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SUMMARY
Aging hematopoietic stem cells (HSCs) exhibit defective lineage specification that is thought to be central to increased incidence of

myeloid malignancies and compromised immune competence in the elderly. Mechanisms underlying these age-related defects remain

largely unknown. We show that the deacetylase Sirtuin (SIRT)1 is required for homeostatic HSC maintenance. Differentiation of young

SIRT1-deleted HSCs is skewed toward myeloid lineage associated with a significant decline in the lymphoid compartment, anemia, and

altered expression of associated genes. Combined with HSC accumulation of damaged DNA and expression patterns of age-linked mol-

ecules, these have striking overlapswith agedHSCs.We further show that SIRT1 controlsHSChomeostasis via the longevity transcription

factor FOXO3. These findings suggest that SIRT1 is essential for HSC homeostasis and lineage specification. They also indicate that SIRT1

might contribute to delaying HSC aging.
INTRODUCTION

Adult stem cells maintain tissue homeostasis by regenerat-

ing damaged or lost cells during their lifetime. The decline

of the regenerative capacity of stem cells with age compro-

mises tissue integrity and may promote organ failure and

diseases of aging (Liu and Rando, 2011). This age-related

decline in tissue function is considered to be at the root

of overall organismal aging. Whether mechanisms that

control aging of stem cells influence organismal longevity

is unknown. Identifying regulators of stem cell aging is of

major significance for public health because such regula-

tors may contribute to promote healthy aging and be valu-

able therapeutic targets to combat disorders of aging like

cancer and Parkinson’s disease.

Hematopoietic stem cells (HSCs) are themost extensively

studied model of stem cell aging. Although it has been

known for decades that HSC age (Harrison, 1983), and

the properties of aged HSCs have been greatly character-

ized, the mechanisms that govern HSC aging have only

begun to be defined. HSC aging leads to a paradoxical in-

crease in the stem cell pool and decline in stem cell func-

tion (Morrison et al., 1996; Sudo et al., 2000). One of the
44 Stem Cell Reports j Vol. 3 j 44–59 j July 8, 2014 j ª2014 The Authors
prominent modifications of HSC properties with age is

their biased differentiation toward myeloid lineage at the

expense of their lymphoid potential (Challen et al., 2010;

Dykstra et al., 2011; Rossi et al., 2005). These age-associated

modulations of the composition of HSC progenies lead to

defective adaptive immune response. Similarly, the age-

related increased incidence of myeloid malignancies,

including acute myeloid leukemias, myelodysplasias, and

myeloproliferative neoplasms, may be related to the

enhanced generation of myeloid skewed HSC progenies.

Aging of HSCs is also associated with increased onset of

anemia. Although defects in the DNA damage repair pro-

gram, increased tumor suppressor function, loss of polarity,

and epigenetic deregulation have all been implicated in

HSC aging, the mechanisms underpinning the age-associ-

ated alterations of HSC lineage specification remain largely

unknown (Chambers et al., 2007; Dykstra and de Haan,

2008; Florian et al., 2012; Rossi et al., 2005).

The NAD-dependent protein silent information regu-

lator 2 (Sir2) is a deacetylase for histones and other proteins

and a key regulator of life span in several organisms. Sirtuin

(SIRT)1 of the Sirtuin family is the closest homolog of yeast

Sir2 in mammals and has critical functions in the
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regulation of metabolism, genome stability, DNA repair,

chromatin remodeling, and stress response (Guarente,

2011; Haigis and Sinclair, 2010). SIRT1 coordinates plurip-

otency, differentiation, and stress response in mouse

embryonic stem cells (ESCs) (Han et al., 2008). Whether

SIRT1 regulates adult stem cells particularly in the hemato-

poietic system has been a matter of debate (Leko et al.,

2012; Li et al., 2012; Narala et al., 2008; Singh et al.,

2013; Yuan et al., 2012). Despite recent advances in under-

standing SIRT1 regulation of malignant and stressed hema-

topoiesis, whether SIRT1 has any function in the control of

adult HSC homeostasis or aging remains unknown.

The study of SIRT1 in adult mice and during aging has

been hampered by the developmental defects and perinatal

death of germline SIRT1 knockoutmice (Cheng et al., 2003;

McBurney et al., 2003). Using a recently developed adult

tamoxifen-inducible SIRT1 knockout mouse model (Price

et al., 2012), we show that SIRT1 is essential for the self-

renewal and homeostatic maintenance of the HSC pool.

Importantly, we show that loss of SIRT1 is associated with

anemia and a significant expansion of the myeloid

compartment, specifically granulocyte-monocyte progeni-

tors (GMPs), at the expense of the lymphoid compartment.

These phenotypic alterations are concomitant with signif-

icant modulations of expression of transcription factors

implicated in the generation of GMPs and common

lymphoid progenitors (CLPs). Notably, we show that the

longevity transcription factor FOXO3 mediates SIRT1

homeostatic effects in HSCs. These unexpected results

indicate that young SIRT1-deleted HSCs have several over-

lapping features with normal aged HSCs. Altogether, our

studies identify SIRT1 as a key regulator of HSC mainte-

nance under homeostasis. In addition, the evidence sup-

ports an essential function for SIRT1 in the regulation of

HSC lineage specification. Overall, our findings suggest

that SIRT1 might be implicated in delaying HSC aging.
RESULTS

Loss of SIRT1 Compromises Hematopoietic Stem Cell

Function at the Steady State

To address the potential function of SIRT1 in hemato-

poietic stem and progenitor cells (HSPCs), we first analyzed

SIRT1 expression. As predicted by previous studies (De-

neault et al., 2009), SIRT1 transcript was increased in

Lin�SCA-1+C-KIT+ (LSK) cells enriched for HSCs and in

Lin�SCA�1+C-KIT+ (c-Kit+) hematopoietic multipotential

progenitors as compared to total bone marrow (BM) cells

(Figure S1A available online). However, the level of SIRT1

transcript in LSK CD48�CD150+ that is highly enriched

for long-term HSCs (LT-HSCs), and in all hematopoietic

progenitor cells surveyed, was relatively similar (Fig-
ure S1B). SIRT1 protein was also readily detected in the

nucleus of HSPCs (Figure S1C). Next, we used sirtinol, a

pharmacological inhibitor of SIRT1 (Grozinger et al.,

2001), to evaluate whether SIRT1 has any functions in

HSCs. A 3 week in vivo injection of sirtinol led to a signifi-

cant decrease of the frequency and the total number of LSK

cells (Figures S1D and S1E) in the treated animals, including

the LSK CD48�CD150+ cell subset (Figures S1F and S1G).

To circumvent potential off-target effects of pharma-

cological inhibitors of SIRT1 and investigate the function

of SIRT1 more directly, we used a tamoxifen-inducible

SIRT1 deletion mouse model (Price et al., 2012). The

SIRT1 catalytic domain was conditionally deleted from 6-

to 8-week-old floxed SIRT1Dex4; Cre-ERT2mice by intraper-

itoneal tamoxifen injection over 5 days. The regimen led to

the expression of a truncated protein that was detected as a

lower molecular weight SIRT1 4 weeks after tamoxifen

treatment in the BM and spleen (Figure S2A). At the same

time, the truncated SIRT1 protein was detected in highly

purified HSPCs (Figure S2B). Notably, and in contrast to

Singh et al. (2013), this regimen did not significantly

modulate the BM cellularity (Figure S2C) overtimewhether

or not Crewas present (Figure S2D), enabling us to examine

the effects of loss of SIRT1 function on HSPCs under ho-

meostatic conditions.

The effect of SIRT1 deletion on the HSC compartment of

Sirt1fl/fl;Cre+ (D/D) mice was monitored at different time

points after tamoxifen treatment using both Sirt1fl/fl;Cre�

(fl/fl) and Sirt1WT/WT;Cre+ (WT/WT) mice as controls.

Loss of SIRT1 function in young adult mice resulted in a

gradual increase in the total number and the frequency of

both LSK cells (Figure 1A, top panel; Figure S2E) and LT-

HSC (LSK CD48�CD150+) (Figure 1A, bottom panel; Fig-

ure S2F) in the BM. In addition, the total number and

frequency of multipotent progenitors (MPPs; LSK FLK2+

CD34+) and lymphoid multipotent progenitor (LMPP; LSK

FLK2highCD34+) cells also increased in SIRT1-deleted mice

without significant effects on the short-term HSC (ST-

HSC; LSK FLK2�CD34+) (Figures 1B and S2G–S2H). These

results were intriguing and suggested that SIRT1-deficiency

compromised the HSC compartment at the steady state.

To evaluate whether SIRT1 has cell-autonomous func-

tions, we injected 100 highly purified SIRT1-deficient LT-

HSCs into lethally irradiated congenic-recipientmice along

with 200,000 recipient BM cells in an in vivo competitive

repopulation assay. Whereas control cells gave rise to

strong chimerism and multilineage reconstitution in all

12 transplanted recipients, the long-term repopulation

ability of SIRT1-deficient HSCs was 2.5-fold reduced as

compared to controls (Figure 1C). The analysis of recipient

mice 16 weeks after the primary transplantation showed a

significant decrease in the frequency and total number of

donor-derived LSK cells (Figure 1D), suggesting that
Stem Cell Reports j Vol. 3 j 44–59 j July 8, 2014 j ª2014 The Authors 45



Figure 1. Conditional Deletion of SIRT1 Compromises Homeostatic HSC Function
(A) Representative fluorescence-activated cell sorting (FACS) plots of LSK cells (left upper panel) and LSK CD48�CD150+ (LT-HSC) (left
lower panel) frequencies from Sirt1WT/WT (WT/WT; cre+), Sirt1fl/fl (fl/fl; cre�), and Sirt1D/D (D/D, cre+) BM (see Figures S2E and, S2F).
Fold change of total BM LSK (right upper panel) and LT-HSC (right lower panel) numbers normalized to Sirt1WT/WT controls set at one
(= 25,000 LSK and 4,000 LT-HSC; n = 6 mice for each group and time points; d, days; w, weeks after tamoxifen [Tamox] treatment).
(B) CD34 versus FLK2 expression analysis of LSK cells. Representative FACS plots of frequency of LT-HSC (LT) and ST-HSC (ST), MPP, and
LMPP within LSK cells (left panel) are shown. Total numbers of each population in the BM (right panel) 8 weeks after tamox treatment are
shown (n = 3 mice).

(legend continued on next page)
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SIRT1-deleted HSCs have a cell-autonomous functional

defect. These results were associated with a profound

decline in HSC self-renewal (Figure 1E). Equal numbers of

total bone marrow cells from both control and SIRT1-defi-

cient primary recipients were transplanted into lethally

irradiated secondary recipients. Whereas control cells ex-

hibited a normal ability to mediate long-term repopula-

tion, the reconstitution of SIRT1D/D cells was greatly

reduced in ten secondary recipients 4 to 16 weeks after

transplantation (Figure 1E). In addition, injection of three

times as many SIRT1-deficient HSCs as control cells did

not significantly improve reconstitution in secondary

transplants (Figure 1E), suggesting that SIRT1-defective

HSCs are highly compromised in their self-renewal ability.

Altogether, these findings may indicate that HSCs

expanded transiently in numbers in response to loss of

SIRT1 but were unable to maintain their function overtime

(Figures 1A–1E).

SIRT1 Maintains HSC Quiescence at the Steady State

In Vivo

To obtain further insight into the expansion and subse-

quent loss of HSC function, we examined HSC cell-cycle

status. Although there was no effect of SIRT1 deletion on

the cell-cycle distribution of total BM, BM cells depleted

of all mature cells (lineage-negative cells, Lin�) and c-Kit+

cells (Figures 2A and S2I), there was a significant increase

in the fraction of SIRT1-deleted LT-HSCs and LSK cells

that incorporated in vivo the nucleotide analog bromo-

deoxyuridine (BrdU) compared to their wild-type (WT)

counterparts (Figure 2A). In addition, the cycling fraction

of SIRT1-deleted MPP (LSK FLK2+CD34+) (Figure 2B) and

SIRT1-deleted lineage-restricted progenitors (LRP; LSK

CD48+CD150�) (Yilmaz et al., 2006) were significantly

increased (Figures 2A and S2I). Altogether, these results sug-

gest that the dividing fraction of SIRT1-deleted HSPCs,

including LT-HSCs had increased (p < 0.05), compared to

more restricted progenitors.

In agreementwith these findings, a significant fraction of

SIRT1-defective LSK cells exited quiescence (G0) as

compared to wild-type cells and showed increased expres-

sion of KI67 that marks proliferating cells (Figure 2C).

Staining with Hoechst 33342 and Pyronin Y for DNA/

RNA content led to similar results from LT-HSCs andHSPCs

as compared to c-Kit+ cells (Figure S2J). These abnormalities

of SIRT1-deleted HSPC cycling were associated with altered

expression of genes critical for the regulation of HSC
(C) The contribution of transplanted SIRT1-deleted LT-HSC (CD45.2)
population assay is shown (n = 12 mice in each group).
(D) Frequency and total number of donor LSK (CD45.2) cells 16 week
(E) Self-renewal analyzed by secondary transplantation of total BM c
from SIRT1D/D3X; n = 10 mice in each group). All data are expressed
dormancy versus cycling, including p27 (Cdkn1b), p21

(Cdkn1a), CyclinG2 (Ccng2), and CyclinD1 (Ccnd1) (Pas-

segué et al., 2005). Specifically, the expression of p27 and

CyclinG2 that is associatedwith themaintenance of quies-

cence (Cheng et al., 2000; Yalcin et al., 2008) was reduced,

whereas CyclinD1’s expression that is specifically increased

with HSC differentiation was highly enhanced in SIRT1-

deleted LT-HSCs (Figure 2D). These expression patterns

were relatively distinct from the ones observed in c-Kit+

cells (Figure 2D). Loss of SIRT1 was also associated with a

slight, but significant, decrease in apoptosis of LSK cells

(ANNEXIN V+ cells) (n = 6, p < 0.05) (Figure 2E). Consistent

with this, the expression of Bim and Bax, two critical medi-

ators of apoptosis, was significantly downregulated (Fig-

ure S2K). However, the altered apoptotic rate was also

seen in SIRT1D/D BM, Lin�, and c-Kit+ cells (Figure 2E), sug-

gesting that SIRT1 regulation of apoptosis of hematopoietic

cells is not limited to the HSPC compartment.

Together, these data indicate that SIRT1 has a significant

impact on the cycling status of HSPC compartments. In

particular, they suggest that SIRT1-defective HSCs exit

quiescence and enter the cell cycle to maintain a function-

ally declining HSC pool.

SIRT1 Is Essential for the Myeloid versus Lymphoid

Lineage Specification

Loss of SIRT1 function was associated with noticeable

anomalies in the peripheral blood (PB) cell counts (Fig-

ure 3A; Table S1). SIRT1-deficient mice displayed anemia,

significantly decreased absolute and relative numbers of

lymphocytes, and increased numbers of neutrophils,

monocytes, and eosinophils within 14 weeks after tamox-

ifen treatment (Table S1). Blood abnormalities were associ-

ated with lineage-specific defects (Figure 3A) in SIRT1D/D

BM (Figure S3A) and spleen (Figure S3B). In particular,

BM was enriched for colony-forming unit-spleen (CFU-S)

multipotent progenitors (Figure 3B). Consistent with these

results, themyeloid colony-forming cells were significantly

increased in SIRT1-deleted BM (Figure S3C). In addition,

anemiawas accompaniedwith a significant defect in termi-

nal erythroid maturation in SIRT1-deleted BM (Figures S4A

and S4B) and in the BM erythroblasts derived from SIRT1-

deleted HSC donors (Figures S4C and S4D).

Consistent with the PB count of SIRT1-deleted mice and

defective differentiation of SIRT1-deleted HSCs (Table S1),

frequencies of Gr-1+ Mac-1+ (Ly6G+CD11b+) myeloid cells

were increased, whereas frequencies of CD4+ CD8+, CD3+
to PB of recipient mice (CD45.1) in a long-term competitive re-

s posttransplantation in the BM of recipient mice (n = 6 mice).
ells from primary recipients (D/D 3X, three times as many BM cells
as mean ± SEM (*p < 0.05).
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Figure 2. Conditional Deletion of SIRT1 Compromises HSC Quiescence
(A and B) Representative FACS plots (upper panel) and mean values (lower panel) of cell-cycle distribution of BrdU incorporation of LT-
HSC, LSK, LSK CD48+CD150� (lineage-restricted progenitors, LRP; n = 3 mice) and c-Kit+ (n = 6 mice per genotype) (A) and of LSK
FLK2+CD34+ MPP cells (n = 3 mice per genotype) (B).
(C) Representative FACS plots (upper panel) and mean values (lower panel) of cell-cycle distribution by KI67/DAPI staining of LSK cells
(n = 6 mice per genotype).

(legend continued on next page)

48 Stem Cell Reports j Vol. 3 j 44–59 j July 8, 2014 j ª2014 The Authors

Stem Cell Reports
Aging-like Phenotype in SIRT1-Deleted HSCs



Stem Cell Reports
Aging-like Phenotype in SIRT1-Deleted HSCs
T lymphocytes were reduced in the PB of both primary

recipients of SIRT1-deleted HSC donors (Figures 3C and

S5A) and of secondary recipients at 16 weeks posttrans-

plantation (Figures 3D and S5B). These results altogether

reflect cell-autonomous defects of HSC differentiation.

Similar abnormalities were found in the BM (Figure S5C)

and spleen (Figure S5D) of the primary recipients. To

further delineate whether the SIRT1-deleted T and B

lymphoid abnormalities were HSPC driven, we isolated

SIRT1-deficient LSK cells 4 weeks after tamoxifen injections

and measured their potential to produce lymphoid cells

when cultured on stromal OP9-DL1 and OP9 monolayers

that support T and B cell growth, respectively (Schmitt

and Zúñiga-Pflücker, 2002; Vieira and Cumano, 2004).

The OP9 stromal cell line supports B cell growth under

defined in vitro condition (Vieira and Cumano, 2004),

whereas the OP9 line ectopically expressing the NOTCH

ligand Delta-like-1 protein supports the differentiation of

hematopoietic progenitors into T cells (Schmitt and Zú-

ñiga-Pflücker, 2002). In agreement with the in vivo find-

ings, the potential of SIRT1-deficient HSPCs to generate

T cells in vitro was significantly compromised without

noticeable effect on cell viability (Figures 3E, S6A, and

S6B; data not shown). Similarly, the B cell differentiation

potential was also impaired, albeit more mildly and with

a slightly different kinetic (Figures 3F, S6C, and S6D). These

combined findings strongly suggest that SIRT1-deleted

HSC differentiation is altered generating increasedmyeloid

and decreased lymphoid cells both in vivo and in vitro.

In support of this notion, SIRT1-deficient mice exhibited

splenomegaly (Figure 4A). The splenic architecture was

noticeably disorganized with regional disruption of the

white pulp and a concomitant increase in hematopoietic

elements in the red pulp that consisted mostly of myeloid

cells (Figure 4B). In contrast, the white pulp was composed

of a large number of pale, poorly defined lymphoid nodules

(Figure 4B). The total number of LSK cells in the spleen was

also increased (Figure 4C). Consistent with these results,

spleen histology revealed abundant extramedullary hema-

topoiesis associatedwith hemosiderin deposition in the red

pulp (Figure 4B).

In search for the source of lineage abnormalities, we

examined the hematopoietic progenitor compartment.

Unexpectedly, the myeloid-biased HSC differentiation

observed in SIRT1-deficient hematopoietic organs, was

associated with a significant and specific increase in the

GMP compartment in the BM detectable 10 weeks after
(D) qRT-PCR analysis of cell-cycle regulators. Results are relative t
independent experiments each based on three replicates of one pool
(E) Representative FACS plots (left panel, LSK) and frequency (right p
per genotype). In all experiments, SIRT1-deleted cells were isolated 4
(*p < 0.05).
tamoxifen treatment, whereas the size of commonmyeloid

progenitor (CMP) and megakaryocyte/erythroid progeni-

tor (MEP) compartments did not change (Figures 5A and

5B). These surprising alterations were further associated

with a progressive 2-fold decrease in the frequency of CLP

overtime (Figure 5B). Remarkably, the mild but specific

enhanced production of GMP associated with anemia

and decreased CLP characterizes the age-associated alter-

ations of HSC differentiation (Rossi et al., 2005, 2007a).

Hematopoietic lineage abnormalities of SIRT1-deleted

HSCs (Figures 3, 4, and 5; Figures S3–S6; Table S1)were asso-

ciated with alterations in the expression of several tran-

scription factors implicated in the generation of GMPs,

including C/EBPa, PU.1, GATA-1, and GATA-2 (Iwasaki

et al., 2006) (Figure 5C). Similarly, expression of lymphoid

specification transcription factors IKAROS andGATA-3 was

significantly reduced in SIRT1-deleted c-Kit+ multipotent

progenitors (Figure 5C). Key genes (Rothenberg and

Hogan, 2006) associated with eosinophil production,

including Gata2, Interleukin 5 receptor a (Il5ra), andmajor

basic protein 1 (Mbp1), were abnormally expressed in BM

myeloid progenitors (Figure 5D). Interestingly, Il5ra and

Mbp1 were highly upregulated in MEPs, where these genes

are normally undetectable (Figure 5D). Collectively, these

findings suggest that SIRT1 has a critical function in HSC

lineage specification, in particular in the control ofmyeloid

versus lymphoid lineage commitment.

Young SIRT1-Deleted HSCs Recapitulate the Main

Features of Aged HSCs

We further examined whether SIRT1-deleted HSCs exhibit

age-associated features. DNA damage is chief among mo-

lecular processes leading to cellular aging, including aging

of HSCs (Rossi et al., 2007b). Freshly isolated SIRT1-defi-

cient HSPCs exhibited accumulation of damaged DNA

overtime as indicated by increased phosphorylation of

histone H2AX that marks the response to DNA damage

(Figure 6A). These abnormalities were associated with

increased length of comets generated by DNA breaks in

gel electrophoresis (Figure 6B), suggesting that loss of

SIRT1 results in relative loss of DNA repair potential of

HSPCs. Accumulation of reactive oxygen species (ROS)

has been associated with an aging phenotype in many

cell types (Dykstra and de Haan, 2008). SIRT1-deficient

HSPCs exhibited increased levels of ROS measured by

flow cytometry in freshly isolated cells using the oxidative

stress-sensitive CM-H2DCFDA probe (Figure 6C). ROS
o Sirt1fl/fl set at one in each population (results are from three
of three mice).
anel) of apoptotic cells (ANNEXIN V+ 7AAD-) in the BM (n = 6 mice
weeks after tamox treatment. All data are expressed as mean ± SEM
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Figure 3. SIRT1-Deleted HSCs Generate In Vivo Myeloid-Biased and Lymphoid-Defective Progenies
(A) Impact of SIRT1 deficiency on the hematopoietic lineages is shown. Green and red arrows indicate increased and decreased cell
populations, respectively.
(B) Representative spleens with CFU-S-derived colonies (upper panel) and mean values of BM CFU-Sd12 frequency (lower panel). One
representative of three independent experiments (n = 5 mice in each group) is shown.
(C) Frequency of donor (CD45.2+)-derived multilineage mature cells in the PB of primary transplants (n = 4), at indicated time points
posttransplantation.

(legend continued on next page)
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Figure 4. Extramedullary Hematopoiesis in SIRT1-Deleted Mice
(A) Representative spleens (left panel) and mean values of cellularity (mid panel) and weight (right panel), 4 weeks after tamox treatment
are shown (n = 6 mice per genotype).
(B) Representative hematoxylin and eosin (H&E) staining of paraffin-embedded sections of spleen 8 weeks after tamox treatment at
distinct magnifications. Stars and arrows indicate the red and white pulps, respectively. Scale bar, 200 mm (upper panel). Stars and arrows
show myeloid cell increase and hemosiderin deposition in the red pulp, respectively. Scale bar, 20 mm (lower panel).
(C) Total number of LSK cells in the spleen 4 weeks after tamox treatment (n = 6 mice in each group). All data are expressed as mean ± SEM
(*p < 0.05).
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accumulation was associated with decrease of several anti-

oxidant transcripts (Figure 6D) 4 weeks after tamoxifen

treatment, indicating that SIRT1 is required for themainte-

nance of HSPC redox homeostasis. We also examined the

expression of a number of molecules that are modulated

with age in HSCs. Among these, the levels of LT-HSC

expression of integrin aIIb (itga2b, CD41), a classic platelet

marker, and the CD150 Slam protein that marks LT-HSCs

increase with age (Beerman et al., 2010; Gekas and Graf,

2013). Similarly, CD41 was highly upregulated on SIRT1-

deleted LT-HSCs (Figure 6E). The frequency of SIRT1-

deleted LT-HSC subset expressing CD41 also increased to
(D) Frequency of donor (CD45.2+)-derived multilineage mature cells i
(E and F) Representative FACS plots of T (E) and B (F) cell differentia
stromal lines. Frequencies of T cells within the CD4� and CD8� doubl
within CD45-positive cells (F, right panel) are shown; one representati
schematic progression of the T and B cell differentiation is shown (sa
(*p < 0.05).
79.4% ± 2.3% from 64.4% ± 3.2% on wild-type controls

(p < 0.011, n = 3 mice) (Figure 6E). Notably, the increase

of CD41 levels was the highest on CD150high-expressing

LSK cells (Figure S7A), further supporting the aging-like

phenotype of SIRT1-deleted HSCs. Like on old (16months)

wild-type LSK cells, the expression of P-SELECTIN protein

(Chambers et al., 2007; Rossi et al., 2005) was increased

on the surface of young SIRT1D/D LSK cells (Figure 6F).

Expression of several other genes also highly modulated

with age in HSCs, including Sox4, Fos, and Pml (Rossi

et al., 2005), was similarly altered in young SIRT1-deficient

HSCs and old controls (Figure 6G). In line with a potential
n the PB of secondary transplants (n = 5).
tion of LSK cells cultured in vitro for 16 days on OP9-DL1 and OP9
e-negative (DN) cells positive for CD45 (E, right panel) and B cells
ve of two independent experiments (n = 3 technical replicates). The
me as the third panel of Figure S6). Data expressed as mean ± SEM
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Figure 5. SIRT1-Deleted HSPCs Are Altered in Their Lineage Specification
(A) Representative FACS plots of GMP, CMP, and MEP 10 weeks after tamox treatment.
(B) GMP, CMP, MEP, and CLP frequencies in the BM after tamox treatment (n = 6 mice per group).
(C) qRT-PCR analysis 10 weeks (20 weeks in the case of IKAROS and GATA-3) after tamox treatment. Results are relative to Sirt1fl/fl (n = 6
from two independent experiments). nd, not done.
(D) Gene expression analysis of eosinophil markers in GMP, CMP, and MEP by qRT-PCR (normalized to b-actin) 14 weeks after
tamox treatment. Results are relative to Sirt1fl/fl c-Kit+ (n = 3 replicates from one pool of three mice). All data are expressed as mean ± SEM
(*p < 0.05).
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contribution of defective SIRT1 to HSC aging, expression of

SIRT1 in the old versus young HSPCs was reduced 2-fold

(Figure 6H).

One of the main features of aging is a declining immune

system associated with impairment in T cell production
52 Stem Cell Reports j Vol. 3 j 44–59 j July 8, 2014 j ª2014 The Authors
and function (Linton and Dorshkind, 2004; Rossi et al.,

2007a). We found that despite the significant decrease in

the CD4+ T cell population (Figures 2 and 3; Figures S3,

S5, and S7A), the total number of CD4+ CD25+ FOXP3+ reg-

ulatory T cells (Treg cells) remained unaltered by the loss of



Figure 6. Young SIRT1-Deleted HSPCs Exhibit Main Features of Old HSPCs
(A) Frequency of gH2AX-positive cells within LSK compartment of freshly isolated bone marrow 38 weeks after tamox treatment is shown
(n = 3 mice per genotype).
(B) Comet length of damaged DNA measured in pixels in freshly isolated LSK cells from (A) (left panel). Representative micrographs are
shown (right panel) (n = 3 replicates per group).
(C) Endogenous ROS measured by CM-H2DCFDA in LSK cells isolated from mice 4 weeks after tamox treatment (n = 9 mice per genotype).
(D) qRT-PCR analysis of antioxidant enzymes glutathione peroxidase 1 (Gpx1), superoxide dismutase (Sod) 1 and 2, 4 weeks after tamox
treatment. Results are relative to Sirt1fl/fl (n = 6 replicates from two independent experiments).

(legend continued on next page)
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SIRT1 (Figure S7B), indicating that the frequency of T regs

was increased in the peripheral blood of SIRT1-deleted

mice (Figures S7C and S7D). Similar alterations are

observed in some of the disorders of aging (Kordasti et al.,

2007).

Collectively, these findings suggest that loss of SIRT1

leads to disparate and considerable changes inHSCmainte-

nance and lineage specification and may promote an

aging-like phenotype in young HSPCs.

FOXO3 Is Required for SIRT1 Regulation of HSC

Activity

SIRT1’s impact on HSCs may be via several mediators. One

of the potential mechanisms through which SIRT1 may

contribute to the HSC phenotype is by deacetylation of a

number of targets, including FOXO3, p53, and HIF1a

(Haigis and Sinclair, 2010). Among these, we focused on

FOXO3 as the hematopoietic phenotypes of SIRT1D/D

and Foxo3�/� mice are similar in many respects (Figures 1,

2, 3, 4, 5, and 6; Figures S3, S5, S7E, and S7F), specifically

in the HSC and myeloid compartments, despite condi-

tional versus germline deletion of Sirt1 versus Foxo3, respec-

tively (Hedrick et al., 2012; Marinkovic et al., 2007; Miya-

moto et al., 2007; Yalcin et al., 2008, 2010). Furthermore,

although FOXO3 is a known SIRT1 substrate (Brunet

et al., 2004; Motta et al., 2004), the outcome of SIRT1

deacetylation of FOXO3 is likely context dependent and

unknown in HSCs. Lastly, FOXO3, like SIRT1, is an evolu-

tionarily conserved regulator of organismal longevity (Eij-

kelenboom and Burgering, 2013; Zhang et al., 2011a).

We reasoned that if FOXO3 was the mediator of SIRT1’s

impact on HSCs, then inhibition of SIRT1 would not affect

significantly the Foxo3�/� HSC compartment. Whereas

sirtinol inhibition of SIRT1 in vivo compromised the fre-

quency of LSK, LT-HSCs, and the capacity for long-term

competitive repopulation in WT mice (Figures 7A and 7B)

as we had previously observed (Figures S1D–S1G), adminis-

tration of sirtinol to Foxo3�/� mice did not affect their LSK

or LT-HSC compartments (Figure 7A) or the competitive

repopulation ability of Foxo3�/� HSCs (Figure 7B), suggest-

ing that FOXO3 is required for the inhibitory effects of

sirtinol on HSCs.

Similarly, we hypothesized that if FOXO3 is a SIRT1 sub-

strate in HSPCs, then mice lacking both FOXO3 and SIRT1

in HSPCs should exhibit a phenotype similar to that
(E) Representative FACS plots (left panel) of levels of CD41 on LSK CD
expressing CD41 (right panel) measured 4 weeks after tamox treatme
(F) Representative FACS plots (left panel) of P-SELECTIN expression in
Fold change of P-SELECTIN-positive LSK cells (right panel) normalize
(G) qRT-PCR analysis 14 weeks after tamox treatment. Results are relati
(H) qRT-PCR analysis of young (12-week-old) and old (16-months-old)
three independent experiments). All data are expressed as mean ± SE
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observed in FOXO3-deficient HSPCs. Indeed, Foxo3�/�/
Sirt1D/D and Foxo3�/� HSPC phenotypes were remarkably

similar in that they were both reduced in numbers (Fig-

ure 7C) and in the quiescent fraction (Figure 7D), further

suggesting that SIRT1 is an upstream activator of FOXO3

in HSPCs. We next asked whether SIRT1 deacetylation

directly modulates FOXO3’s activity in HSPCs. In addition

to acetylation/deacetylation, phosphorylation by AKT

kinase represses FOXO3’s function by promoting its nu-

clear exit (Eijkelenboom and Burgering, 2013; Zhang

et al., 2011a). However in HSPCs, FOXO3 is mostly in the

nucleus even when pAKT is constitutively active (Lee

et al., 2010; Yalcin et al., 2008) (data not shown), suggest-

ing that additional mechanisms are involved. In contrast

to wild-type cells, FOXO3’s localization in SIRT1-deficient

HSPC nuclei was significantly reduced (Figure 7E).

FOXO3’s transcriptional activity was also decreased in

SIRT1-deficient HSPCs as illustrated by reduced expression

of a number of FOXO3’s direct targets, including p27

(Cdkn1b), Bnip3, CyclinG2 (Ccng2), Sod2, and Bim, and by

modulation of CyclinD1 (CCND1) (Figures 2D, 6D, and

S7F). In agreement with these results, the nuclear localiza-

tion of an ectopically expressed FOXO3 that is mutated to

mimic constitutive acetylation (FOXO3 5KQ, 5 lysine resi-

dues mutated to glutamine) was significantly reduced in

BM mononuclear cells (Figure 7F).

These combined results strongly suggest that FOXO3 is a

substrate of SIRT1 in HSCs and that SIRT1 deacetylation is

key in promoting FOXO3’s retention in HSC nuclei and

maintaining FOXO3 in an active form in these cells. They

also support the notion that reduced FOXO3 proapoptotic

function (Figures 2E and S2K) may protect SIRT1-deleted

HSCs from apoptosis despite elevated ROS (Figures 2E,

6C, and 6D). Collectively, these findings indicate that

SIRT1-FOXO3 constitutes a regulatory pathway controlling

HSC maintenance.
DISCUSSION

SIRT1 Is a Critical Regulator of Homeostatic Adult

HSCs with Potential Functions in Delaying the HSC

Aging

Our key finding is that SIRT1-deficient HSCs recapitulate

within a temporal window some of the main features of
48�CD150+ (middle panel) and frequency of LSK CD48�CD150+ cells
nt (n = 3 mice per genotype).
LSK cells 6 weeks after tamox treatment, and in 16 months old LSK.
d to young Sirt1fl/fl control (n = 6 mice).
ve to Sirt1fl/fl (n = 6 replicates from two independent experiments).
WT LSK cells. Results are relative to young LSK (n = 9 replicates from
M (*p < 0.05).



Figure 7. SIRT1 Controls Hematopoietic Homeostasis by Promoting FOXO3 Nuclear Localization and Activity in HSCs
(A) Total number of BM LSK (left panel) cells and LT-HSC (right panel) isolated from WT and Foxo3�/� mice treated with Sirtinol (Sir) or
vehicle control (Ct) for 3 weeks (n = 3 mice in each group).
(B) Long-term competitive repopulation of 100 transplanted HSC (from A) as measured by the percent of CD45.1 in the PB of recipient mice
16 weeks after transplantation (n = 5 mice in each group).
(C) Total number of LSK cells isolated from BM of indicated mice (n = 3 mice in each group).
(D) LSK cell-cycle distribution of mice from (C) measured by KI67/DAPI staining (n = 3 mice per genotype).
(E) FOXO3 immunostaining (left panel) and quantification (right panel) measuring the cell plot profile are shown.

(legend continued on next page)
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HSC aging. Specifically, the expansion of HSC numbers,

albeit transient, followed by depletion overtime of HSC

function overlaps with aged associated HSC defects. These

abnormalities combined with anemia, myeloid skewed

HSC differentiation, enhanced specific production of

GMPs and immune deficiency, enhanced oxidative stress,

greater DNA damage, and age-related modulations of

gene expression suggest that young SIRT1-deleted HSCs

may exhibit a premature aging phenotype (Chambers

et al., 2007; Morrison et al., 1996; Sudo et al., 2000; Yilmaz

et al., 2006). A greater fraction of HSCs in old BM is cycling,

although this increased cycling may only be observed in

mice older than 22–24 months (Dykstra and de Haan,

2008; Morrison et al., 1996; Yilmaz et al., 2006). In agree-

ment with an aging-like HSC phenotype, a significant frac-

tion of SIRT1-deficient HSCs exited quiescence and entered

the cell cycle (Figures 2A–2C; Figures S2I and S2J). None-

theless, SIRT1-deleted HSCs do not phenocopy aged

HSCs, as the MPP subset is increased in SIRT1-deleted

HSPCs in contrast to aged HSPCs (Rossi et al., 2005,

2007a). Although the defects of SIRT1-deleted HSCs are

cell autonomous, our studies do not rule out potential

participation of non-cell-autonomous mechanisms. This

work suggests a model in which SIRT1 wires together a

combinatorial transcriptional program in HSPCs. Overall,

our findings predict that a decline in SIRT1 function, as it

may occur with age (Figures 6H and 7G), would result in

disruption (or destabilization) of SIRT1-regulated HSPC

transcriptional program.

Recent studies suggest that aging changes the clonal

composition of HSC compartment rather than their

intrinsic properties (Dykstra and de Haan, 2008). While

our findings are in agreement with a potential SIRT1 re-

pression of myeloid biased HSC clones that dominate

with age, they also suggest that SIRT1 may have additional

protective functions toward key HSC programs that

become compromised with age, such as the capacity to

repair damaged DNA.

The question of whether SIRT1 has any functions in

normal adult HSC has long been debated. Depending on

their strain, a significant proportion of germline-deleted

SIRT1 mice die perinatally, resulting in only a fraction of

mice surviving to adulthood. SIRT1 was dispensable for

the HSC activity, perhaps due to developmental adaptation

of HSCs in the surviving mice (Leko et al., 2012; Li et al.,

2012; Narala et al., 2008; Yuan et al., 2012). On the other

hand, using a tamoxifen-inducible conditional deletion

approach, it was shown recently that SIRT1 is required for
(F) The mean fluorescence of nuclear cytoplasmic ratio (lower panel)
expressing Flag-FOXO3-WT or Flag-FOXO3-5KQ, immunostained with a
(G) Model of SIRT1/FOXO3 regulation of HSC maintenance and lineage
SIRT1 function contributes to the HSC aging. All data are expressed a
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HSPC genome stability under stress (Singh et al., 2013).

We demonstrated that SIRT1 is essential for HSC function

and lineage specification under homeostatic conditions

even when BM is not stressed (Figures 1 and S2).

SIRT1 Regulates Hematopoietic Stem Cell Lineage

Decision

One of the most unexpected findings was the skewed gen-

eration of myeloid lineage at the expense of the lymphoid

compartment uncovered in young SIRT1-deleted HSCs.

The propensity toward myeloid differentiation associated

with immune defects is one of the hallmarks of HSC aging

in both mouse and human (Linton and Dorshkind, 2004;

Pang et al., 2011; Rossi et al., 2005; Sudo et al., 2000).

The specific increased generation of GMPs (Figures 5A

and 5B) was greatly similar to the mild specific increase in

GMPs produced in old BM (Rossi et al., 2005, 2007a). The

shift in the lympho-myeloid cell ratio in the BM, spleen,

and peripheral blood of SIRT1-deficient mice (Figures 3

and 4; Figures S3 and S5; Table S1) that became highly pro-

nounced overtime underscores the function of SIRT1 in

balancing the generation of hematopoietic lineages from

HSCs.

The increased expression of GATA-1 and GATA-2 in

SIRT1-deleted hematopoietic progenitors (Figures 5C and

5D) is in agreement with the function of these factors in

GMPs and eosinophil production (Hirasawa et al., 2002;

Iwasaki et al., 2006). The reduced expression of myeloid

transcription factors C/EBPa and PU.1, specifically in

multipotential progenitors (Figure 5C), was unexpected.

These results may indicate that relative expression of

myeloid transcription factors, as is the case for their order

of expression (Iwasaki et al., 2006), may influence lineage

specification.

SIRT1 Maintains HSC Homeostasis by Promoting

FOXO3 Nuclear Localization and Activation

We identified FOXO3 as a SIRT1 substrate in HSCs that

mediates SIRT1’s effects on HSCs. FOXO3 like SIRT1 is

implicated in the regulation of mouse ESC pluripotency

(Han et al., 2008; Zhang et al., 2011b). Similarly, FOXO3

is required for the maintenance of HSC pool (Miyamoto

et al., 2007, 2008; Yalcin et al., 2008). FOXO3mutant mye-

loproliferation and decreased B and red blood cells (Hin-

man et al., 2009; Marinkovic et al., 2007; Miyamoto

et al., 2007; Yalcin et al., 2008, 2010) (data not shown)

are similarly observed in SIRT1-deficient mice. Moreover,

loss of FOXO3 like (Figure S7E) SIRT1 (Figure 5B) leads
of 50 GFP-sorted mouse bone marrow mononuclear cells retrovirally
nti-Flag antibody (upper panel).
specification. The model raises the question as to whether reduced
s mean ± SEM (*p < 0.05, ns, not significant).
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specifically to enhanced generation of GMPs, altogether

indicating that SIRT1 regulation of FOXO3might be impli-

cated in myeloid and B cell lineage determination. The

impact of SIRT1 (Figures 3A and 3C–3F; Figures S3, S5,

and S6; Table S1) and FOXO3 on the T cell compartment

however seems distinct (Hedrick et al., 2012). Interestingly,

SIRT1 like (Li et al., 2012; Yuan et al., 2012) FOXO3 (Ghaf-

fari et al., 2003; Naka et al., 2010; Sykes et al., 2011) is impli-

cated in leukemogenesis and required for the maintenance

of leukemic stem cells.

Our studies combined with recent findings regarding

SIRT3 (Brown et al., 2013) further implicate sirtuins in

protecting HSCs from aging. Future investigations in the

potential involvement of SIRT1/FOXO3 (Mouchiroud

et al., 2013) in stem cell programs other than HSCs,

including neural stem cells (Renault et al., 2009), should

clarify whether and to what extent stem cells rely on this

network for their maintenance over a lifetime.
EXPERIMENTAL PROCEDURES

Mice
The generation and genotyping of mice were performed as previ-

ously described (Price et al., 2012). SIRT1Dex4 (C57BL6, CD45.2)

were crossed to Cre-ERT2 mice to generate SIRT1Dex4-ERT2

mice. The Cre induction was performed by delivering tamoxifen

intraperitoneally (1 mg/mouse/day) (Sigma T5648) for 5 consecu-

tive days to SIRT1Dex4-ERT2 mice (designated D/D). This regimen

resulted in deletion of SIRT1 exon 4 and a truncated SIRT1 protein

that lacked its catalytic domain. Control mice, including animals

with a wild-type Sirt1 allele and Ert2 (Sirt1WT/WT), and flox-

SIRT1Dex4 mice lacking Ert2 (Sirt1fl/fl) were used. The efficient

deletion after tamoxifen treatment was confirmed by PCR analysis

of genomic tail DNA. Foxo3�/�mice, a gift of Dr. RonDepinho (MD

Anderson Cancer Center), were backcrossed ten generations

onto C57BL6 (CD45.1) background (Yalcin et al., 2008, 2010).

Because of the proximity of Foxo3 and Sirt1 genes on mouse

chromosome 10, the following strategy was devised to generate

Sirt1D/DFoxo3�/� mice (designated D/DFoxo3�/�): Sirt1fl/fl cre+

Foxo3WT were crossed with Sirt1WT/WT cre� Foxo3�/� mice. The

F1 population Sirt1fl/WT cre+ Foxo3+/� were intercrossed to obtain

Sirt1fl/fl cre+ Foxo3+/� mice. The F2 population Sirt1fl/fl cre+

Foxo3+/� mice were intercrossed to obtain Sirt1fl/fl cre+ Foxo3�/�

mice. Young mice in all experiments were 10–12 weeks old. Mice

were used in accordance with the protocols approved by the Insti-

tutional Animal Care and Use Committee of Icahn School of Med-

icine at Mount Sinai.
Long-Term Repopulation Assay
Lethally irradiated (12 Gy as a split dose, 6.5 and 5.5 Gy, 4–5 hr

apart) congenic C57BL6-CD45.1 mice (from the National Cancer

Institute) were reconstituted with intravenous injections of 100

donor LSK CD48�CD150+ cells from Sirt1WT/WT (Cre+), Sirt1fl/fl

(Cre�), or SIRT1D/D mice (Cre+) (all CD45.2) 4 weeks after tamox-

ifen treatment along with 2 3 105 competitor bone marrow cells
(CD45.1). For secondary transplantations, an equal number (2 3

106) of total bone marrow cells from primary recipients or three

times more (6 3 106) from SIRT1D/D LSK CD48�CD150+ were

pooled and transplanted into lethally irradiated CD45.1 secondary

recipients. A long-term repopulation assay of Foxo3�/� (CD45.1)

mice was performed by transplantation into lethally irradiated

CD45.2 recipients.
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