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Abstract

Dynamic thalamic regulation of sensory signals allows the cortex to adjust better to rapidly changing behavioral,
physiological and environmental demands. To fulfill this role, thalamic neurons must themselves be subjected to constantly
changing modulatory inputs that originate in multiple neurochemical pathways involved in autonomic, affective and
cognitive functions. Our overall goal is to define an anatomical framework for conceptualizing how a ‘decision’ is made on
whether a trigeminovascular thalamic neuron fires, for how long, and at what frequency. To begin answering this question,
we determine which neuropeptides/neurotransmitters are in a position to modulate thalamic trigeminovascular neurons.
Using a combination of in-vivo single-unit recording, juxtacellular labeling with tetramethylrhodamine dextran (TMR) and
in-vitro immunohistochemistry, we found that thalamic trigeminovascular neurons were surrounded by high density of
axons containing biomarkers of glutamate, GABA, dopamine and serotonin; moderate density of axons containing
noradrenaline and histamine; low density of axons containing orexin and melanin concentrating hormone (MCH); but not
axons containing CGRP, serotonin 1D receptor, oxytocin or vasopressin. In the context of migraine, the findings suggest that
the transmission of headache-related nociceptive signals from the thalamus to the cortex may be modulated by opposing
forces (i.e., facilitatory, inhibitory) that are governed by continuous adjustments needed to keep physiological, behavioral,
cognitive and emotional homeostasis.
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Introduction

Historically, the thalamus was viewed as a simple relay station

for sensory information from the periphery to the cortex. This

view has been replaced by the concept that instead of ‘just’

transferring sensory signals from subcortical nuclei to the cortex,

thalamic neurons play central role in the selection, amplification,

and prioritization process that determines which type of informa-

tion should be made available to the cortex at any given time [1,2].

Being the so-called ‘gate-keeper’ of the cortex, thalamic neurons

regulate the flow of rapidly-changing sensory signals, thus allowing

the cortex to adjust to the constantly evolving behavioral and

environmental demands [1].

To regulate the amount of sensory signals that reach the cortex,

thalamic neurons must themselves be subjected to a variety of

modulatory inputs that originate in cortical, hypothalamic,

brainstem, spinal and intrathalamic nuclei [1,3–6]. In the context

of somatosensory and nociceptive information, the more exten-

sively studied networks that drive and/or modulate the activity of

relay thalamic neurons are the excitatory glutamatergic input

originating in corticothalamic, spinothalamic and medial lemnis-

cus tract neurons, and the inhibitory GABAergic input involving

the reticular thalamic nucleus [7,8]. The excitatory glutamate

input, acting through metabotropic mGluRs, is capable of

producing sustained neuronal firing whereas the inhibitory GABA

input, acting through the GABAb receptor is capable of switching

off the sustained neuronal activity [8].

Far less is known about the regulation of relay thalamic neurons

by other neurotransmitters and neuropeptides [3] from various

brain regions. Candidates include those from the brainstem and

hypothalamus. Brainstem inputs include serotonergic projections

from raphe nuclei [9,10], noradrenergic projections from locus

coeruleus and the A5 catecholamine group in the pons [9–11], and

dopaminergic projections from periaqueductal gray, and the

lateral parabrachial nucleus [12–16]. Hypothalamic inputs include

additional dopaminergic projections from A11/A13 [12–16],

histaminergic projections from the tuberomammillary nucleus

[17,18], orexinergic projections from the perifornical, dorsomedial

and lateral hypothalamus [19,20], and melanin-concentrating

hormone (MCH) projections from the lateral hypothalamus [21–

23].
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The potential release of these neurotransmitters/neuropeptides

on relay thalamic nuclei suggests that the modulation of individual

neurons is rather complex, likely subjected to opposing forces

driven by a variety of changing external and internal conditions

that require constant behavioral, physiological, and affective

adjustments. Our overall goal is to understand how ‘a decision’

is made on whether or not a relay thalamic neuron fires, for how

long, and at what frequency. To start answering this question, we

must first determine which neuropeptides/neurotransmitters are

in a position to govern the activity of individual thalamic neurons

that share a common function; a task never taken before. In the

current study we describe an array of neuropeptides/neurotrans-

mitters that may modulate individual, physiologically-identified

thalamic trigeminovascular neurons believed to play a role in the

generation of headache perception during migraine. The under-

standing of this neurobiology will allow for a basis to determine

functional neurotransmission between the thalamus and cortex

related to multiple clinical components of migraine including pain

(somatosensory cortex), cognition (frontal cortex), memory (hip-

pocampus), altered perception (parietal cortex), interoception and

awareness (insular cortex).

Materials and Methods

Animal preparation
Experiments were approved by the Institutional Animal Care

and Use Committee at Harvard Medical School and Beth Israel

Deaconess Medical Center, and conducted in accordance of NIH

guide for the care and use of laboratory animals. Thirty-two male

Sprague-Dawley rats weighing 250–350 g were initially anesthe-

tized with a single dose of Brevital sodium (45 mg/kg i.p.) to allow

endotracheal intubation and cannulation of the right femoral vein.

Each rat was then mounted on a stereotaxic frame and connected

to an inhalation anesthesia system (O2/Isoflurane 2.5% for

craniotomies; 1–1.2% for maintenance during the rest of the

experiment, delivered at 100 ml/min). End-tidal CO2, respiratory

and heart rate, blood oxygen saturation and body temperature

were continuously monitored and kept within a physiological

range. One craniotomy was performed at the left lambdoid suture

to expose and stimulate the meninges overlying the left transverse

sinus. A second craniotomy was performed at the right parietal

bone to allow the introduction of a glass micropipette into the

posterior thalamus for recording and juxtacellular iontophoresis of

an anterograde tracer, as described previously [24]. The exposed

dura was kept moist throughout the experiment, using synthetic

interstitial fluid (SIF; pH 7.2). After surgery, a lactated ringer’s

solution with a mixture of paralytic agents (vecuronium/doxacur-

ium) was continuously infused via the femoral vein cannula

(0.25 mg/kg/hr).

Single-unit juxtacellular recording and iontophoresis
A glass micropipette (20–30 MV impedance) filled with a 3%

solution of the tracer tetramethylrhodamine dextran (TMR; 3,000

MW, anionic, lysine fixable; D-3308, Invitrogen) in 0.9% NaCl,

was lowered into the right posterior thalamus while searching for

single-unit responses to electrical stimulation of the contralateral

dura (0.8 ms, 0.5–3.0 mA, 1 Hz). Thalamic neurons responding to

the electrical stimulation were additionally tested for responses

induced by mechanical (calibrated von-Frey monofilament) and

chemical (1 M KCl) stimulation of the dura (Fig. 1A). Response

was defined as an increase in firing rate that was at least 50%

higher than baseline. Spikes from neurons responding to all three

types of stimuli were amplified, filtered and acquired in a window

discriminator to be further analyzed using Spike2 software (CED,

Cambridge, UK). Once the electrophysiological characterization

of neuronal responses was finalized, the cell was iontophoretically

injected using the recording glass micropipette by delivering pulses

of positive current (1–10 nA) at 250-ms on/off intervals by means

of a computer-controlled microelectrode amplifier (Axoclamp

900A, Molecular Devices), as described elsewhere [25] (Fig. 1B).

In some experiments, more than one injection was performed in

different locations of the posterior thalamus. After a period of 10–

20 min of juxtacellular filling, the micropipette was slowly pulled

out of the brain; the animal remained anesthetized for 30 minutes

and then was prepared for perfusion.

Histological processing
Rats were injected with an overdose of pentobarbital sodium

(100 mg/kg) and perfused intracardially with 200 ml heparinized

saline, followed by a fixative solution consisting in 400 ml of 0.1 M

phosphate buffered saline (PBS), 4% paraformaldehyde and

0.05% picric acid. Only when required for the staining protocol,

rats were perfused with 200 ml of PBS followed by a fixative

solution containing 75 ml of 4% ethylcarbodiimide in 0.1 M PBS.

Brains were removed, soaked in the fixative solution for 2 hrs, and

cryoprotected in 30% sucrose phosphate buffer for 48 hrs. Brains

were then frozen and cut into serial coronal sections (60–80 mm-

Figure 1. Identification and labeling of individual thalamic
trigeminovascular neurons. (A) Neuronal responses to electrical
(1 mA, 0.8 ms), mechanical (von Frey filament: 4, 63 g) and chemical
(1 M KCl solution) stimulation of the dura overlying the left transverse
sinus. (B) Synchronization of neuronal activity during iontophoretic
injection of TMR by delivering pulses of current (1–10 nA) at 250 ms on/
off intervals through the recording glass micropipette.
doi:10.1371/journal.pone.0103929.g001
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thick) using a cryostat (Leica). Free-floating sections were collected

and mounted on slides for a rapid visualization and localization of

each cell body and its dendrites using epifluorescence microscopy.

Immunofluorescence
Brain sections containing successfully injected neurons were

pre-incubated at room temperature in PBS containing 2% fetal

bovine serum albumin (FSA) and 1% Triton X-100 for 1 hr.

Sections were then incubated at 4uC for 48 hrs in the same

blocking solution with one of the following primary antibodies: (i)

mouse anti-Serotonin Transporter, SERT (1:5,000 dilution;

Millipore); (ii) mouse anti-Tyrosine Hydroxylase, TH (1:5,000;

Immunostar); (iii) rabbit anti-Dopamine b-Hydroxylase, DBH

(1:5,000; Immunostar); (iv) goat anti-Orexin A (1:2,500; Santa

Cruz); (v) rabbit anti-Calcitonin Gene Related Peptide, CGRP

(1:5,000; Chemicon); (vi) rabbit anti-5HT1D receptor (1:50,000;

Courtesy of Andrew Ahn, University of Florida); (vii) rabbit anti-

Oxytocin (1:10,000; Immunostar); (viii) goat anti-Vasopressin

(1:1,000; Immunostar); (ix) rabbit anti-Histamine (1:3,000; Im-

munostar; ethylcarbodiimide perfusion); (x) guinea pig anti-

Vesicular Glutamate Transporter 2, VGluT2 (1:2,500; Millipore);

(xi) rabbit anti-Vesicular GABA Transporter, VGaT (1:1,000;

Phosphosolutions); (xii) Melanin Concentrating Hormone, MCH

(1:1,000; Courtesy of Terry Maratos-Flier, Harvard Medical

School). The sections were washed multiple times and then

incubated in PBS containing 2% FSA and 0.5% Triton X-100 for

2 hrs at room temperature with the corresponding fluorescent

secondary antibody (Alexa Fluor 488; Invitrogen) against the Ig’s

of the animal in which the primary antibody was raised (dilution

range 1:200–1:1,000). Immunostained sections were serially

mounted on glass slides and coverslipped with fluorescent

mounting media with or without DAPI counterstaining.

Digital imaging of thalamic labeling
Digital imaging of each of the neuronal cell bodies and

dendrites injected with TMR, as well as the axonal network of

the different neurotransmitters/neuropeptides was performed

using epifluorescence scanning microscopy that compiled 1–

1.5 mm-thick scans using z-stacking software (Leica). Using

individual z-stack images, orthogonal views of the y–z and x–z

planes were also created to provide additional evidence for close

apposition, and thus probable contact. Immunofluorescent label-

ing of TMR was detected by excitation/emission at 551/624 nm

(red). For the axonal labeling of neurotransmitters/neuropeptides

with Alexa Fluor 488, the immunolabeling was detected by

excitation/emission at 455/520 nm (green). DAPI counterstaining

was detected by excitation/emission at 358/461 nm (blue). Co-

labeling of the different structures was achieved by superimposi-

tion of the red, green and blue images. The anatomical analysis

and localization of cell bodies was based on a rat brain atlas [26].

Quantitative measures were performed to obtain the relative

innervation density of neurotransmitters/neuropeptides in the

thalamic regions of interest. A qualitative approach was used to

determine close apposition between immunopositive axons and

thalamic trigeminovascular neurons.

Results

Identification and juxtacellular labeling of thalamic
trigeminovascular neurons
Forty-seven thalamic neurons that responded to electrical,

mechanical and chemical stimulation of the contralateral dura

were classified as trigeminovascular neurons [24]. Twenty-four of

these neurons were successfully injected with TMR, yielding a

detailed, high-resolution labeling of the cell body (seen in 1 or

2 sections), dendritic tree and proximal segment of the parent

axon (extending over 5–6 sections) within the thalamus. In each of

these cases, attempts were made to co-label the brain sections

containing the TMR-positive trigeminovascular neurons with a

different neuropeptide/neurotransmitter. Eighteen cases yielded

successful labeling of both trigeminovascular neurons (TMR) and

axons stained for markers of glutamate (n = 2), GABA (n= 2),

serotonin (n = 3), noradrenalin (n = 2), dopamine (n= 3), histamine

(n= 2), orexin (n = 2), MCH (n=2), CGRP (n= 2), 5HT1D

receptor (n = 2), oxytocin (n = 1) and vasopressin (n = 1).

Innervation of thalamic trigeminovascular neurons by
the spinal trigeminal (SpV) and the reticular thalamic
nucleus (Rt)

Glutamatergic innervations. Glutamatergic innervation

was determined using Vesicular Glutamate Transporter 2

(Fig. 2). Axons immunoreactive to VGluT2, thus containing the

excitatory neurotransmitter glutamate, were present at high

density in all thalamic nuclei known to contain trigeminovascular

neurons including ventral posteromedial (VPM), posterior (Po),

lateral posterior (LP) and laterodorsal (LD). When examined in

sections containing the trigeminovascular neuron(s), dense

VGluT2 immunopositive vesicles were seen in close apposition

to the cell body, proximal and distal dendrites (Fig. S1).

GABAergic innervations. GABAergic innervation was de-

termined using Vesicular GABA Transporter (Fig. 3). Axons

immunoreactive to VGaT, thus containing the inhibitory neuro-

transmitter GABA, were present at high density in all thalamic

nuclei known to contain trigeminovascular neurons. When

examined in sections containing the trigeminovascular neuron(s),

dense VGaT immunopositive vesicles were seen in close apposi-

tion to the cell body, proximal and distal dendrites (Fig. S2).

Brainstem innervation of thalamic trigeminovascular
neurons

Serotoninergic innervations. Serotoninergic innervation

was determined using Serotonin Transporter (Fig. 4), a stable

marker of serotoninergic fibers in the brain [27]. Axons

immunoreactive to SERT, thus containing the monoamine

neurotransmitter serotonin, were present at high density in all

thalamic nuclei known to contain trigeminovascular neurons.

When examined in sections containing the trigeminovascular

neuron(s), dense SERT immunopositive axons and varicosities

were seen in close apposition to the cell body, proximal and distal

dendrites (Fig. 5).

Noradrenergic innervations. Noradrenergic innervation

was determined using the enzyme Dopamine b-Hydroxylase

(Fig. 6). Axons immunoreactive to DBH, thus containing the

catecholamine neurotransmitter noradrenaline, were present at

moderate-to-high density in all thalamic nuclei known to contain

trigeminovascular neurons. When examined in sections containing

the trigeminovascular neuron(s), moderate density of DBH

immunopositive axons and varicosities were seen in close

apposition to the cell body, proximal and distal dendrites (Fig.

S3). These DBH axons originate in the locus coeruleus, the main

producer of noradrenalin in the brain.

Hypothalamic innervation of thalamic trigeminovascular
neurons

Dopaminergic innervations. Dopaminergic innervation

was determined using the enzyme Tyrosine Hydroxylase (Fig. 7).

Axons immunoreactive to TH, thus containing the catecholamine

Modulation of Thalamic Trigeminovascular Neurons
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neurotransmitter dopamine, were present at high density in all

thalamic nuclei known to contain trigeminovascular neurons.

When examined in sections containing the trigeminovascular

neuron(s), high density of TH immunopositive axons and

varicosities were seen in close apposition to proximal and distal

dendrites (Fig. S4). Because TH is present in noradrenergic and

dopaminergic cells, the interpretation of its labeling must take into

consideration these two neurotransmitters. We interpreted some of

the TH-positive axons as dopaminergic based on a recent

retrograde tracing study where we showed that the dopaminergic

cells group A11/A13 project to the same Po and LP areas in which

trigeminovascular neurons were labeled in the current study [28].

Histaminergic innervations. (Fig. 8). Axons immunoreac-

tive to histamine neurotransmitter were present at moderate

density in LP and LD, and lower density in VPM and Po. When

examined in sections containing the trigeminovascular neuron(s),

moderate density of histaminergic immunopositive axons and

varicosities were seen in close apposition to the cell body, proximal

and distal dendrites (Fig. S5). This histaminergic innervation

Figure 2. Glutamatergic innervation of thalamic trigeminovascular neurons. Left: Immunopositive VGluT2 synaptic vesicles (green)
surrounding a thalamic dura-sensitive neuron (red) labeled with TMR–dextran. Arrowheads indicate close apposition of VGluT2 positive axons and
the cell body and dendrites of the labeled neuron. Upper right: Location of the dura-sensitive neuron (red star) shown at left. Number in red indicates
distance from bregma (mm). Lower right: Fluorescent images showing VGluT2 axonal labeling in thalamic Po and VPM nuclei. Scale bars = 100 mm.
Abbreviations: DLG, dorsal lateral geniculate; LPMR, lateral posterior thalamic, mediorostral; LPLR, lateral posterior thalamic, laterorostral part; VPL,
ventral posterolateral thalamic.
doi:10.1371/journal.pone.0103929.g002

Figure 3. GABAergic innervation of thalamic trigeminovascular neurons. Left: Immunopositive VGaT synaptic vesicles (green) surrounding a
thalamic dura-sensitive neuron (red) labeled with TMR–dextran. Nuclear counterstaining was performed with DAPI (blue). Arrowheads indicate close
apposition of VGaT positive axons and the cell body and dendrites of the labeled neuron. Upper right: Location of the dura-sensitive neuron (red star)
shown at left. Number in red indicates distance from bregma (mm). Lower right: Fluorescent images showing VGaT axonal labeling in thalamic Po and
VPM nuclei. Scale bars = 100 mm. Abbreviations: eml, external medullary lamina; ic, internal capsule; ZI, zona incerta.
doi:10.1371/journal.pone.0103929.g003

Modulation of Thalamic Trigeminovascular Neurons
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originates in the dorsal and ventral tuberomammillary nuclei of

the hypothalamus, the sole producers of histamine in the brain.

MCH innervations. (Fig. 9) Axons immunoreactive to

MCH were present at low density in all thalamic nuclei known

to contain trigeminovascular neurons. When examined in sections

containing the trigeminovascular neuron(s), low density of MCH

immunopositive axons and varicosities were seen in close

apposition only to distal dendrites (Fig. S6). These MCH axons

originate mainly in the lateral hypothalamus.

Orexinergic innervations. Orexinergic innervation was

determined by targeting the neuropeptide orexin A (Fig. 10).

Axons immunoreactive to orexin A were present at low density in

LP, LD, Po and VPM. When examined in sections containing the

trigeminovascular neuron(s), low density of orexinergic immuno-

positive axons and varicosities were seen in close apposition to the

proximal and distal dendrites, but not the cell body (Fig. S7).

These orexinergic axons originate mainly in the perifornical

hypothalamic area.

Thalamic trigeminovascular neurons are not innervated
by CGRP, 5HT1D, oxytocin or vasopressin
Surprisingly, we found no evidence for presence of CGRP-

positive axons in any thalamic nucleus containing trigeminovas-

cular neurons (positive identification of CGRP fibers in the

parvicellular division of the ventral posterior thalamic nucleus

confirms the validity of the negative staining in the thalamic nuclei

analyzed in this study) (Fig. 11A). Similarly, we found no evidence

for presence of 5HT1D receptors in the relevant thalamic nuclei.

Positive identification of 5HT1D afferents in the medullary dorsal

horn confirms the validity of the negative staining in the thalamic

nuclei analyzed in this study (Fig. 11B). Predictably, we also found

no evidence for innervation of thalamic trigeminovascular neurons

by oxytocin or vasopressin from neurons in the paraventricular or

supraoptic hypothalamic nuclei (Figs. 11C–D), demonstrating the

selectivity of the positive findings.

Density of thalamic innervation by the different
biomarkers
We processed all images containing immunohistochemical

evidence for thalamic innervation of the neurotransmitter/

neuropeptides, and calculated their relative density by using

binary maps (ImageJ). The binary map identifies all pixels

containing positive immunostaining and converts them to white

pixels; the remaining black pixels are considered lack of staining.

This data provide quantitative measures of density of innervation

of thalamic areas where juxtacellularly labeled trigeminovascular

neurons were found (Table 1 and Figs. S8 and S9).

Discussion

This proof-of-concept study defines a new molecular framework

for a more sophisticated thinking of the complexity of factors that

modulate the response properties of relay trigeminovascular

thalamic neurons. Most significant was the finding that such

neurons receive direct input from axons containing glutamate,

GABA, dopamine, noradrenaline, serotonin, histamine, orexin

and MCH but not from axons that contain oxytocin, vasopressin,

CGRP or the 5HT1D receptor (Fig. 12A). This diverse input

suggests that the transmission of headache-related nociceptive

signals from the thalamus to the cortex is modulated by potentially

opposing forces and that the so-called ‘decision’ of which system

(neuropeptide/neurotransmitter) will dominate the firing of a

trigeminovascular thalamic neuron at any given time is deter-

mined by the constantly changing physiological (sleep, wakeful-

ness, food intake, body temperature, heart rate, blood pressure),

behavioral (addiction, isolation), cognitive (attention, learning,

memory use) and affective (stress, anxiety, depression, anger)

adjustment needed to keep homeostasis (Fig. 12B).

The discharge mode of relay thalamocortical neurons is either

burst or tonic [1,29]. The burst discharge is commonly associated

with lower excitability, drowsiness, and in the context of headache,

responses to acute pain, whereas the tonic discharge has been

associated with higher excitability, wakefulness, and chronic pain

Figure 4. Serotoninergic innervation of thalamic trigeminovascular neurons. Left: Immunopositive Serotonin Transporter axons (green)
surrounding a thalamic dura-sensitive neuron (red) labeled with TMR–dextran. Nuclear counterstaining was performed with DAPI (blue). Arrowheads
indicate close apposition of SERT positive axons and the cell body and dendrites of the labeled neuron. Upper right: Location of the dura-sensitive
neuron (red star) shown at left. Number in red indicates distance from bregma (mm). Scale bars = 100 mm. Since SERT does not stain cell somas, it was
not possible to use this marker to identify the serotoninergic neurons in the raphe nuclei that project to the thalamic nuclei containing
trigeminovascular neurons. Abbreviations: Hb, habenula; MD, mediodorsal thalamic; CL, centrolateral thalamic.
doi:10.1371/journal.pone.0103929.g004
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state [4,30–32]. In principle, each of the neurotransmitters/

neuropeptides found in this study to have close apposition with

thalamic trigeminovascular neurons can potentially shift their

firing mode from burst to tonic if it is excitatory, and from tonic to

burst if it is inhibitory. As in other systems, the action of each

neuropeptide/neurotransmitter on individual thalamic neuron

depends on the type of release and reuptake, the type of receptor

activated, and most likley the location of the neuron and its

projection targets in the cortex. Since this information is not

available for thalamic trigeminovascular neurons, which are the

subject of this study, speculation on possible roles of the identified

neuropeptides/neurotransmitters in setting thalamic transmission,

as it may be related to migraine headache, is based on their known

action in other systems.

Glutamate
Vesicular glutamate transporters (VGluTs) are responsible for

glutamate trafficking and for the subsequent regulated release of

this excitatory neurotransmitter at the synapse. Glutamate excites

relay thalamocortical neurons through NMDA receptors, if the

sensory stimulus is prolong and through non-NMDA receptors if

the sensory stimulus is brief [33,34]. Of the three isoforms of

VGluT, we opted to study VGluT2 because it is expressed most

densely in relay thalamic nuclei [35–39] and in ascending

trigeminal sensory neurons that project to VPM and Po [40,41].

Since VGluT1 axons originate in corticothalamic neurons, we

interpreted the presence of VGluT2 on thalamic trigeminovas-

cular neurons as constituting the main drive for activation of these

neurons by glutamatergic input they receive from ascending

trigeminothalamic (possibly dura-sensitive) neurons in SpV.

Dopamine
In the context of migraine, dopamine has been considered for its

role in promoting hypothalamic-mediated symptoms/prodromes

such as yawning and nausea [42], and more recently, modulation

of dorsal horn trigeminovascular neurons [43]. Further supporting

this hypothalamic connection is the finding that the A11

dopaminergic cell group in the medial hypothalamus innervates

trigeminovascular neurons in both, the medullary dorsal horn

[44,45] and the thalamic relay nuclei [28]. The rich innervation of

thalamic trigeminovascular neurons by TH-positive fibers suggests

that modulation of transmission of nociceptive trigeminovascular

Figure 5. Close apposition between chemically-identified axons and thalamic trigeminovascular neurons. Images from the original z-
stack (obtained every 1 mm) were used to create orthogonal views in the y–z and x–z planes. The three views provide evidence that SERT
immunopositive fibers (green) may contact cell bodies, proximal and distal dendrites of trigeminovascular neurons in Po (red; as shown in Fig. 4).
Note that some green-labeled axons and red-labeled soma or dendrites are in the same focal plane (yellow). To see similar images for all the
neurotransmitters and neuropeptides identified in this study, see Supplementary Figures 1–7. Caveat: proximity between the chemically-identified
axons and the TMR-labeled trigeminovascular thalamic neurons suggests that they are innervated by the different neuropeptides/neurotransmitters.
Definitive evidence for actual synapses, however, requires tissue examination with electron microscopy. Scale bar = 50 mm.
doi:10.1371/journal.pone.0103929.g005
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signals by dopamine may also occur at the thalamus. When

conceptualizing dopamine role in migraine, a consideration should

be given to the activation of thalamic D1 and D2 receptors which

facilitate membrane depolarization and increase spike discharge in

somatosensory VPL/VPM thalamic neurons [46], and to the

selective uptake of cocaine by dopaminergic nerve terminals in the

thalamus as these findings define the possibility that thalamic

dopamine pathways may be critically involved in drug-addiction,

impulse control, affect, attention and decision making [47–53].

Translating these into clinical implications, thalamic dopamine

may thus be considered as a possible contributor to behaviors that

lead to medication-overuse headache and exacerbation of

headache by negative emotions, effort to control anger and

irritability, cognitive tasks that require attention and the need to

make mundane decisions.

Serotonin
Relevant to this study is that serotonin has long been implicated

in migraine pathophysiology [54,55], that this implication has lead

to the development of 5HT1B/1D receptor agonists (i.e., triptans)

Figure 6. Noradrenergic innervation of thalamic trigeminovascular neurons. Left: Immunopositive Dopamine b-Hydroxylase axons (green)
surrounding a thalamic dura-sensitive neuron (red) labeled with TMR–dextran. Nuclear counterstaining was performed with DAPI (blue). Arrowheads
indicate close apposition of DBH positive axons and the cell body and dendrites of the labeled neuron. Upper right: Location of the dura-sensitive
neuron (red star) shown at left. Number in red indicates distance from bregma (mm). Lower right: Fluorescent image showing DBH labeling of cell
bodies in the locus coeruleus (LC) of the brainstem. Scale bars = 100 mm.
doi:10.1371/journal.pone.0103929.g006

Figure 7. Dopaminergic innervation of thalamic trigeminovascular neurons. Left: Immunopositive Tyrosine Hydroxylase axons (green)
surrounding a thalamic dura-sensitive neuron (red) labeled with TMR–dextran. Nuclear counterstaining was performed with DAPI (blue). Arrowheads
indicate close apposition of TH positive axons and the cell body and dendrites of the labeled neuron. Upper right: Location of the dura-sensitive
neuron (red star) shown at left. Number in red indicates distance from bregma (mm). Lower right: Fluorescent image showing TH labeling of cell
bodies in the hypothalamic A11 nucleus. Scale bars = 100 mm. Caveat: TH is present in noradrenergic and dopaminergic cells, thus TH-positive
labeling must take into consideration these two neurotransmitters.
doi:10.1371/journal.pone.0103929.g007
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for acute treatment of migraine, that serotonergic innervation of

VPM and Po originating mainly in the rostral raphe [9,56–59],

and that depending on the amount of serotonin release in the

thalamus, it could be facilitatory (at low concentration) or

inhibitory (at high concentration) to relay neurons in VPM and

Po [60]. In principle, a high concentration of serotonin is

inhibitory whereas a low concentration is excitatory. Accordingly,

the very dense innervation of thalamic trigeminovasular neurons

observed in our study can provide an anatomical substrate for a

predominantly inhibitory effect of serotonin on transmission of

trigeminovascular information between the thalamus and the

cortex, as well as the inhibition of trigeminovascular thalamic

neurons by local administration of 5HT1 agonists [61]. Given the

latter, we were surprised by the total absence of 5HT1D receptors

in the thalamus. This finding suggests that the inhibition of

thalamic trigeminovascular neurons response to dural stimulation

occur at an earlier synapse along the trigeminovasculat pathway

[62], rather than in the thalamus. On a more global view,

serotonin, through its involvement in stress [63], anxiety [64],

depression [65], sleep [66], apetite [67], and learning [64] may

help facilitate the reciprocal relationship between these affective

and physiological states and migraine.

Figure 8. Histaminergic innervation of thalamic trigeminovascular neurons. Left: Immunopositive Histamine axons (green) surrounding a
thalamic dura-sensitive neuron (red) labeled with TMR–dextran. Nuclear counterstaining was performed with DAPI (blue). Arrowheads indicate close
apposition of Histamine positive axons and the cell body and dendrites of the labeled neuron. Upper right: Location of the dura-sensitive neuron (red
star) shown at left. Number in red indicates distance from bregma (mm). Lower right: Fluorescent image showing Histamine labeling of cell bodies in
the dorsal and ventral tuberomammillary nuclei of the hypothalamus (DTM and VTM). Scale bars = 100 mm.
doi:10.1371/journal.pone.0103929.g008

Figure 9. MCH innervation of thalamic trigeminovascular neurons. Left: Immunopositive Melanin Concentrating Hormone axons (green)
surrounding a thalamic dura-sensitive neuron (red) labeled with TMR–dextran. Nuclear counterstaining was performed with DAPI (blue). Arrowheads
indicate close apposition of MCH positive axons and the dendrites of the labeled neuron. Upper right: Location of the dura-sensitive neuron (red star)
shown at left. Number in red indicates distance from bregma (mm). Lower right: Fluorescent image showing MCH labeling of cell bodies in the lateral
hypothalamus (LH). Scale bars = 100 mm. Abbreviations: ZID, zona incerta, dorsal; ZIV, zona incerta, ventral.
doi:10.1371/journal.pone.0103929.g009
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Noradrenaline
Because of the wide distribution of noradrenergic fibers in the

brain it is difficult to assign to this neurotransmitter a specific role

in certain function. Rather, it is thought to improve signal-to-noise

ratio in the firing of neurons that respond to sensory stimuli

[11,68–70] when conditions involve anticipation, reward, and

Figure 10. Orexinergic innervation of thalamic trigeminovascular neurons. Left: Immunopositive Orexin A axons (green) surrounding a
thalamic dura-sensitive neuron (red) labeled with TMR–dextran. Nuclear counterstaining was performed with DAPI (blue). Arrowheads indicate close
apposition of OrA positive axons and the dendrites of the labeled neuron. Upper right: Location of the dura-sensitive neuron (red star) shown at left.
Number in red indicates distance from bregma (mm). Lower right: Fluorescent image showing OrA labeling of cell bodies in the hypothalamic
perifornical area (PeF). Scale bars = 100 mm. Abbreviation: LDVL, laterodorsal thalamic, ventrolateral.
doi:10.1371/journal.pone.0103929.g010

Figure 11. Lack of innervation of thalamic trigeminovascular neurons by axons containing CGRP, Serotonin 1D receptor, Oxytocin
and Vasopressin. Left A–D: Thalamic dura-sensitive neurons (red) labeled with TMR–dextran and nuclear counterstain with DAPI (blue). Note the
absence of axonal immunoreactivity to CGRP (A), Serotonin 1D receptor (B), Oxytocin (C) and Vasopressin (D). Upper right A–D: Locations of the dura-
sensitive neurons (red stars) shown at left. Numbers in red indicate distance from bregma (mm). Lower right A–B: Fluorescent images showing CGRP
(A) and Serotonin 1D receptor (B) immunopositive axons in the parvicellular division of the ventral posterior thalamic nucleus (VPpc) and the spinal
trigeminal nuclei (SpVC/SpVI; caudal/interpolar), respectively. Lower right C: Fluorescent images showing Oxytocin labeling of cell bodies and axons
in the hypothalamic paraventricular nucleus (PVN) and lateral hypothalamus (LH), respectively. Lower right D: Fluorescent images showing
Vasopressin labeling of cell bodies in the PVN and circular (Cir) nuclei of the hypothalamus, and axons in the LH. Scale bars = 100 mm.
doi:10.1371/journal.pone.0103929.g011
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changing cognitive and emotional circumstances [71]. To be in a

position to modulate thalamic neurons, noradrenergic fibers

project heavily to all thalamic sensory nuclei [72,73] and act on

both a and b adrenoceptors, which together modulate firing rate,

set a pacemaker current, determine membrane resting potential,

and synaptic strength [74–77]. In the context of migraine,

noradrenaline, which usually prolongs the activation of thalamic

neurons [78–81], may be involved in setting abnormal excitability

level in trigeminovascular neurons, centrally, and the magnitude of

arterial hypertension, peripherally. This view is supported by the

finding that b1 adrenoceptor blockers, which are among the very

few drugs approved as migraine prophylactics [82], inhibit the

activity of thalamic trigeminovascular neurons [83]. The observed

relationship between noradrenergic fibers and thalamic trigemi-

novascular neurons provide a direct anatomical substrate for the

central action of b1 adrenoceptor blockers in migraine. Given that

activation of b1 adrenoceptor enhances the hyperpolarization-

activated cation current (Ih) responsible for setting the so-called

pacemaker activity level and the resting membrane potential in

those relay thalamic neurons that exhibit such current [74,76,77],

it is reasonable to speculate that thalamic trigeminovascular

neurons exhibit the hyperpolarization-activated cation current – a

current that may render them likely to exhibit a prolonged firing

mode.

Histamine
In the context of migraine, histamine has been considered for its

role in causing H1 receptor mediated arterial dilatation and the

consequential induction of delayed headache [84]. The findings

that histaminergic nerve terminals converge on thalamic trigemi-

novascular neurons suggest that histamine role in migraine may

also include modulation of thalamic trigeminovascular neurons

through excitatory H1 receptors whose action enhances slow

depolarization current capable of switching neuronal discharge

mode from burst to tonic [85]. In the CNS, histamine originates

exclusively from neurons of the tuberomammillary hypothalamic

nucleus [17,18]. Given that these neurons are active during the

wake-state and quiescent during the sleep state [86–88] and that

histamine switches the firing mode of relay thalamic neurons from

burst to tonic [3,85], it is tempting to speculate that the

modulation of thalamic trigeminovascular neurons by the hista-

minergic pathway may play a role in the partial, or even complete,

headache relief provided by sleep.

Melanin Concentrating Hormone
The MCH system, which originates in the hypothalamus and

contains GABA [89] is thought to play a modulatory/inhibitory

role in the regulation of energy expenditure, arousal, locomotion,

sexual behavior and a variety of autonomic functions [90–94].

Being excited by increased glucose level after a meal, MCH

neurons are thought to promote sleep and energy expenditure (i.e.,

cessation of food intake) by releasing GABA at multiple cortical,

subcortical, brainstem and spinal areas they project to. To date,

this system has not been considered in the pathophysiology of

migraine or other headaches. The findings that hypothalamic

MCH neurons issue axons that terminate on thalamic trigemino-

vascular neurons define a novel anatomo-functional substrate for

hypothesizing about possible interactions between food intake,

drowsiness and migraine. It is tempting to propose that the

mechanism by which eating may make patients ‘feel better’ during

migraine involves increased level of glucose, activation of

hypothalamic MCH neurons [95], and the consequential inhibi-

tion of relay thalamic trigeminovascular neurons. Conversely, this

anatomo-functional substrate may also explain a part of the

reasons for why migraine is promoted by skipping a meal.

Skipping a meal inhibits MCH neurons (as glucose level goes

down) that, when inactive, may release far less GABA around

thalamic trigeminovascular neurons. Reduced GABA input might

then enhance neuronal excitability, rendering them more likely to

respond to subthreshold input they receive from ascending dura-

sensitive neurons in the spinal trigeminal nucleus.

Orexin
The orexin system originates in the lateral hypothalamus (LH)

and projects to the cortex, thalamus, brainstem, spinal cord and

other hypothalamic nuclei [20,96–99]. It consists of 2 neuropep-

tides (orexin A, orexin B) that are synthesized by the same gene

[100] and act on 2 classes of receptors, the selective orexin

receptor 1 (orexin A) and the non-selective orexin receptor 2

(orexin A and B). The wide distribution of orexin fibers in the

brain support a role in regulating food intake, arousal, wakefulness

Table 1. Relative density of thalamic innervation by neurotransmitters and neuropeptides.

Positive Pixels Negative Pixels Positive Pixels (%) Density

VGluT2 139,571 1,308,109 9.64 High

TH 124,675 1,323,005 8.61 High

VGaT 106,398 1,341,282 7.35 High

SERT 82,190 1,365,490 5.68 High

DBH 46,331 1,401,349 3.20 Moderate

Hist 17,578 1,430,102 1.21 Moderate

Orexin 8,555 1,439,125 0.59 Low

MCH 7,153 1,440,527 0.49 Low

CGRP 0 1,447,680 0.0 Absent

5HT1D 0 1,447,680 0.0 Absent

Vaso 0 1,447,680 0.0 Absent

Oxy 0 1,447,680 0.0 Absent

Quantitative analysis using binary maps: .5% of positive (white) pixels per image indicates high density, 1–5% indicates moderate density, and ,1% indicates low
density of innervation. See Figs. S8 and S9 for actual binary maps.
doi:10.1371/journal.pone.0103929.t001
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and sympathetically-mediated increase in body temperature, heart

rate and blood pressure [101]. Opposite to the function of the

MCH system, orexin neurons are excited by falling glucose levels,

and their activation promotes food intake and wakefulness [102–

104]. Of potential relevance to the pathophysiology of migraine

are orexinergic axons in nociceptive laminae of the medullary

dorsal horn and in close apposition to thalamic trigeminovascular

neurons. Although no information is available regarding the

direction in which orexin modulates thalamic trigeminovascular

neurons, in vitro slice recording of thalamic neurons suggests that

both orexin B and, for a lesser extent, orexin A are capable of

depolarizing these neurons sufficently to switch their firing from

the sleep-associated burst mode to the wakefulness-associated tonic

mode [105]. In the context of migraine, it is thus reasonable to

hypothesize that the mechanism by which eating may reduce

headache intensity involves not only local release of GABA from

activated MCH neurons but also inhibition of facilitatory orexin

input to thalamic trigeminovascular neurons induced by increased

glucose level (orexin neurons are inhibited by glucose). And

conversely, fasting-induced fall in glucose activates the orexinergic

neurons which in turn facilitate excitability through local release of

orexin B and A.

Calcitonin Gene Related Peptide
A large number of studies suggest that CGRP plays an

important role in multiple aspects of migraine pathophysiolopgy

[106]. Of particular relevance to the current study is the Summ et

al., paper [107] demonstrating presence of CGRP receptors in

VPM and consequently, inhibition of thalamic trigeminovascular

neurons by systemic and local administration of CGRP receptor

antagonists. The absence of CGRP-positive fibers in the vicinity of

thalamic trigeminovascular neurons raises the possibility that

CGRP release is not localized within the thalamus but rather may

be released at a distant location of the receptors, acting as a

neurohormone.

The thalamus is intricately connected with multiple cortical,

subcortical and brainstem regions. It is viewed as an important

subcortical hub with respect to functional brain networks [108]

involved in processes that are altered in certain disease states

[109,110]. In the migraine brain, changes in modulation of

Figure 12. (A) Schematic illustration of the neurotransmitter and neuropeptidergic systems innervating thalamic trigeminovascular
neurons in VPM, Po and LP/LD. The peripheral (meningeal nociceptors) and central (trigemino-thalamic) components of the trigeminovascular
pathway are shown in red. The neurotransmitter and neuropeptidergic systems are color coded as follow: (a) Glutamate from SpVC/C1-2 in red; (b)
GABA from Rt in yellow; (c) Noradrenalin from LC in blue; (d) Serotonin from raphe magnus (RMg) and dorsal raphe (DR) in green; (e) Histamine from
DTM and VTM in orange; (f) Melanin Concentrating Hormone from LH in purple; (g) Orexin from PeF in black; (h) Dopamine from A11 in brown. (B)
The diverse neurochemical pathways that converge on thalamic trigeminovascular neurons and the probability that many of them modulate
neuronal activity in the same direction under certain conditions (e.g., sleep deprivation, wakefulness, food withhold, stress, anxiety) and in opposite
directions under other conditions (e.g., food intake, sleep) define a sophisticated neuroanatomical network that may help us conceptualize how
sensory, physiological, cognitive and affective conditions trigger, worsen or improve migraine headache.
doi:10.1371/journal.pone.0103929.g012
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thalamic neurons by various inputs may have significant effects on

thalamic functional connectivity during both the interictal and the

ictal state. The diverse neurochemical pathways that converge on

thalamic trigeminovascular neurons (Fig. 12A–B) and the proba-

bility that many of them modulate neuronal activity in the same

direction under certain conditions (e.g., sleep deprivation) and in

opposite directions under other conditions (e.g., when satiated or

scared) define a sophisticated neuroanatomical network that may

help us conceptualize how sensory, physiological, cognitive and

affective conditions trigger, worsen or improve migraine headache.

Supporting Information

Figure S1 Close apposition between VGluT2 immuno-
positive vesicles and thalamic trigeminovascular neu-
rons. The three views in the x–y, y–z and x–z planes provide

evidence that VGluT2 immunopositive vesicles (green) may

contact cell bodies, proximal and distal dendrites of trigemino-

vascular neurons in LP (red; as shown in Fig. 2). Arrowheads

indicate probable contact point on each view. Note that some

green-labeled vesicles and red-labeled soma or dendrites are in the

same focal plane (yellow). Scale bar = 50 mm.

(TIFF)

Figure S2 Close apposition between VGaT immunopo-
sitive vesicles and thalamic trigeminovascular neurons.
The three views in the x–y, y–z and x–z planes provide evidence

that VGaT immunopositive vesicles (green) may contact cell

bodies, proximal and distal dendrites of trigeminovascular neurons

in VPM (red; as shown in Fig. 3). Arrowheads indicate probable

contact point on each view. Note that some green-labeled vesicles

and red-labeled soma or dendrites are in the same focal plane

(yellow). Scale bar = 50 mm.

(TIFF)

Figure S3 Close apposition between DBH immunoposi-
tive axons and thalamic trigeminovascular neurons. The
three views in the x–y, y–z and x–z planes provide evidence that

DBH immunopositive fibers (green) may contact cell bodies,

proximal and distal dendrites of trigeminovascular neurons in Po

(red; as shown in Fig. 6). Arrowheads indicate probable contact

point on each view. Note that some green-labeled axons and red-

labeled soma or dendrites are in the same focal plane (yellow).

Scale bar = 50 mm.

(TIFF)

Figure S4 Close apposition between TH immunoposi-
tive axons and thalamic trigeminovascular neurons. The
three views in the x–y, y–z and x–z planes provide evidence that

TH immunopositive fibers (green) may contact proximal and distal

dendrites of trigeminovascular neurons in Po (red; as shown in

Fig. 7). Arrowheads indicate probable contact point on each view.

Note that some green-labeled axons and red-labeled dendrites are

in the same focal plane (yellow). Scale bar = 50 mm.

(TIFF)

Figure S5 Close apposition between Histamine immu-
nopositive axons and thalamic trigeminovascular neu-
rons. The three views in the x–y, y–z and x–z planes provide

evidence that Histamine immunopositive fibers (green) may

contact cell bodies, proximal and distal dendrites of trigemino-

vascular neurons in LP (red; as shown in Fig. 8). Arrowheads

indicate probable contact point on each view. Note that some

green-labeled axons and red-labeled soma or dendrites are in the

same focal plane (yellow). Scale bar = 50 mm.

(TIFF)

Figure S6 Close apposition between MCH immunopo-
sitive axons and thalamic trigeminovascular neurons.
The three views in the x–y, y–z and x–z planes provide evidence

that MCH immunopositive fibers (green) may contact distal

dendrites of trigeminovascular neurons in VPM (red; as shown in

Fig. 9). Arrowheads indicate probable contact point on each view.

Note that some green-labeled axons and red-labeled dendrites are

in the same focal plane (yellow). Scale bar = 50 mm.

(TIFF)

Figure S7 Close apposition between Orexin A immuno-
positive axons and thalamic trigeminovascular neurons.
The three views in the x–y, y–z and x–z planes provide evidence

that Orexin A immunopositive fibers (green) may contact proximal

and distal dendrites of trigeminovascular neurons in LD (red; as

shown in Fig. 10). Arrowheads indicate probable contact point on

each view. Note that some green-labeled axons and red-labeled

dendrites are in the same focal plane (yellow). Scale bar = 50 mm.

(TIFF)

Figure S8 Density maps of thalamic innervation by
neurotransmitters and neuropeptides. Left: photomicro-

graphs showing immunofluorescence staining of each biomarker in

thalamic areas where juxtacellularly labeled trigeminovascular

neurons were recorded (for anatomical reference, see figures 2–6).

Right: Binary heat maps obtained from the images on the left

showing all pixels (in red) containing positive immunostaining.

Based on this data, objective measures to quantify density of

innervation were obtained and defined as follow: High: .5% of

positive pixels per image; Moderate: 1–5%; Low: ,1%. The

relative density of innervation by VGluT2, VGaT, SERT, DBH is

9.64% (high), 7.35% (high), 5.68% (high) and 3.2% (moderate) of

positive pixels, respectively. Scale bar = 100 mm.

(TIFF)

Figure S9 Density maps of thalamic innervation by
neurotransmitters and neuropeptides. Left: photomicro-

graphs showing immunofluorescence staining of each biomarker in

thalamic areas where juxtacellularly labeled trigeminovascular

neurons were recorded (for anatomical reference, see figures 7–

10). Right: Binary heat maps obtained from the images on the left

showing all pixels (in red) containing positive immunostaining.

The relative density of innervation by TH, Histamine, Orexin and

MCH is 8.61% (high), 1.21% (moderate), 0.59% (low) and 0.49%

(low) of positive pixels, respectively. Scale bar = 100 mm.

(TIFF)
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