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Abstract

Acute kidney injury (AKI) is a common and significant medical problem. Despite the kidney’s remarkable regenerative
capacity, the mortality rate for the AKI patients is high. Thus, there remains a need to better understand the cellular
mechanisms of nephron repair in order to develop new strategies that would enhance the intrinsic ability of kidney tissue to
regenerate. Here, using a novel, laser ablation-based, zebrafish model of AKI, we show that collective migration of kidney
epithelial cells is a primary early response to acute injury. We also show that cell proliferation is a late response of
regenerating kidney epithelia that follows cell migration during kidney repair. We propose a computational model that
predicts this temporal relationship and suggests that cell stretch is a mechanical link between migration and proliferation,
and present experimental evidence in support of this hypothesis. Overall, this study advances our understanding of kidney
repair mechanisms by highlighting a primary role for collective cell migration, laying a foundation for new approaches to
treatment of AKI.
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Introduction

Acute kidney injury (AKI) is a very common medical problem

resulting in significant morbidity and mortality [1,2]. The current

treatment of AKI is predominantly supportive [3,4].The kidney

has a remarkable ability to repair, and patients that can be

successfully supported have a good chance of recovering adequate

kidney function. However, despite significant efforts towards

improving early diagnosis of AKI [5] to limit the severity of the

illness, early detection and prevention of acute kidney injury is not

always possible and the mortality rate for the AKI patients who

require dialysis is still 50–80% [4]. Thus, there remains a need to

develop strategies to enhance the intrinsic ability of kidney

nephrons to regenerate.

Recent studies have suggested that, following an ischemic

kidney injury, remaining epithelial cells repopulate the injured

tubule without a contribution from stromal or circulating

progenitor cells [6,7]. Therefore, identifying the basic mechanisms

governing the intrinsic epithelial restitution is central to under-

standing how the kidney recovers from AKI and to designing

optimal strategies for treatment of patients with AKI.

It has been long acknowledged that cell proliferation plays a

major role in kidney recovery from acute injury [8,9]. Addition-

ally, based on indirect evidence, cell migration has been suggested

to be a component of kidney repair [10]. Another potential process

that may play a prominent role in kidney repair is epithelial de-

differentiation and metaplasia [8–10]. However, the relative

importance of these processes in kidney repair remains unknown,

in part due to the limitations of mammalian AKI models where

precise spatio-temporal control and visualization of repair

mechanisms remain challenging. To address the relative roles of

cell migration, cell proliferation and cell metaplasia in kidney

repair, we designed a novel assay of segmental acute kidney injury

using the zebrafish pronephros as a model system.

The pronephric kidney in larval zebrafish is a mature

functioning organ that contains segments similar to the mamma-

lian nephron, including a glomerulus, proximal and distal tubules

and a collecting duct [11]. Thus, larval pronephric kidney (5–

14 dpf) can be utilized to study cellular and molecular processes

involved in kidney injury and repair. The most common model to

study kidney injury in zebrafish is a gentamicin model [12,13]. It

has been used successfully to screen for compounds that might

enhance kidney repair process [14]. Despite being a very powerful

model, it does not allow a precise spatiotemporal control of the

injury. This makes it difficult to study cellular and molecular

processes involved in kidney repair. To overcome this limitation,

we developed a method that uses a low energy targeted violet laser

light (405 nm) to induce segmental ablation of GFP-expressing

pronephric nephron segments. The repair process can then be

directly monitored by time-lapse microscopy in these kidney-GFP
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fluorescent transgenic fish. Similar to other laser ablation

techniques [15], this system provides significant advantages over

existing models of epithelial injury. On one hand, it allows us to

study in vivo processes in a vertebrate organism, thus overcoming

limitations of cell culture assays. On the other hand, it provides

spatial and temporal control over the timing and extent of injury

and allows for direct visualization of repair processes rivaling that

offered by in vitro assays. Using this method we show that

collective cell migration is the first response of kidney epithelia to

injury. Our results also suggest that cell migration is a primary

stimulus for subsequent cell proliferation.

Results

A novel model of AKI based on focused violet laser
photoablation

To investigate the role of cell migration, cell proliferation and

cell metaplasia in kidney repair, we developed a new in vivo
model of segmental kidney injury using transgenic zebrafish. The

transgenic zebrafish, expressing GFP in kidney tubule (ET11-9,

ET33d10 and Tg(atp1a1a.4:GFP), were subjected to a localized

violet (405 nm) laser irradiation focused on a 20–100 mm span of

pronephric epithelium using a confocal microscope. This ap-

proach allowed us to target a defined group of cells (from one to

hundreds) in a single window (Figure 1 A). The rationale for this

method is twofold: 1) GFP fluorescence allows us to focus the laser

beam with maximal intensity in the GFP-expressing tissue; 2) GFP

actively absorbs light around 405 nm, presumably acting as energy

sink to potentiate cell injury. The part of the tubule irradiated with

the 405 nm laser can be seen just after the photoablation by

observing GFP photobleaching (Figure 1 A: middle panel, B:

upper panel). As we predicted, this method produced a sharply

defined segment of epithelial cell death within the first 1–3 hours

after irradiation (Figure 1 A,B).

To confirm cell death (as opposed to loss of fluorescence) we

performed propidium iodide (PrI) staining in live zebrafish larvae.

The disappearance of GFP positivity in injured cells strongly

correlated with PrI staining. With a sufficient laser exposure, the

entire stretch of the exposed pronephric epithelium lost GFP

fluorescence and became PrI-positive within just one hour

(Figure 1 B). The injured cells subsequently ‘spilled’ their content

into the lumen (Figure 1 B, lower panel, arrowhead). Consistently,

some cellular material (mainly the membranous component) was

left behind, forming a plug that often resulted in obstructive

dilatation of the epithelium upstream of the injury site (Movies S4,

S5). This was similar to proteinaceous debris seen in mammalian

acute kidney injury (Figure S1).

We confirmed the specificity of kidney injury by electron

microscopy at 3 hours post injury (hpi). While kidney tubule cells

degenerated, leaving behind compacted swollen mitochondria

(Figure 1 C, arrowheads), non-epithelial cells at the injury site were

preserved (Figure 1 C, star). In addition, the basement membrane

was also preserved (Figure 1 C, arrows). Thus, our method allows

us to induce targeted ablation of kidney epithelial cells while

preserving the surrounding tissues.

Collective cell migration during kidney repair
We studied the behavior of the adjacent surviving epithelial cells

by time lapse confocal microscopy (Figure 2, Movies S1–S5). We

observed that surviving proximal and distal tubule epithelia

responded by bi-directional migration to close the epithelial gap

Figure 1. 405 nm laser ablation induces kidney specific segmental epithelial injury in GFP transgenic zebrafish. (A) 12 dpf zebrafish
was subjected to 405 nm laser treatment using a confocal microscope. The plane of maximal illumination was guided by kidney GFP fluorescence
(here- E11-9 transgenic fish). The laser scan window is shown by the white rectangle. Efficient laser treatment was monitored by observing GFP
bleaching in the ablated area (with a target of ,50% initial reduction in GFP fluorescence). The ablated segment continued to lose GFP positivity with
only an occasional cell surviving at 160 min post- laser treatment. The arrow points to a sharply defined edge of surviving epithelium. Scale
bar = 70 mm. (B) Propidium iodide (PrI, red) staining confirmed that loss of GFP positivity was due to cell death, as opposed to other mechanisms. As
cells in the injured segment lost GFP positivity, they became strongly PrI-positive. Every cell showed PrI positivity by 60 min post injury, and by
210 min PrI-positive material was seen exclusively in the distended lumen proximal to the obstructed segment (lower panel). PrI-positive material
could also be seen transiting through the distal tubule (arrow in 20 min panel). Scale bar = 100 mm. (C) Electron microscopy of the injured epithelium
3 hours post-laser treatment shows compacted swollen degenerated mitochondria (arrowheads). The basement membrane (pink, arrows) and the
adjacent, likely stromal or endothelial cell (green, star) is preserved. ‘‘n’’ – intact nucleus, ‘‘ly’’ – lysosome. Scale bar = 1000 nm.
doi:10.1371/journal.pone.0101304.g001
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after acute injury (Figure 2 A–D). The pronephric epithelium

migrated as confluent epithelial sheets, preserving cell-to-cell

contacts, indicative of collective cell migration [16]. In addition,

we did not see GFP-expressing cells escape confines of the tubule.

The rate of the epithelial migration (average of 7.4 mm/h over the

first 2 hours after the onset of migration) was similar to that

observed during kidney development and in vitro scratch assays of

kidney epithelial lines [17]. The migration started without delay

immediately after the death of the injured epithelial segment. It

was fastest during the first hours post-injury and slowed as

migration continued (Figure 2 E,F). This pattern was different

from that reported in cultured kidney epithelial cells [17], where

the migration accelerated with time. We intentionally examined

embryos and larvae at different times during development to

determine if the migratory response was different in zebrafish of

different age. The initial migration rate was independent of the age

of the fish, but the migration rates declined more slowly in younger

fish (2–3 dpf) compared to older ones (5–10 dpf, Figure 2 F). The

peak migration rate was independent of the length of the injured

segment (Figure S2). Migration continued until two surviving

epithelial sheaths came in contact and re-established epithelial

continuity (Figure 2, B–D). The extent of migration varied with

the position of the cell relative to the migration edge. About 50 mm

of the epithelium immediately adjacent to the injured segment

migrated with very similar rates (Figure S3). However, further

away from the migration edge, there was a significant drop in the

extent of migration. As a result, the epithelial segment ,100 mm

from the migration edge appeared to experience the most

migration-induced linear stretch.

Absence of epithelial to mesenchymal transition
It has been proposed that induction of cell migration may

require loss of epithelial identity and acquisition of a more

mesenchymal phenotype [9,10,18]. To investigate whether

epithelial to mesenchymal transition occurs during kidney

migration after segmental photoablation, we stained migrating

epithelia for a number of epithelial and mesenchymal markers.

Cilia are localized on the apical (luminal) side of the epithelial cells.

We observed that migrating epithelia retained their apical cilia

even at the migrating front (Figure 3 A,B, Figure S2). Interestingly,

we could observe cilia bundles and clumps in the middle of the

injured segment. These likely represent degenerated cellular

material as part of the ‘‘proteinacious’’ cast (Figure 3 B). Crumbs

protein is also a polarity marker expressed on the apical

membrane (Figure 3 C). After segmental injury, Crumbs

continued to localize to the apical membrane of migrating cells

(Figure 3 D, arrow). At the same time, we did not observe vimentin

expression in the intact or injured migrating epithelia (Figure 3

E,F), while vimentin positive cells were observed outside of the

kidney (Figure 3 F, arrow). In addition, ultrastructural examina-

tion revealed that migrating epithelia retained their apical

junctional complexes and apical-basal polarity even at the

migrating front (Figure 3 G). These results suggested that collective

migration of regenerating epithelia takes place without a

significant epithelial to mesenchymal transformation.

Epithelial cell proliferation after kidney injury
To determine the temporal relationship between cell migration

and cell proliferation, we examined when cell proliferation is

initiated after segmental photoablation. We found that during the

first 12 hours after injury, there was minimal epithelial cell

proliferation in the injured tubule, similar to uninjured control

Figure 2. Surviving kidney epithelium responds by collective migration. Various kidney GFP transgenics were examined by time lapse
confocal microscopy at different developmental stages. (A) Proximal tubule epithelium (ET33d10 transgenic, 2.5 dpf), after segmental ablation of the
proximal tubule, shown in 30 min intervals. Scale bar –60 mm. (B) Proximal convoluted tubule epithelium (ET33d10 transgenic, 6 dpf), after segmental
ablation of the proximal tubule, shown in 120 min intervals. Scale bar –60 mm. (C, D) Distal tubule epithelium (ET11-9 transgenic) after segmental
photoablation shown in 120 min intervals in 7 dpf (C) and 5 dpf (D) fish. (D) shows marked obstructive dilatation of tubule epithelium, some of which
is also seen in (C). This is a commonly observed phenomenon. Scale bars: (C) - 60 mm, (D) - 30 mm. (E) Migration rates as a function of time after the
initiation of the migratory response. The rates are maximal right after the initiation of the migration and decrease over a few hours. The three early
time points (green box) show statistically significant difference from the three late time points (red box, p,0.01, n = 10). The initial migration rates are
similar in young (2–3 dpf) fish and older (. = 5 dpf) fish (p = 0.84), but the rates appear to persist longer in younger fish. Statistically significant
differences between the rates can be seen at 50 min (p = 0.02, n = 5,5) and 110 min (p,0.01, n = 5,5) time points, as shown in (F).
doi:10.1371/journal.pone.0101304.g002
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larvae. In contrast, we observed marked increase in cell

proliferation between 36–48 hours post injury (Figure 4 A–C). A

minor increase was also observed during 12–24 and 24–36 hpi

window, but it did not reach statistical significance. This result was

similar to that observed in mice after ischemia-reperfusion injury

[9]. Since tubule epithelial cell migration starts immediately after

injury (and in most instances completes by 12 hpi) and cell

proliferation does not initiate until a few hours later, we concluded

that injury-induced collective cell migration occurs independently

of cell proliferation.

The temporal relationship between cell migration and cell

proliferation after injury was very similar to that observed in

developing kidney [19]. During kidney development, cell migra-

tion stimulated cell proliferation by inducing stretch in the

epithelium, secondary to cell migration [20]. It is possible that

the same causal relationship exists during kidney repair. Alterna-

tively, cell proliferation could be induced by the release of

proliferation-inducing factors from injured epithelia [9]. We tested

these two possible scenarios by inducing unilateral ablation in long

and short segments of a tubule, while leaving the adjacent

contralateral tubule intact. We reasoned that if kidney cell

proliferation is controlled by mechanical stretch alone, one would

expect to observe increased cell proliferation only in the injured

kidney tubule, and after long but not short segment ablation,

because short segment ablation would not result in significant

stretching of the adjacent epithelium (Figure 4 D). In addition,

increased cell proliferation would be observed both upstream and

downstream of the injury site (due to bi-directional migration to

close the wound). We defined a short segment ablation as 3 cell

diameters, ,20 mm, and a long segment ablation as 12–15 cell

diameters, ,80–100 mm. Based on our estimates presented in

Figure S3, the short segment ablation results in ,5% average

linear stretch, and the long segment ablation results in ,20%

average linear stretch of the epithelium.

Our results showed that unilateral epithelial injury resulted in

increased cell proliferation in the injured kidney nephron

exclusively, both upstream and downstream of the injury

(Figure 4 E, Movies S6, S7, S8). The average distance between

the peaks of the two proliferation bands (upstream and

downstream of the injury, 280 mm) corresponded to the distance

between the zones of maximal stretch during migration (Figure S3,

estimated: 230–300 mm). Lastly, when injury was induced in a

short segment, no proliferative response was observed even in the

injured kidney nephron (Figure 4 F,G). These results suggest that

cell proliferation during kidney repair is primarily stimulated by

mechanical factors (stretch) secondary to cell migration (and

possibly also transient luminal obstruction leading to radial

stretch).

Figure 3. Regenerating epithelia remain differentiated. Kidney
epithelium is shown at 4–6 hours post injury (hpi), on the site of the
laser ablation. (A, B): Anti-GFP (green), anti-acetylated-tubulin (red) and
DAPI (magenta, A) staining of the injured tubule shows that cilia and
cilia bundles (multiciliated cell in A) are present at the edge (white
arrowheads, also Figure S4) of surviving epithelium (white star in A and
B). The aggregated cilia bundles in B (red star) are visible in the middle
of the injured segment (between arrowheads). (C and D): Na/K ATPase
(red) and Crumbs (green) expression in intact (C) and injured (D)

epithelium (also Figure S4). AKI does not affect the expression of
Crumbs on the apical surface of surviving cells (D, arrow), while its
distribution is randomized in the injured segment (right of the
arrowhead in D, which marks the border between the intact and the
injured segment. (E, F): Vimentin is not expressed in intact kidney
epithelium (E) and is not up-regulated after acute injury (F, also Figure
S4). Vimentin staining can be seen outside of the kidney (arrow in (F)).
Bar lengths in (A-F) are 30 mm. (G) Electron microscopy of a longitudinal
section at the edge of surviving epithelium (the edge itself is not
shown, to the left). Apical junctional complexes (arrow) are preserved.
Bar length is 1 mm. One degenerated mitochondrion indicates partial
injury to the cell at the edge of the injury (arrowhead). Different colors
are used to delineate individual epithelial cells. The virtual slice
thickness in (A-F): A- 1.4 mm; B-5.6 mm (7 slices); C,D- 1.4 mm; E-
7.0 mm (8 slices); F- 11.2 mm (15 slices).
doi:10.1371/journal.pone.0101304.g003
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Figure 4. Kidney epithelial proliferation after acute injury. (A,B) Two examples of BrdU staining after segmental ablation early (0–12 hpi, A)
and late (36–48 hpi, B) in ET11-9 GFP transgenic fish. Arrows indicate the direction of injury. Confocal slice thickness is 1.5 mm in (A), and 1.6 mm in
(B). (C) Number of BrdU+ cells at various intervals after segmental laser ablation (0–12 hpi, n = 4, 12–24 hpi, n = 3, 24–36 hpi, n = 4, 36–48 hpi, n = 4)
and compared to non-injured control condition (n = 8). There was no significant increase in cell proliferation early in the repair process (up to 36 hpi)
but a pronounced increase in cell proliferation first detectable between 36 and 48 hpi, compared to control condition (p,0.05, C). (D) Two possible
mechanisms that could trigger cell proliferation (mechanical stretch due to cell migration vs. a secretory factor) lead to different predictions about the
distribution of cell proliferation after segmental ablation. Red color indicates the predicted distribution of cell proliferation after short (left panel) vs.

Collective Epithelial Migration Drives Kidney Repair

PLOS ONE | www.plosone.org 5 July 2014 | Volume 9 | Issue 7 | e101304



We have previously modeled the interaction between cell

migration and cell proliferation during kidney development [19].

Briefly, the model presumes that cells can randomly migrate in a

2 d plane, but they restrict movement of their neighbors by

imposing repulsive influence when cells get too close and attractive

influence when they separate too far apart. In addition, it

presumes that a low-level stochastic cell proliferative activity is

signaled by spatial separation of the cells: when a cell is too distant

from its neighbors, it is more likely to undergo cell division. This

model can be directly applied to kidney repair by simply

introducing a ‘free edge’ where no cell-cell interaction occurs

(Figure 5 A, Movie S9 and S10). Indeed, the model predicted the

major features of kidney repair response: slowing down of

epithelial migration over time (Figure 5 F, left, Movie S9 and

S10), secondary induction of cell proliferation (Figure 5 D,E, left,

Movie S9 and S10), and absence of cell proliferation after short

epithelial ablation (Figure 5, right panels).

Discussion

We show here that collective cell migration is a driving force

behind kidney epithelial repair and tubule resealing after acute

injury. Our results suggest that cell migration is a primary, acute

reparative response of injured epithelia. Collective migration in

this context is likely to serve the crucial function of re-establishing

a continuous barrier between the luminal tubule compartment and

the interstitium. The rapidity and the robustness of this response

may reflect the fact that acute kidney injury represents a biological

‘plumbing emergency’, and naked basement membrane offers no

barrier to fluid and electrolyte loss. Epithelial cell migration is a

robust response to wounding and injury in multiple systems [21]

suggesting that this process is a highly conserved mechanism to

promote regeneration. There is evidence that the mere presence of

a free edge is sufficient to induce an immediate migratory response

long (right panel) tubule segment ablation. Upper row: initial injury; middle row: stretch response scenario (mechanical model). Lower row: secretory
factor scenario. (E) Long segmental ablation resulted in two distinct bands of BrdU incorporation both upstream (left and lower sub-panels) and
downstream (right and lower sub-panels, each sub-panel represents a confocal projection image). Brackets in the lower sub-panel indicate bands of
proliferation upstream and downstream of the injury. The right and left upper sub-panels show a higher magnification of the areas of proliferation
marked by brackets in the lower sub-panel. Other BrdU+ nuclei are outside of the kidney. (F) Comparison of BrdU incorporation in the injured
(rhombi) vs. contralateral non-injured tubule (squares). This pattern of BrdU incorporation is most consistent with the mechanical model of the cell
proliferation trigger. Double-arrow bar indicates the approximate site of injury. (G) Total number of BrdU+ nuclei after long (80–100 mm) vs. short
(20 mm) segmental ablation (24–48 hpi). Long segmental ablation resulted in significantly increased number of BrdU+ cells compared to a
contralateral non-injured side (as well as kidney epithelium after short injury or in a non-injured control). Long injury vs. contralateral non-injured
tubule: p = 0.039, long injury vs. short injury: p = 0.048, n = 3 per each condition. Scale bars in (A,B and E upper sub-panels) = 30 mm, and 60 mm in (E,
lower sub-panel).
doi:10.1371/journal.pone.0101304.g004

Figure 5. Modeling cell migration and cell proliferation during kidney repair. (A) Initial arrangement of cells in the simulation. Each square
represents a single cell position. Our model is based on that published in19, with an addition of a ‘free edge’. (B, C) After 5 and 50 iterations of the
algorithm, cells have migrated to mostly recover the epithelial gap. In the illustrated simulation, we introduced a delay in cell proliferative response to
stretch. Simulations produce very similar results with or without delay (Movies S8 and S9), but presence of a delay is more reflective of the
experimental observations. (D, E, left, gray markers) show divided cells in response to cell stretch after ‘long segment ablation’. (A–E, right)
demonstrate that after ‘short ablation’ no cell proliferation is induced. (F) Plots of the ‘rate of migration’ after long (left panel) vs. short (right panel)
segment ablation. Arrows point to a rapid decrease of the rate of migration due to cell-cell interaction. This was similar to the experimentally
observed migration rate decline (Figure 2). A second small peak in migration (arrowhead) is due to cell division.
doi:10.1371/journal.pone.0101304.g005
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in confluent cell culture [17], suggesting that epithelia are pre-

programmed to close a gap.

Interestingly, our results suggest that the reparative migratory

response took place in the absence of epithelial to mesenchymal

transition. This is different from what was suggested in a mouse

system [9,10], where it was proposed that cell migration might

occur after transition of epithelial cells to a mesenchymal

phenotype. This may be due to inter-species variation or may

reflect a difference in the mode of injury in different model

systems. For example, ischemia, but not cell injury per se may be

the primary stimulus for epithelial to mesenchymal transition in

the mouse kidney ischemia-reperfusion model [22].

It has been suggested in other systems that a purse string is a

common mechanism by which epithelial closure takes place during

both development [23] and repair [24,25]. Our system excludes

this possibility due to the geometry of the tubule. It is quite possible

that purse string mechanism is present during small focal repair

events, but the repair of large segmental tubular lesions has to take

place through collective migration rather than purse string closure.

Moreover, in the context of tubule regeneration after segmental

injury and reestablishing nephron fluid flow, purse string closure

could represent a pathologic response, because it would result in

two sealed, discontinuous segments and a resultant cystic change.

Similarly, luminal obstruction due to cell debris may also lead to

cystic change after acute injury [20,26,27]. It is evident from our

studies that cell debris generated by epithelial injury commonly

form a ‘plug’, preventing fluid from escaping the tubule and

resulting in tubule dilatation (Figure 2 C,D). This cystic change is

usually transient in nature (Movie S5), but one could envision that

if the mechanism of clearing the luminal debris was inhibited, this

transient cystic change could lead to permanent cyst formation as

can be seen in polycystic kidney disease [27]. This possibility

remains to be tested in available models of PKD.

A unique feature of the injury model we present is that tubule

cell death can be spatially distinguished from the initial responses

of neighboring healthy cells. We observed that epithelial prolifer-

ation of cells adjacent to the wound correlated with the extent of

injury and occurred in two bands around the wound site. The

position of the two bands of proliferation was within the region of

the epithelium experiencing the most linear stretch secondary to

cell migration (Figure 4 F, Figure S3). At the same time, we

observed that injuring one tubule did not result in increased

proliferation in the adjacent contralateral tubule. These results

suggest that the signals regulating proliferation in response to

injury are intrinsic to the injured tubule itself and support the idea

that proliferation may be signaled by mechanical stretch produced

by cell migration. The spatial and temporal resolution of our

model also allows us to propose that collective cell migration is the

primary response to tubule injury, occurring well before any

significant cell proliferation can be detected (Figure 4, C). Further

experiments measuring cell migration and the role of mechanical

stretch directly in vivo or in in vitro cell culture models will be

required to definitively link cell migration and cell proliferation

during kidney repair and to identify the exact mechanical forces

leading to increased cell proliferation.

Another advantage of the photoablation methodology we

present is that it allows graded amounts of photodamage to be

applied, ranging from minimal, with no effect on cell survival to

massive, resulting in cell necrosis. This gradual control is not

possible using conventional photoablation techniques [15]. In

addition, the method takes advantage of tissue specific GFP

expression and can be potentially applied to a very large number

of GFP transgenic animals already available. The Killer red

fluorescent protein based system has been shown to be similarly

effective for cell ablation, but the number of available fish lines is

relatively small compared to a number of GFP transgenics [28]. In

addition, the GFP- based system can be effectively used for both

photoablation (using 405 nm laser) and subsequent imaging (using

488 nm excitation). This method may also be applicable in tissues

outside the kidney. In a pilot experiment using 405 nm irradiation

of heart cells expressing GFP under the control of the cmlc
promoter, we were able to induce AV block by targeting cells

around the AV canal (data not shown). This result suggests that

photosensitized cell death using GFP expression may have

potential for in vivo cell ablation in kidney and some other organs.

Materials and Methods

This study was carried out in accordance with the recommen-

dations in the Guide for the Care and Use of Laboratory Animals

of the National Institutes of Health. The protocol was approved by

the NYIT College of Osteopathic Medicine Institutional Animal

Care and Use Committee (NYITCOM IACUC). All surgery and

in vivo experimentation was performed under Tricaine anesthesia,

and all efforts were made to minimize suffering.

Zebrafish transgenic lines
The Tg(atp1a1a.4:GFP) transgenic line was generated as

described in [29]; the ET(krt8:EGFP)sqet11–9 line and the

ET(krt8:EGFP)sqet33-d10 line were a gift from Dr. Vladimir

Korzh [30,31]. All the fish lines were raised and maintained as

described in [20,32,33]. The ET(krt8:EGFP)sqet11-9 and ET(kr-

t8:EGFP)sqet33-d10 lines are referred to as ET11–9 and

ET33d10, respectively. The Tg(atp1a1a.4:GFP) line is referred

to as 8 kb:GFP. Embryos for the described experiments were

obtained by in-crossing the heterozygous transgenic/mutant fish

and selected based on presence of kidney GFP fluorescence using

fluorescent dissecting microscope. Embryos were kept at 28.5uC in

E3 solution during 24 h after fertilization, then media was

replaced with E3 solution containing 0.003% PTU (1-phenyl-2-

thiourea) to prevent pigmentation.

Kidney injury experiments
Zebrafish were embedded in 2% low melting point agarose with

0.2 mg/ml Tricaine as previously described [33]. Pronephroi of

ET11-9 transgenic zebrafish were segmentally photoablated on

Zeiss LSM5 or Nikon C2 confocal microscope, using 40x water

dipping objective and maximum intensity of a 405 nm laser. The

25 ms/pixel dwell time was used (Zeiss), repeated 8 times per pass

(line averaging) in 2 passes. This dose of light resulted in ,50%

initial reduction in GFP fluorescence and resulted in death of

exposed kidney epithelial cells. A 20–100 mm length of kidney

tubule was injured in most experiments. All parameters were

optimized to minimize incidental and non-specific injury.

Immunostaining
Zebrafish were selected 3–6 hours after kidney injury. Then,

they were fixed in Dent’s solution (20% DMSO, 80% Methanol)

for 24 h at 4uC. They were rehydrated in 75:25 MeOH/PBSDT,

50:50, 25:75 and 0:100, followed by overnight blocking at 4uC in

10% Goat serum (Sigma) in PBSDT: 1%DMSO, 0.05% Tween20

in 1xPBS. We used the following primary antibodies: anti BrdU

(Sigma), anti-GFP (Sigma), anti-Acetilated Tubulin (Sigma), anti-

Crumbs (from Dr. Jarema Malicki [34]), anti-Na/K ATPase

(DSHB), anti-Vimentin (Sigma). Anti-mouse and anti-rabbit

secondary antibodies were used (Alexa 488 or Alexa 546 labeled,

Molecular Probes). All antibody incubations were performed in

2% Goat Serum/PBSDT at 4uC overnight. All washes were done
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at room temperature in 2% Goat Serum/PBSDT. Imaging of

antibody labeling was performed using Zeiss LSM5 or Nikon C2

confocal microscope.

Proliferation staining (BrdU)
Zebrafish kidneys were injured at 10 dpf and incubated in

20 mM BrdU for 12–24 h, directly after injury, 12 hours post

injury (hpi), 24 hpi, and 36 hpi. Zebrafish were fixed in Dent’s

fixative overnight at 4uC, rehydrated in PBSDT and treated with

10 mg/ml proteinase K for 1 h30 min. Embryos were washed

again and treated with 2 N HCL for 1 h. The antibody staining

was performed as described above.

Morphometry
Flattened confocal stacks were used to measure rates of

epithelial cell migration by tracking a migrating edge during

kidney repair. Alternatively, individual cells, symmetrically posi-

tioned around the center of injury, were traced and their inter-cell

distance was determined in the beginning and at the end of

migration (the time point of epithelial closure). Image analysis was

performed using ImajeJ (NIH) and the results were analyzed in

Excel (Microsoft). Confocal stack stitching was performed in

ImageJ as described in [35].

Transmission electron microscopy
9 days old zebrafish were injured and fixed at 3–4 hpi

(overnight at 4uC) using electron microscopy fixative (2.5%

glutaraldehyde, 2.0% paraformaldehyde. 0.025% calcium chloride

in a 0.1 M sodium cacodylate buffer, pH 7.4). They were

processed in a Leica Lynx automatic tissue processor. The larvae

were post fixed with osmium tetroxide, en bloc stained with 2.0%

uranyl acetate dehydrated in a graded ethanol series, embedded in

pure epoxy resin and polymerized overnight at 60uC. Thin

sections were cut using a diamond knife and an LKB 2088

ultramicrotome and placed on copper grids. Sections were stained

with lead citrate and examined in a FEI Morgagni transmission

electron microscope. Images were captured with an Advanced

Microscopy Techniques 2 K digital CCD camera. Global contrast

was corrected in Photoshop (Adobe Systems Inc.).

Modeling AKI
The modeling of cell migration and proliferation during kidney

regeneration was performed using Matlab software (Mathworks,

Inc.). The model used was a modification of the previously

published method [19] by introducing a ‘free edge’. The

simulation results were exported into individual frames and

reassembled into movies using ImageJ (NIH). 3 D illustrations

were drafted using AOI software (http://www.artofillusion.org/).

Statistical analysis
Statistical comparisons across experimental conditions, as well

as comparisons between experimental and control conditions,

were conducted using a two-tailed t-test, two-sample with non-

equal variance. When comparing the experimental and control

data obtained from the same fish (injured vs. non-injured tubule),

we used a two-tailed paired t-test. The tests were run using Excel

(Microsoft). Three to ten biological replicas were used per

condition.

Supporting Information

Figure S1 Mouse model of AKI. Ischemia-reperfusion results

in various degrees of kidney injury. Here, severe epithelial injury is

manifested by complete denudation of tubular basement mem-

brane and formation of proteinaceous and cellular casts.

Peritubular capillaries show prominent leukocyte margination.

(A) – H&E, (B)-PAS stains.

(TIF)

Figure S2 Peak migration rate as a function of the
length of ablation. Representative time-lapse confocal stacks

were analyzed to determine the peak migration rate, which was

plotted as a function of the ablated segment length. Linear

regression equation: Y = A*X+B, A = 20.006(1/hr), B = 17.3(mm/

hr).

(TIF)

Figure S3 Extent of migration vs. distance between
migrating cells. Cells in three representative time-lapse

confocal stacks were traced to determine the extent of migration

as a function of the distance from the center of the injury. The

initial injury length was 50–60 mm. Pairs of cells symmetrically

positioned around the middle of the injured segment were traced

until the epithelial gap was closed due to cell migration. The final

distance between the two cells in a pair was subtracted from the

initial distance and plotted on the vertical axis vs. the initial

distance between the cells (gray circles). The data was then

grouped based on the initial distance (50–100 mm, 100–150 mm,

150–200 mm, .200 mm), and the averages were plotted as black

squares. There was no statistically significant difference between

50–100 mm, 100–150 mm and 150–200 mm groups, but the .

200 mm group was significantly different from the 50–100 mm

group (p,0.05). The data were fitted using linear regression, with

the regression crossing the horizontal axis at 434 mm. This value

provides a rough estimate of a total length of kidney epithelium

that is expected to experience linear stretch due to migration.

Based on this estimate, the average linear stretch due to migration

is ,5% (20 mm/434 mm) of the initial length in the case of a short

segment ablation, and ,20% ((80,100 mm)/434 mm) in the case

of a long segment ablation. It should be noted that a maximal

linear stretch is likely larger due to uneven distribution of the cell

stretch along the length of the regenerating epithelium.

(TIF)

Figure S4 Epithelial and mesenchymal markers in
injured epithelium. (A, B) Apical cilia at the edge of surviving

epithelium. Upper panel – acetylated tubulin, middle panel –

GFP, lower panel – combined. Panel (B) corresponds to figure 3B.

(C) Higher magnification images corresponding to figure 3D.

Upper panel – acetylated tubulin, middle panel – GFP, lower

panel – combined. (D) Higher magnification images correspond-

ing to figure 3F. Upper panel – acetylated tubulin, middle panel –

GFP, lower panel – combined.

(TIF)

Movie S1 Collective epithelial migration after segmen-
tal kidney ablation. 12 dpf ET11-9:GFP zebrafish was treated

with 405 nm laser (figure 1, A) and imaged using time lapse

confocal microscopy. Collective migration is present after

segmental ablation. Each frame is a flattened confocal stack.

Frame interval = 20 min. Number of frames = 39.

(MOV)

Movie S2 Collective epithelial migration after segmen-
tal kidney ablation. 2.5 dpf ET33d10:GFP zebrafish was

treated with 405 nm laser and imaged using time lapse confocal

microscopy. Collective migration is present after segmental

ablation. Each frame is a flattened confocal stack. Frame

interval = 10 min. Number of frames = 17.

(MOV)
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Movie S3 Collective epithelial migration after segmen-
tal kidney ablation. 6 dpf ET33d10:GFP zebrafish was treated

with 405 nm laser in the region of proximal convolution and

imaged using time lapse confocal microscopy. Collective migration

is present after segmental ablation. Each frame is a flattened

confocal stack. Frame interval = 12 min. Number of frames = 66.

(MOV)

Movie S4 Collective epithelial migration after segmen-
tal kidney ablation. 7 dpf 8 kb:GFP-derived zebrafish was

treated with 405 nm laser in the region of straight proximal-distal

tubule, and imaged using time lapse confocal microscopy.

Collective migration is present after segmental ablation. Each

frame is a flattened confocal stack. Frame interval = 12 min.

Number of frames = 60.

(MOV)

Movie S5 Collective epithelial migration after segmen-
tal kidney ablation. 5 dpf E11-9 zebrafish was treated with

405 nm laser and imaged using time lapse confocal microscopy.

Collective migration gets initiated immediately after a drop out of

the injured segment and continues until epithelial continuity is

reestablished. Epithelium also shows obstructive dilatation up-

stream of the injury that progresses from proximal to distal as the

debris move down the tubule until tubule diameter returns back to

normal at the end of the recording, presumably due to clearing of

the lumen. Each frame is a flattened confocal stack. Frame

interval = 20 min. Number of frames = 36.

(MOV)

Movie S6 3 d reconstruction of E11-9 kidney tubule
upstream of the prior injury site. The zebrafish was

incubated in BrdU 24–48 h post-injury and stained with anti-

BrdU (red) and anti-GFP (green) antibody. All the kidney BrdU

positivity is in the injured branch.

(MOV)

Movie S7 3 d reconstruction of E11-9 kidney tubule
downstream of the prior injury site. The zebrafish was

incubated in BrdU 24–48 h post-injury and stained with anti-

BrdU (red) and anti-GFP (green) antibody. All the kidney BrdU

positivity is in the injured branch.

(MOV)

Movie S8 3 d reconstruction of E11-9 kidney tubule
around the prior injury site. The zebrafish was incubated in

BrdU 24–48 h post-injury and stained with anti-BrdU (red) and

anti-GFP (green) antibody. All but one kidney BrdU positive

nuclei were found in the injured branch.

(MP4)

Movie S9 Simulation of collective migration after
segmental ablation. The presence of free edge is sufficient to

induce collective migration. Cell proliferation is induced after a

delay due to increased cell-cell distance (stretching).

(MOV)

Movie S10 Simulation of collective migration after
segmental ablation. The presence of free edge is sufficient to

induce collective migration. In this simulation there.

(MOV)
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