with Agencourt AMPure XP SPRI 

beads (Beckman Coulter, Danvers, MA). The DNA was blunted with 5’-phosphorylated ends 

using the NEB Quick Blunting Kit and ligated to truncated PE P7 adaptors and barcoded P5 

adaptors using NEBNext@ Quick Ligation Module. After clean-up with Agencourt AMPure XP 

SPRI beads and nick fill-in with Bst polymerase Large Fragment (New England Biolabs), the 

DNA fragments with adaptors were enriched by PCR. A total amount of 500 ng DNA pooled 

from four barcoded libraries was used for hybridization and post-hybridization amplification 

following the manufacture’s protocol (SureSelectXT Target Enrichment System for Illumina 

Paired-End Sequencing Library, Version 1.3.1, February 2012, pp.37-pp.60). The 

post-hybridization amplification product was quality checked and sequenced with Illumina 

HiSeq 2000/2500 2×100 bp paired-end (PE) reads. The coverage information of exome 

sequencing is shown in SI Appendix, Table S3.     

Whole Genome Library Preparation and Sequencing. Libraries for whole genome 

sequencing were prepared from the adaptor-ligated DNA before the pooling step in exome 

library preparation. Enrichment PCR was performed on an aliquot of adaptor-ligated DNA to 

complete the adaptor for Illumina PE sequencing. The PCR product was quality checked and 

sequenced with Illumina HiSeq 2000/2500 2×100 bp PE reads or MiSeq 300 2×150 bp PE reads 

at ~0.1x sequencing depth. The cost for this low sequence depth is affordable for clinical study. 

Exome Sequencing Data Analysis for SNVs/INDELs. Sequencing reads were aligned to the 

UCSC human reference genome (hg19) using the Burrows-Wheeler Aligner (BWA) (35). The 

aligned reads were sorted and merged with Samtools 0.1.18 (36). The INDEL realignment was 

done with the Genome Analysis Toolkit (GATK 2.1-8) (37), and mate pair fix and duplicate 

removal were done with Picard-tools 1.76 (http://Picard.Sourceforge.net). The base quality was 
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recalibrated and population variations were detected by GATK using dbSNP 135 

(http://www.ncbi.nlm.nih.gov/projects/SNP/). The functional effect of variants was annotated 

with SNPEFF 3.0 (38). Variations that presented in dbSNP 135 and the National Heart, Lung, 

and Blood Institute (NHLBI) Exome Sequencing Project (ESP) but not in COSMIC v61 (18) 

were filtered out. SNVs/INDELs were called for variations that presented in tumor tissue 

specimens or more than two CTCs but not in the matched blood gDNA or single leukocyte. A 

detailed list of the SNVs/INDELs for all four patients is shown in SI Appendix, Table S4, some 

of which were validated by Sanger sequencing. 

Copy Number Determination from Whole-genome Sequencing Data. The copy number 

variant regions were identified according to the procedure in Ref.14. See SI Appendix for the 

procedure. 

Significance Analysis of Gain and Loss Regions in CTCs of ADC Patients. Significance 

analysis of gain and loss regions in all 19 CTCs of ADC patients (Patients 2-6) followed GISTIC 

algorithm (23,39), which is originally intended for CNV data from multiple distinct individuals. 

The sequence data is separated into two sets to calculate p values for gain and loss regions, 

respectively. All the bins that have CNV<2 were re-assigned as 2 for p values calculation in gain 

regions and those that have CNV>2 were re-assigned as 2 for p values calculation in loss 

regions. A value of 0.8 was set for CNV = 0. Then we replaced the copy numbers with an 

amplitude (a = log2
CNV-log2

2). In each data set, we obtained a G score for every bin in the 

chromosome considering both amplitude and its frequency across all 19 CTCs [G=a × freq.]. A 

null distribution for G score was determined by permuting the data within each CTC. Compared 

with the null distribution, we obtained a p value for each bin in the chromosome. After false 

discovery rate p value adjustment (40), a q value for each bin was assigned. A significant level of 

http://www.ncbi.nlm.nih.gov/projects/SNP/
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10-4.76 for gains and 10-4.18 for losses are given according to the q values of gains and losses in 

eight normal leukocytes; no gain or loss regions have been observed in the normal leukocytes 

based on those significant levels. 

Validation of SNVs and CNVs. Digital PCR, Sanger sequencing, and deep sequencing were 

used to validate SNVs and CNVs. The detailed validation procedure was described in SI 

Appendix. 

Clustering Analysis. Clustering analysis based on the whole genome CNVs was applied to 

distinguish CTCs from different patients using algorithms implemented in R package 

(http://www.R-project.org). First, we normalized sequence reads of each CTC with sequence 

reads from all normal leukocytes to remove whole genome amplification bias. We then 

determined the copy number sequence (a1, a2, a3,…; b1, b2, b3,…;…) at a bin size of 500K along 

the genome by comparing the normalized reads with reads from diploid regions found by HMM. 

The Euclidean distance between pairs of copy number sequence of CTCs was calculated by: 

                                  (1) 

where a and b represent different CTCs. ‘i’ is the index for the bins.  

Based on the above Euclidean distances, Ward’s linkage criterion (41,42) was applied to 

create clusters of CTCs (Fig. 3C). 
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Figure Legends 

Fig. 1. Primary and metastatic tissues and CTC from Patient 1 who experienced a phenotypic 

transition from ADC to SCLC. The H&E staining and immunohistochemical staining for 
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synaptophysin (SYN) show a typical ADC in the lung (left panel) and a typical SCLC in 

the liver (right panel) (Image magnification: 200x). The CT images show the pre-operative 

primary tumor in the lower lobe of the right lung (yellow arrow) and the metastatic 

post-treatment tumor in the right lobe of the liver (blue arrow). In the middle panel, a 

circulating tumor cell is identified by positive staining for DAPI and cytokeratin (Cyto), 

and negative staining for CD45. As a control, a leukocyte is also shown (DAPI+, Cyto-, 

CD45+).  

Fig. 2. Detection of somatic mutations (SNVs and INDELs) in CTCs and primary/metastatic 

tissues of Patient 1. (A) Non-synonymous heterozygous (hetero.) and homozygous (homo.) 

mutations in the lung primary (Pri.) tumor, eight CTCs, and the liver metastatic (Meta.) 

tumor. Blank region represents no sequence coverage. The mutated genes are listed in the 

right column. (B) Venn diagram of the non-synonymous SNVs and INDELs among the 

lung primary tissue, CTCs, and the liver metastatic tissue of Patient 1. (C) Venn diagram of 

the non-synonymous SNVs and INDELs that reported in the COSMIC database.  

Fig. 3. CNVs in CTCs from six patients with ADC and one patient with a mixture of ADC and 

SCLC. (A) All eight CTCs in Patient 1 with reproducible CNV patterns. The copy numbers 

were segmented (blue and red lines) with HMM. (B) CNV patterns of CTCs from 6 ADC 

patients (Patients 1-6) and a patient with a mixture of ADC and SCLC (Patient 7). Patient 1 

experienced a phenotypic transition from ADC in the lung to SCLC in the liver. Patient 7 

was diagnosed as a mixture of ADC and SCLC in the lung. In each patient, sequencing data 

from all CTCs were combined for CNV analyses. (C) Clustering analyses of CTCs based 

on the CNVs. CTCs from Patients 1 and 7 were separated from CTCs from other five ADC 

patients according to the analyses.  
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Fig. 4. CNVs and SNVs/INDELs of SCLC. (A) Four SCLC patients (Patients 8-11) with 

heterogeneities in their CNV patterns. In each patient, sequencing data from all CTCs were 

combined for CNV analyses. (B) Fraction of mutation frequency of 152 SNVs/INDELs 

across CTCs before (blue), and during the first-line (red) and second-line (green) 

chemotherapy (chemo.) in Patient 8. (C) CTCs from Patient 8 with reproducible CNVs at 

different therapeutic stages. Four CTCs from each stage were shown in this plot (see SI 

Appendix, Figs S12 and S17 for CNVs of all CTCs from this patient). 

 

 

 

 

 

 


