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Abstract
Advances in sequencing have enabled the identification of mutations acquired by bacterial
pathogens during infection1-10. However, it remains unclear whether adaptive mutations fix in the
population or lead to pathogen diversification within the patient11,12. Here, we study the genotypic
diversity of Burkholderia dolosa within people with cystic fibrosis by re-sequencing individual
colonies and whole populations from single sputum samples. Extensive intra-sample diversity
reveals that mutations rarely fix within a patient's pathogen population—instead, diversifying
lineages coexist for many years. When strong selection is acting on a gene, multiple adaptive
mutations arise but neither sweeps to fixation, generating lasting allele diversity that provides a
recorded signature of past selection. Genes involved in outer-membrane components, iron
scavenging and antibiotic resistance all showed this signature of within-patient selection. These
results offer a general and rapid approach for identifying selective pressures acting on a pathogen
in individual patients based on single clinical samples.

Two opposing models of within-patient bacterial evolution have been proposed: a “dominant
lineage” model, in which beneficial mutations drive superior lineages to dominate in the
population, and a “diverse community” model whereby adaptive lineages rise to
intermediate frequency and coexist with other lineages (Fig. 1)11-14. The diversity of within-
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patient pathogen populations has major implications for drug treatment and resistance7,15,16,
for inferring transmission networks8,9,17,18, and for understanding evolutionary
processes13,19. Here, to distinguish between these models and to understand the sources of
genetic diversity, we compared the genomes of many bacterial cells of the same strain from
the same clinical sample.

We focused on chronic infections with Burkholderia dolosa, a rare and deadly opportunistic
pathogen that spread among 39 people in with cystic fibrosis (CF) cared for at a single
center in Boston starting in the 1990s20,21. The airways of these patients were infected with
very similar starting strains, and surviving patients have been colonized for years. A
previous retrospective study of single-colony isolates revealed specific B. dolosa genes that
evolved under strong selective pressures during the outbreak8. Now, using sputum samples
collected during clinical care, we characterize contemporary intraspecies diversity in 5
individuals from this outbreak who have been infected with B. dolosa since the early 2000's.

We used two genomic approaches, colony re-sequencing (Patient 1) and deep population
sequencing (Patients 1-5), to identify single nucleotide mutations and their frequencies
within single sputum samples. In our colony re-sequencing approach, we isolated dozens of
colonies from a clinical sample and analyzed their genomes individually by alignment of
reads to a B. dolosa reference genome, AU0158, a strain taken from a different patient in
this outbreak. Since each colony originates from a single bacterium, this approach is
equivalent to comparing different bacterial cells from the initial clinical sample. In the
population sequencing approach22,23, we pooled hundreds of colonies from each clinical
sample and sequenced the pool with deep coverage (∼450×). We then aligned reads to
AU0158 and identified fixed mutations, appearing in all reads, and polymorphisms,
appearing in only a fraction of the reads. To remove false positive polymorphic sites caused
by systematic sequencing or alignment errors24,25, we developed a set of thresholds and
statistical tests that reject polymorphic sites where the mutated and ancestral reads have
significantly different properties22,23 (see Supplementary Note). We calibrated this approach
using an isogenic control for which we expect no polymorphisms. For validation, we
performed both methods on a single sample from Patient 1, comparing diversity among 29
individual colonies to the population sequencing approach (Fig. 2). The population
sequencing approach reliably detects polymorphisms where the minor allele frequency is
larger than 3%, while decreasing the cost and labor required per sample.

We found that most mutations that arise during the course of infection do not fix, but remain
polymorphic within the patient. The colony re-sequencing approach performed for Patient 1
revealed 188 mutations occurring in some, but not all, isolates and only 10 mutations shared
among all isolates. This dominance of polymorphisms, also seen in the population
sequencing from the same sample, strongly supports the diverse community model (Fig. 3a-
b). Similarly, for the four other patients, population sequencing on single samples identified
a preponderance of polymorphisms compared to fixed mutations (≥73% of mutations, Fig.
3b). We found these excesses despite the bias to overestimate mutations fixed during
infection; some fixed mutations in a sputum sample might be polymorphic within the
patient's airways or have fixed prior to patient colonization (Supplementary Fig. 1).

The observed genomic diversity is a reflection of multiple coexisting lineages. Investigating
the community structure of B. dolosa within Patient 1, we found a deeply branched
phylogeny with 6 lineages separated by at least 5 lineage-specific mutations (Fig. 3a). On
average, pairs of isolates from this sample differed by 26 mutations, and, of all 406 possible
isolate pairs, only one was identical. Thus, even within a single sputum sample, the
population is so diverse that full identity between isolates is extremely rare.
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In one patient (Patient 5), the B. dolosa community had many more mutations than other
patients' populations (P < 0.05, Grubbs' test for outliers). This excess of mutations is due
solely to increased transitions and not transversions, suggesting hypermutation
(Supplementary Fig. 2a, P < 0.01, Grubbs' test). A search of the 199 mutated genes unique
to Patient 5's population revealed a single mutation involved in DNA repair: a
nonsynonymous mutation at a conserved position in mutL, defects of which are known to
cause excess transitions26 (Supplementary Fig. 2b). These excess mutations are enriched in
synonymous mutations relative to the other patients, further supporting hypermutation (P < .
001, Supplementary Fig. 2c). While hypermutation is a common phenotype in many
pathogens, hypothesized to accelerate the evolution of antibiotic resistance27-30, it has not
been previously described in members of the B. cepacia complex31.

For how long have these diverging lineages coexisted? The time to the last common
ancestor (LCA) of each non-hypermutating patient's population32 can be estimated using the
number of mutations accumulated since the LCA and the molecular clock previously
measured for this outbreak (2.1 SNPs/year8). Given the phylogeny of isolates from Patient 1,
we calculated the distribution of the number of mutations since the LCA, dLCA, across the
population (Fig. 4a). The mean value of dLCA across isolates, <dLCA>, is 19.6 single
nucleotide mutations per genome (95% confidence interval, CI = 18.3-20.8), suggesting that
the LCA existed 9.3 years ago (CI = 8.7-9.9). This places the LCA of the isolates from this
sample slightly earlier than the first B. dolosa culture from this patient (7.6 years before
sample collection), suggesting that the B. dolosa population in Patient 1 has been diverging
since, or perhaps before, initial colonization. While the population sequencing approach
cannot provide a distribution of dLCA, due to a lack of information regarding linkage
between mutations, we can still calculate <dLCA>: it is the sum of the polymorphic mutation
frequencies (see Supplementary Note for derivation). Using this approach, the estimated
time to LCA for Patient 1's population is 7.9 years. This value is slightly lower than
calculated from the clonal re-sequencing approach, likely due to mutations left undetected
by our conservative polymorphism caller (see Supplementary Note for discussion of error).
For Patients 2 and 4, the time to LCA calculated by this population sequencing approach is
several years less than the time since first positive culture, suggesting fixation events
sometime during these patients' histories (Supplementary Table 1). For all these patients, we
estimate that diverging lineages have coexisted in each of these patients for at least 5 years
(Fig. 4b).

To explore the drivers of this long-coexisting diversity, we examined the identity of the
evolving genes. Interestingly, we found that within each sample, several B. dolosa genes
carried 2-4 coexisting polymorphisms (Supplementary Table 2). This clustering is a
significant departure from a neutral model given the number of mutations and the
distribution of gene lengths (Fig. 5a, P < 0.005 for Patients 1-4; Online Methods). A similar
analysis at the operon-level further identified several operons enriched for polymorphisms
(Supplementary Table 3 and Supplementary Fig. 3). An enrichment of nonsynonymous
mutations in these multi-diverse genes and operons suggests that they are drivers of adaptive
change in vivo (dN/dS = 7.0, CI = 2.3-34.9, Fig. 5b). Polymorphisms are thus concentrated
within genes undergoing adaptive evolution.

To understand why polymorphisms cluster within some genes, we asked if coexisting
mutations in the same gene appeared in different lineages or were linked in a double mutant.
Examining the single isolate genomes, we found no isolates with doubly mutated genes
(Supplementary Fig. 4). Similarly, for the population sequencing, in 10 of 11 cases where
polymorphic positions are close enough on the genome to be covered by the same short
sequencing reads, we did not find reads that contain both variants (Fig. 5c, Supplementary
Fig. 5). In some of these cases, the ancestral genotype is completely purged from the
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population (Fig. 5d). Thus, diversification is driven by multiple adaptive mutations in the
same genes evolving in parallel within individual patients.

These findings provide a new signature of past selective pressures detectable in a single
clinical sample; the coexistence of multiple polymorphisms within the same gene in a
clinical sample. Sixteen B. dolosa genes display this multi-diverse signature, including
genes with homologs involved in outer membrane synthesis, antibiotic resistance, iron
scavenging, oxygen sensing, amino acid synthesis, lactate utilization, and stress response.
Additionally, some genes with less characterized biological roles display a multi-diverse
signature, including two transcriptional regulators with unknown targets in B. dolosa, an
uncharacterized glucoamylase, and two genes that encode hypothetical proteins
(Supplementary Table 2). A similar signature for selection is seen in three operons, two
involved in lipopolysaccharide transport and one containing a two-component regulatory
system with unknown targets (Supplementary Table 3). Selection on many of these elements
can be rationalized based on the relevance of their annotated functions to conditions to
which the bacteria are exposed in the course of the infection. Yet, further investigation will
be required to understand the potential roles of some of these genes in antibiotic resistance,
fitness, and other aspects of pathogenesis.

We found that many of the selective forces acting on the pathogen are the same across
patients (Fig. 5e). Often, genes showing a multi-diverse signature for selection in one patient
also carry mutations in other patients (P < 0.002, hypergeometric test). A prominent
example is gyrA, a well-studied target of quinolones, which is mutated in all patient
populations. Further support for commonality in mutational trajectories across patients
emerges from a significant overlap between this list of 16 multi-diverse genes and 17 genes
previously found to be under parallel evolution across a larger group of patients, only one of
whom (Patient 2) was included in both studies (P < 0.001, hypergeometric test). Thus, the
study of a single clinical sample can provide generalizable lists of selective pressures felt
within the human body.

Yet, some multi-diverse signatures are patient-specific. A penicillin-binding protein
(BDAG_01166, homologous to PBP7) has 3 nonsynonymous mutations in Patient 1, but is
not mutated in other patients. Such patient-specific parallel evolution might reflect patient-
specific selective pressure or perhaps a fitness benefit dependent upon previously acquired
mutations. But these hypotheses are hard to test because the genomic target for a selective
force might include more than one gene. For example, four of the five patients' populations
have a mutation in a homolog of the histidine kinase fixL (BDAG_01161, known to be under
strong selection in these infections8) while the fifth has a mutation in the corresponding
response regulator.

To investigate the stability of these multi-diverse signatures for selection, we collected a
second sputum sample 14 days after initial sample collection from Patient 2. Three of the
four genes with the multi-diverse signature at day 0 show the same pattern at day 14. The
absence of the signature in the fourth gene at the later time point does not reflect a relaxation
in selection for mutant alleles, but rather incomplete detection of genes under selection; this
gene also has abundant nonsynonymous mutants at day 14, concentrated at a single
nucleotide position (Supplementary Fig. 6). These results suggest that the multi-diverse
signature for selection is relatively stable and that multiple sample collections per patient
can increase the sensitivity of the detection.

Our results reject the dominant lineage model of infection, yet demonstrate that these
diversifying bacteria adapt under the pressure of natural selection. These observations are
consistent with clonal interference: in large asexual populations, multiple beneficial

Lieberman et al. Page 4

Nat Genet. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



mutations emerge and compete, impeding the ability of these lineages to reach fixation33-35.
In addition to large population size (108 cells/mL sputum), the branched structure of the
airways may further hinder the capacity of any adaptive lineage to dominate and fix, and the
immune system or niche-specific adaptations might directly promote diversity. Diversified
by any of these means, lineages may then continue to evolve in parallel against common
selective forces.

As B. dolosa adapts to the airways of people with cystic fibrosis, mutations lead to
diversification rather than fixation and replacement. Though it is possible that adaptive
mutations will lead to fixation more frequently in other infections, there is evidence that, at
least in long-term colonization, diversity might be common14,36-38. This long-term
coexistence of diverse lineages records the genomic history of selection on the pathogen
within its host. The ability to rapidly read off within-patient evolutionary history from the
genotypic diversity within a single clinical sample may greatly accelerate the ability to
survey selective pressures acting on bacterial pathogens in vivo – shifting from an epidemic
level investigation to a single-patient paradigm.

Online Methods
Study cohort and sample collection

An epidemic clone of B. dolosa infected and colonized 39 individuals with cystic fibrosis in
the Boston area over a 20-year period21. We studied B. dolosa intrapatient diversity in 5
surviving individuals still infected with B. dolosa. All subjects were male, had homozygous
ΔF508 mutations, had not received lung transplants, were between 21 and 35 years of age,
and had been colonized for between 7 and 10 years at the time of sample collection (see
Supplementary Table 1). Longitudinal microbial isolates from Patient 2 were also included
in a previous retrospective study (patient J in reference 8).

For Patient 1, both the colony re-sequencing and deep population sequencing approaches
were performed on a single sputum sample (P1). For Patient 2, population deep sequencing
was performed on each of two sputum samples (P2 and P2T), collected 14 days apart.
Between collections, Patient 2 was treated for a pulmonary exacerbation, including a change
in antibiotic regimen, but his condition did not improve and B. dolosa density did not
decrease. For Patients 3-5, population sequencing was performed on a single sputum sample
from each patient (P3-P5).

Expectorated sputum samples were collected at Boston Children's Hospital after written
informed consent was obtained under protocols approved by the Institutional Review Boards
at Boston Children's Hospital and Harvard Medical School. Samples were liquefied with
dithiothreitol40 and stored at −80°C in 20% glycerol. B. dolosa was cultured from frozen
samples. For population sequencing, a plate with 5,000 to 30,000 small colonies was chosen
from a serial dilution. See Supplementary Note for more details on sample preparation.

Illumina sequencing
Genomic DNA was extracted using MoBio UltraClean Microbial DNA Isolation Kit per the
manufacturer's instructions. Genomic libraries were constructed and barcoded using the
Illumina-compatible Epicentre Nextera DNA Sample Prep Kit and following manufacturer's
instructions (PCR amplification in the Nextera preparation does not introduce false positive
polymorphisms, see Supplementary Note). Genomic libraries were sequenced on the
Illumina HiSeq 2000 by Partners HealthCare Center for Personalized Genetic Medicine.
Individual colonies were sequenced using single-end, 50 base-pair (bp) reads and pooled
samples were sequenced using paired-end, 50bp reads. Reads were aligned to the B. dolosa
draft genome AU0158 (GenBank accession number AAKY00000000, see URLs), belonging
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to an isolate recovered from patient zero of the outbreak. AU0158 consists of 233 contigs on
3 scaffolds (B. dolosa has 3 chromosomes). Standard approaches were used for read filtering
and alignment (Supplementary Note). See Supplementary Table 4 for coverage statistics.

Mutation identification, colony re-sequencing
An outgroup of 3 outbreak strains (A-0-0, G-9-8, and N-12-6d-$, previously sequenced8)
was included in the analysis to identify mutations fixed among the 29 isolates from P1. We
considered genomic positions at which at least one pair of isolates was discordant on the
called base and both members of the pair had FQ scores less than −40 (FQ scores are
produced by SAMtools41; lower values indicate agreement amongst reads). Genomic
positions for which multiple isolates had multiple calls per isolate were discarded (likely
duplication not represented in the reference). A best call was forced for each isolate
(Supplementary Table 5) and the list of concatenated SNPs was inputted into the dnapars
program in PHYLIP v3.6942. The resulting phylogeny was visualized the tree using Figtree
(Fig. 3b).

Mutation identification, deep population sequencing
Fixed mutations within each patient's population were called using the same procedure as
individual isolates, with a stricter quality score threshold (FQ < -282). Custom MATLAB
scripts and SAMtools-produced pileup files were used to summarize all calls and their
related quality scores at each genomic position (e.g. base quality, mapping quality, tail
distance; see Supplementary Note). Using the isogenic control, multiple isolates from
Patient 1, and an interactive MATLAB environment that enabled investigation of the raw
data, we developed a set of filters to identify true-positive polymorphic positions with minor
allele frequency above 3% (Supplementary Table 6). Thresholds were chosen to minimize
false positives. See Supplementary Note and Supplementary Figs. 7-8 for description of
filters and sensitivity analysis.

Estimation of <dLCA>
For the colony-based approach, dLCA was calculated for each isolate as the number of
mutations received by that isolate normalized by the size of the callable genome. For this
approach, the callable genome is the set of genomic positions with FQ score < -40. The
confidence interval for <dLCA> presented for this approach is calculated according to a
Poisson distribution. For the pool-based approach, <dLCA> was calculated as the sum of the
mutation frequencies at each polymorphic position called within that population, normalized
by the size of the callable genome (see Supplementary Note). For the pool-based approach,
we define the callable genome as the set of positions that met the chosen thresholds for
coverage, average base quality, average mapping quality, and average tail distance for each
strand, irrespective of nucleotide call. See Supplementary Fig. 6b and the Supplementary
Note for a discussion of sources of error in estimating <dLCA> and time to LCA.

Detection of parallel evolution within patients
We define genes with a multi-diverse signature of selection as genes for which within the
same sputum sample there were multiple polymorphisms and multiple polymorphisms per
2000bp (to account for the fact that long genes are more likely to be mutated multiple times
by chance). To determine whether the number of genes showing this signature was a
significant departure from what expected in a neutral model, we performed for each sputum
sample 1000 simulations in which we randomly shuffle the polymorphisms found across the
callable genome, and calculate how many genes show the signature of selection (Fig. 5a).
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This analysis was repeated at the operon and pathway levels, using the free version FgenesB
to identify operons and subsystem annotations provided by SEED43 as pathways (see
Supplementary Figure 3). As in the gene analysis, we considered operons and pathways to
have a signature for selection if they had both multiple polymorphisms and multiple
polymorphisms per 2000 nucleotides with the same patient.

dN/dS
Mutations were classified as nonsynonymous (N) or synonymous (S) according to
annotations provided in genbank file. For open reading frames in draft genome without a
provided frame, we used BLAST and RefSeq to identify the most likely reading frame in the
neighborhood of the found mutations. For each dNdS calculation, we used the particular
spectrum of mutations observed to calculate the expected N/S (e.g. A->C mutations are 10.6
times more likely to cause an N than G->A mutations). The observed value of N/S was
divided by this expectation to get dN/dS. Confidence intervals and p-values were calculated
according to binomial sampling. The dNdS reported Fig. 5b groups together the mutations
found in genes and operons under selection; the same calculation for only genes gives a dN/
dS of 5.9 (95% CI = 1.9-29.6).

Parallel evolution across patients
We used the hypergeometric distribution to assess the significance of overlap between gene
sets. Of 225 B. dolosa genes mutated in P1-P4, only 16 showed the multi-diverse signature
for selection within patients and only 29 genes were mutated in multiple of these patients
(fixed or polymorphic), yet 7 genes are in common between these lists (P=.0015) Similarly,
13 of these 225 genes were also found on a list of 17 genes evolved in parallel across
patients in a previous study8. These 13 genes were enriched in the 16 genes under selection
in in this study (5 gene overlap, P=.0009). When this analysis was repeated without
mutations from P2 (Patient 2 also included in retrospective study), 11 of the 189 mutated
genes were found in the previous study and 13 genes show a multi-diverse signature for
selection. The overlap between these lists of 11 and 13 genes is smaller but still significant
(4 genes; P=.0035).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Alternative models of within-patient evolution
(a) In the dominant-lineage model of within-host evolution, lineages with beneficial
mutations sweep to fixation (green lines), eliminating their less fit ancestors or other
temporarily arising genotypes (dashed lines). In this model, most observed mutations will be
fixed and polymorphic mutations will be rare, representing only recent mutational events
(magenta lines). (b) In the diverse community-model, lineages coexist and compete for long
stretches of time. In this model, most sampled mutations will be polymorphic.
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Figure 2. Two methods for studying genomic intraspecies diversity
(a) To study within-patient evolution, we cultured sputum samples from patients with cystic
fibrosis on selective media. In the colony re-sequencing approach (solid arrows, performed
for one patient), we isolated multiple individual colonies from the same single sample,
independently called variants for each isolate via alignment of reads, and compared variants
among the isolates. In the deep population sequencing approach (dashed arrow, performed
for five patients), we pool hundreds of colonies from the same plate and analyze the pool's
genomic DNA. We identified positions on the genome where some reads, originating from
different colonies on the plate, disagree with an inferred ancestral genome (Online
Methods). (b) Allele frequency estimates in the population sequencing (y-axis) versus the
colony re-sequencing (x-axis) from the same sputum sample (P1) for each mutated position.
Mutations are classified as either fixed (green circles) or polymorphic (magenta circles).
Some mutations found in the colony-based approach are sub-threshold in frequency or
confidence in the pool-based approach (open squares). Slight jitter is added in the X and Y
locations for each point to improve visibility (up to 2% change). As an example, the insets at
top and at right display a summary of the raw data at the indicated genomic position. The
population sequencing (right) at this position shows 70% aligned reads supporting a T
(orange) and 30% supporting a G (black), consistent with the corresponding number of
colonies in the individual isolates (22, T; 7, G). Reads from each isolate (top) are mostly of
identical calls (all T, or all G). Green indicates a single read in one isolate supporting an A,
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likely a sequencing error. For further comparison of the two methods, see Supplementary
Figure 7.
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Figure 3. Within-patient evolution leads to diversification, not substitution
Mutations found in B. dolosa within-patient populations relative to the outgroup are
classified as fixed (green), or polymorphic (magenta). An excess of polymorphic versus
fixed mutations supports the diverse-community model over the dominant-lineage model.
(a) A maximum-parsimony phylogeny of 29 isolates from the same sputum sample (P1)
shows the coexistence of diverse sub-lineages separated by many single nucleotide
mutations accumulating since the last common ancestor (LCA) of this patient. Each isolate
is represented by a dotted line. (b) The diverse-community model is also supported by the
distribution of allele frequencies from the population sequencing in 5 patients' samples.
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Figure 4. Sublineages coexist within a patient for many years after divergence
(a) A histogram of the number (dLCA) of single nucleotide mutations found in isolates from
Patient 1, relative to their LCA. The black bar indicates the mean value of dLCA across the
isolates. (b) The value of <dLCA> from the population sequencing data for patients Patients
1 through 4 (Online Methods). In both panels, the axis at top shows the relationship between
dLCA and years to LCA, as calculated via the molecular clock (2.1 SNPs/yr)8.

Lieberman et al. Page 14

Nat Genet. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5. Coexistence of alternative adaptive mutations in the same sample highlights specific
genes as drivers of within-host evolution
(a) Number of multi-diverse genes observed in samples from Patients 1-5 (P1-P5, blue bars)
relative to a null expectation in which diverse sites are randomly distributed across the
genome (histogram, 1000 simulations). For P5, the number of multi-diverse genes observed
is not significant. (b) The canonical signal for selection, dN/dS, across the set of 16 genes
and 3 operons showing a multi-diverse signature in at least one patient (P1-P4, 21 genes
total, blue) versus dNdS across the set of genes not showing this signature (black). dN/dS >1
indicates positive selection for amino acid change. Error bars indicate 95% CIs. See Online
Methods for details on the calculation of dNdS. (c-d) Linkage between nearby
polymorphisms based on jointly overlapping short reads. Percentages of reads supporting
the ancestral genotype, each of the single mutants, and the double mutant are plotted. No
reads supporting the double mutant were found (c, n=524; d, n=415; See Supplementary Fig.
5 for exception). (e) A network of patients and genes showing a multi-diverse signature at
least once in P1-P4. A gene is connected to a patient if it was mutated multiple times (solid
line), had a single polymorphic mutation (dashed lined), or single fixed mutation (dotted
line) within that patient. Genes closer to the center of the network are mutated in more
patients, representing common targets of in vivo pathogen selection, while genes connected
to single patients may indicate patient-specific adaptation. Genes are labeled with their
closest homolog and predicted biological role. The biological role of rpoD is unclassified
because it is recently duplicated in the B. cepacia complex39 (see Supplementary Note,
Supplementary Table 2).
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