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Abstract

The ability to efficiently and accurately determine genotypes is a keystone technology in modern genetics, crucial to studies
ranging from clinical diagnostics, to genotype-phenotype association, to reconstruction of ancestry and the detection of
selection. To date, high capacity, low cost genotyping has been largely achieved via ‘‘SNP chip’’ microarray-based platforms
which require substantial prior knowledge of both genome sequence and variability, and once designed are suitable only
for those targeted variable nucleotide sites. This method introduces substantial ascertainment bias and inherently precludes
detection of rare or population-specific variants, a major source of information for both population history and genotype-
phenotype association. Recent developments in reduced-representation genome sequencing experiments on massively
parallel sequencers (commonly referred to as RAD-tag or RADseq) have brought direct sequencing to the problem of
population genotyping, but increased cost and procedural and analytical complexity have limited their widespread
adoption. Here, we describe a complete laboratory protocol, including a custom combinatorial indexing method, and
accompanying software tools to facilitate genotyping across large numbers (hundreds or more) of individuals for a range of
markers (hundreds to hundreds of thousands). Our method requires no prior genomic knowledge and achieves per-site and
per-individual costs below that of current SNP chip technology, while requiring similar hands-on time investment,
comparable amounts of input DNA, and downstream analysis times on the order of hours. Finally, we provide empirical
results from the application of this method to both genotyping in a laboratory cross and in wild populations. Because of its
flexibility, this modified RADseq approach promises to be applicable to a diversity of biological questions in a wide range of
organisms.
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Introduction

The genome serves simultaneously as a basic blueprint,

encoding information for proper cellular and developmental

processes necessary to produce an organism, and as a historical

record of the demographic processes and selective forces acting in

a given lineage. Exploration of mechanistic details through

biochemistry, genetics, and development has lead to a deeper

understanding of how genotype leads to phenotype, while

exploitation of the historical record has enabled the fields of

systematics, population genetics, and molecular ecology to

elucidate the pressures and processes that shape diversity in

populations and divergence between species. Studies of genetic

information both encoded and recorded in genomes work with the

same currency–comparison of homologous sequences across

individuals–but these approaches employ very different modes of

inference, and as such the details of a particular experiment dictate

optimal marker resolution (Figure 1). To address the need for

flexibility in marker number, we describe a next-generation

sequencing-based method for determining individual sequence

genotypes that can be tuned to sample a large range (from

hundreds to hundreds of thousands) of randomly distributed

regions genome-wide.

The plummeting cost and skyrocketing throughput of DNA

sequencing has begun to enable sequencing of entire genomes of

study populations of some focal species [1,2]; however, even in

traditional model species (e.g., humans, laboratory mice, and

Drosophila) resources for complete genome resequencing of large

numbers of individuals by single investigators are still limited. As

nearly all population and comparative analyses depend on an

increasing number of individuals or samples for statistical power,

several methods have emerged to increase the number of

individuals sampled for the same resource investment by reducing

the fraction of each individual genome sequenced. The crucial

hurdle that must be overcome in reducing sampling for each

individual is ensuring that the same (homologous) regions are

examined between individuals. An early solution to this problem

took advantage of sequence specificity of restriction endonucleases

PLoS ONE | www.plosone.org 1 May 2012 | Volume 7 | Issue 5 | e37135

b



to construct a ‘‘reduced representation’’ sequencing library for

polymorphism discovery [3]. While initially limited to SNP

discovery rather than individual genotype determination by the

cost and throughput of Sanger sequencing, later studies using a

similar approach capitalized on high-throughput massively parallel

sequencing such as 454 (454 Life Sciences, Branford, CT) and

Genome Analyzer (Illumina, Inc., San Diego, CA) and reported

both reliable SNP discovery and genotyping [4,5]. Second-

generation sequencing of DNA libraries comprised only of regions

adjacent to restriction sites was later dubbed Restriction Associ-

ated DNA sequencing (RADseq; Figure 2A; [6] and developed

further in [7,8]). More refined methods have since emerged (e.g.,

Multiplexed Shotgun Genotyping [MSG]; [9]), but rely on having

a complete reference sequence available. Subsequently, studies

extended RADseq to species that lack a reference genome

sequence, but have restricted variant discovery to only those

regions that contained at most one or two polymorphic sites [10–

12].

While these approaches permit genotyping of multiple individ-

uals with substantially reduced sequencing investment, they are

limited in their ability to allow researchers to tune the fraction of

genome sampled (i.e., to genotype only the number of markers

needed for a given experiment). Furthermore, while the RADseq

method is suitable for systems that lack a sequenced reference

genome, the existing computational tools for analyzing resulting

data perform with relatively poor efficiency. In published examples

of RADseq data analyzed without a reference genome [10–12],

approximately half of the sequence data in each case was

discarded because the analysis was not robust to error in sequence

reads, and an additional ,30–50% of loci were discarded due to

the presence of more than 1–3 variable sites in each region. In

addition to inefficiency, including only reads below a set number

of nucleotide differences between haplotypes at a locus introduces

bias in these data, removing rapidly diverging regions and

complicating analyses such as phylogenetic rate and coalescence

time estimation [13–16]. Thus, the ability to optimize the number

of loci sequenced and maximize the number of sequence reads

incorporated in the analysis, and to take advantage of multiple

sites per locus would improve both the efficiency and utility of this

approach.

To increase the breadth of RADseq applications, we have

elaborated on the method described by Baird et al. [6] by

eliminating random shearing and explicitly using size selection to

recover a tunable number of regions, which are distributed

randomly throughout the genome. Moreover, to maximize our

ability to multiplex (i.e., increase the number of samples per

sequencing lane), we also have developed a two-index combina-

torial tagging approach (e.g., n * m individuals using n+m indices)

and an accompanying computational analysis toolkit and light-

weight data management component to facilitate high-order

multiplexing of many hundreds of individuals. We also developed

a graph clustering-based pipeline to maximize sequence read

inclusion in analysis and permit detection of orthologous

haplotypes regardless of divergence (i.e., without arbitrary

similarity requirements), thereby improving analysis sensitivity

and efficiency. Our software pipeline utilizes a novel approach for

filtering resulting loci independent of coverage depth and converts

the resulting haplotype multiple alignments into standard SAM/

BAM format for downstream analysis, such as variant detection

using the Genome Analysis Toolkit [17] or samtools [18]. This

method has proven inexpensive (i.e., fractions of a penny per

individual per site), rapid (i.e., approximately 8 hours of hands-on

time), requires little starting material (i.e., 100 ng of DNA), and is

suitable for high-throughput applications (all steps can be carried

out in microtiter plates). In addition, this method can be

Figure 1. A flexible genotyping method can be used to optimize the number of genetic markers for a specific experimental
approach in a given biological system. Segregating genetic markers are used to make inferences about historical processes (e.g., phylogenetic
relationships, population structure) and functional mechanisms (e.g., genotype-phenotype mapping), but the optimal number of markers (fraction of
the genome) needed to achieve a desired level of resolution differs based on both the experimental approach and the specific biological system–the
number of genetic markers needed to recover relationships among populations or species is related to divergence among groups (e.g., more recent
or more rapid events require more variable loci); the number of markers required for optimal resolution in phenotype-mapping experiments
(conducted in laboratory crosses or pedigreed wild populations) is a function of the number of recombination events captured in the pedigree; the
number of markers used in association mapping or selection scans in wild populations is determined by genome-wide levels of linkage
disequilibrium, which is largely dictated by demographic history. Recent methods combining reduced representation library construction and next-
gen sequencing (i.e., RADseq [6]) target an intermediate number of regions (shown schematically above). We expand on this approach to provide
marker sets ranging from 100s to 100,000s of regions at low cost with no requirement of prior genomic data (ddRADseq; double digest RAD
sequencing).
doi:10.1371/journal.pone.0037135.g001

Double Digest RADseq SNP Discovery and Genotyping
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employed, and its results efficiently analyzed, with no prior

knowledge of genome sequence.

Methods

Double Digest Restriction Associated DNA (ddRAD)
Sequencing

We have developed a protocol that builds on the RADseq

method [19] but which differs in two principal respects (Figure 2).

First, our method eliminates random shearing and end repair of

genomic DNA (an advantage shared with a family of partially

overlapping protocols such as MSG, CrOPS, and other recent

RADseq derivatives [9,20,21]). Instead, we use a double restriction

enzyme (RE) digest (i.e., a restriction digest with two enzymes

simultaneously) that results in at least five-fold reduction in library

production cost–complete ddRADseq libraries cost ,$5 per

sample, while the necessary enzymatic steps following the initial

restriction digest and ligation in random shearing RAD libraries

alone introduce a cost of ,$25 per library (NEB, Ipswich, MA).

Furthermore, the elimination of several high-DNA-loss steps

permits construction of ddRAD libraries from 100 ng or less of

starting DNA. Second, we introduced a precise selection for

genomic fragments by size, which allows greater fine-scale control

of the fraction of regions represented in the final library (see

results). By combining precise and repeatable size selection with

sequence-specific fragmentation, double digest Restriction-Site

Associated DNA sequencing (ddRADseq) produces sequencing

libraries consisting of only the subset of genomic restriction digest

fragments generated by cuts with both REs (i.e., have one end

from each cut) and which fall within the size-selection window

(Figure 2B). This combination of requirements can be tuned to

generate libraries consisting of fragments derived from hundreds to

hundreds of thousands of regions genome-wide.

Precise, repeatable size selection offers two further advantages.

First, because only a small fraction of restriction fragments will fall

in the target size-selection regime (,5% in conditions described

here), the probability of sampling both directions from the same

restriction site is low. This reduces ‘‘duplicate’’ (i.e., immediately

neighboring) region sampling, which effectively halves the number

of reads that are required to reach high-confidence sampling of a

SNP associated with a given RE cut site. Second, shared bias in

region representation favoring fragments closest to the mean of

size selection, in turn, biases independent samples (e.g., from

different individuals) towards recovering the same genomic regions

(Figure 2B). Because of this correlated recovery, regions are ‘‘filled

in’’ with reads in approximately the same order across all

individual samples, and samples with read recovery counts below

saturation will still share a significant number of well-covered

regions (‘‘Experimental ddRADseq results’’ below; Analysis S1

Supporting Figure 4; Analysis S1 ‘‘Region recovery: ddRADseq

vs. random shearing’’). Both of these properties make the

ddRADseq method robust to under-sampling with respect to read

counts, which is a commonly observed problem arising from

unequal read representation across individual samples in pooled

sequencing experiments [9,22,23].

Sample Multiplexing via Combinatorial Indexing
The double RE digest and precise size-selection of genomic

fragments approach described here permits tuning of the number

of regions recovered across several orders of magnitude (Table 1;

‘‘Results’’ below). As the per-base sequencing depth required for

genotype determination is constant, the necessary sequencing

investment for one individual or sample is inversely proportional

to the total number of regions sampled. For example, if a

combination of restriction digest and size selection efficiently

recovered fragments derived from 10,000 regions genome-wide,

an average of 20x coverage could be achieved at an investment of

200,000 sequence reads, which would permit sequencing of over

1000 individuals in a single Illumina HiSeq 2000 lane (based on

common observation of average read counts exceeding 200 M

reads per lane). Furthermore, as costs of library construction by

double digest are five to ten fold less than random-shearing

methods (due to the cost of shearing and enzymatic end-repair),

construction and sequencing of individually indexed libraries for

thousands of samples is financially feasible (i.e., a few dollars per

individual). Thus, ddRADseq permits construction of highly

multiplexed libraries, due to the ability to decrease read count

Figure 2. Double digest RAD sequencing improves efficiency and robustness while minimizing cost. (A) Traditional Restriction-Site
Associated DNA sequencing (RADseq) uses a single restriction enzyme (RE) digest coupled with secondary random fragmentation and broad size
selection to generate reduced representation libraries consisting of all genomic regions adjacent to the RE cut site (red segments). (B) Double digest
RAD sequencing (ddRADseq), by contrast, uses a two enzyme double digest followed by precise size selection that excludes regions flanked by either
[a] very close or [b] very distant RE recognition sites, recovering a library consisting of only fragments close to the target size (red segments).
Representation in this library is expected to be inversely proportional to deviation from the size-selection target, thus read counts across regions are
expected to be correlated between individuals (yellow and green bars).
doi:10.1371/journal.pone.0037135.g002

Double Digest RADseq SNP Discovery and Genotyping
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requirements in sequencing and reduce cost per individual in

library construction.

Assigning each sequence read from a given experiment to one

of hundreds (or even thousands) of individual samples is a

substantial challenge. Previous studies have reported pooling

strategies that resolve up to several dozen individuals in a

sequencing lane using a ‘‘molecular barcode,’’ consisting of a

short stretch of known sequence immediately adjacent to the

genomic sequence read (12 barcodes were reported in [22]; 96 in

[9]). When more than 12 individuals or samples are pooled,

however, the cost of synthesizing the oligonucleotides used to

make barcoded adapters for library construction presently

exceeds the cost of a lane of Illumina sequencing. Thus, while

in principle it is possible to expand the repertoire and sequence

length of in-line barcodes to fit the required number of

individuals, the requirement for one unique barcoded adapter

(and therefore two DNA oligonucleotides) for each individual

introduces substantial cost and logistical complexity.

Therefore, we developed adapters for ddRAD sequencing

that simultaneously incorporate a combinatorial in-line barcode

(per [22]) and a standard Illumina multiplexing read index

(Protocol S1 Figure 1). In brief, a small number of barcoded

adapters are ligated separately to individual samples in

microplate format. These samples are then pooled following

ligation, but before size selection. Size selection is performed on

each pool of individuals and the resulting libraries are amplified

with a primer that introduces an index that will be read off in a

separate multiplexing read per the standard Illumina multi-

plexed paired-end sequencing protocol. Following PCR with

uniquely indexed primers, multiple pools can be combined and

individuals that share the same in-line barcodes (present in the

adapter and detected as the first bases of the sequencing read)

are distinguished based on the combination of adapter barcode

and multiplexing read indices. This two-tier indexing scheme

thus allows for an exponential increase in uniquely identifiable

samples per pool, while avoiding additional oligonucleotide

synthesis and sequencing costs associated with greater numbers

of longer unique barcodes.

Here, we present oligonucleotide sequences for 48 uniquely

barcoded ddRADseq library construction adapters as well as

corresponding PCR primers for the 12 multiplexing read indices

officially supported by Illumina analysis software (Sequences S1),

but custom analysis permits the use of additional multiplexing read

indices. The 48 adapter barcodes used in this work all differ by at

minimum 2 base positions, which is sufficient to achieve .95–

99% assignment of individual reads (Analysis S1 Supporting

Table 1). All barcoded adapters and indexed PCR primer

sequences provided generate standard Illumina sequencing

libraries with respect to cluster generation and sequencing primers.

Thus, no modifications to standard sequencing protocols are

necessary after the completion of library construction. Further-

more, as all sequencing primer and flowcell annealing sequences

are identical to those in standard Illumina multiplexing libraries,

ddRADseq libraries can be sequenced in any combination of

single-read or paired-end and with or without an Illumina-style

multiplexing read (i.e., using only in-line adapter barcodes to

distinguish samples, following [22]). This indexing approach is

flexible and cost-effective, but the ability to pool large numbers of

samples brings with it a need for tools to facilitate the analysis of

these pooled data.

Identification of Multiplexed Samples
To efficiently ‘‘de-multiplex’’ (match each sequence read to a

single sample) this two-tier indexing scheme and to manage

Table 1. Simulated region recovery and optimal per-individual read investment demonstrate marker set flexibility.

Genome (GB) SbfI-EcoRI SphI-EcoRI EcoRI-MspI SphI-MluCI NlaIII-MluCI

Human (Homo sapiens) 3.10 1 (0.01% 34) 10 (0.08% 249) 20 (0.19% 581) 40 (0.30% 915) 200 (1.49% 4619)

Rat (Rattus norvegicus) 2.72 1 (0.01% 24) 10 (0.08% 224) 20 (0.18% 492) 40 (0.35% 949) 200 (1.79% 4874)

Mouse (Mus musculus) 2.72 1 (0.01% 26) 10 (0.09% 248) 20 (0.20% 540) 50 (0.40% 1094) 200 (1.81% 4905)

Corn (Zea mays) 2.07 0.7 (0.01% 15) 6 (0.06% 128) 30 (0.33% 676) 30 (0.38% 777) 200 (1.99% 4114)

Lizard (Anolis carolinensis) 1.80 0.7 (0.01% 15) 7 (0.08% 150) 20 (0.31% 550) 20 (0.27% 488) 100 (1.61% 2904)

Zebrafish (Danio rerio) 1.41 0.4 (0.01% 8) 4 (0.06% 82) 10 (0.16% 230) 20 (0.31% 443) 100 (1.60% 2254)

Finch (Taeniopygia guttata) 1.22 1 (0.03% 31) 5 (0.08% 101) 8 (0.14% 174) 10 (0.26% 321) 100 (1.69% 2066)

Chicken (Gallus gallus) 1.11 0.9 (0.02% 18) 5 (0.10% 111) 7 (0.13% 148) 20 (0.41% 450) 100 (1.82% 2017)

Stickleback (Gasterosteus aculeatus) 0.46 0.3 (0.02% 7) 1 (0.06% 28) 7 (0.31% 143) 9 (0.40% 183) 50 (2.24% 1032)

Fugu (Takifugu rubripes) 0.39 0.3 (0.02% 6) 1 (0.06% 22) 5 (0.29% 114) 6 (0.32% 125) 30 (2.03% 796)

Limpet (Lottia gigantea) 0.36 0 (0.00% 0) 0.6 (0.04% 13) 3 (0.21% 78) 0.9 (0.05% 19) 10 (0.62% 225)

Fire Ant (Solenopsis invicta) 0.35 0 (0.00% 0) 1 (0.06% 22) 6 (0.35% 125) 2 (0.14% 48) 10 (0.83% 295)

Mosquito (Anopheles gambiae) 0.27 0 (0.00% 0) 0.9 (0.07% 18) 4 (0.36% 98) 4 (0.34% 91) 20 (1.71% 467)

Leech (Helobdella robusta) 0.24 0 (0.00% 0) 0.6 (0.05% 12) 1 (0.16% 39) 1 (0.15% 36) 10 (0.94% 223)

Honeybee (Apis mellifera) 0.23 0 (0.00% 0) 0.6 (0.06% 13) 5 (0.48% 109) 0.8 (0.08% 17) 6 (0.57% 131)

Fruitfly (Drosophila melanogaster) 0.17 0.05 (0.01% 1) 0.7 (0.08% 14) 3 (0.44% 73) 2 (0.29% 48) 10 (1.49% 250)

Thale cress (Arabidopsis thaliana) 0.12 0 (0.00% 0) 0.3 (0.06% 7) 2 (0.37% 44) 0.8 (0.15% 17) 8 (1.50% 179)

A single set of reagents coupled with appropriate digest (and sizing) conditions can be used to tune the number of recovered fragments over two orders of magnitude
in most species (see text). Parameters for ddRADseq recovery simulations: ‘‘wide’’ automated size selection (300 bp636 bp simulated with mean = 300 bp, SD = 18 bp;
see Figure 4) with different RE combinations. The values in each cell report: the approximate number of fragments expected (in thousands), the fraction of the diploid
genome that would be sampled in a 100 bp, paired end read (200 bp total), and the expected number of reads (in thousands) required to saturate the regions at .76
coverage.
doi:10.1371/journal.pone.0037135.t001
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thousands of samples in a flexible, portable and lightweight

Laboratory Information Management System (LIMS), we have

developed a simple combination of Google Documents Spread-

sheets and database tools in the Python programming language.

We use this system both to track sample data and metadata (e.g.,

sex, population and pedigree information, phenotype) and to store

and query multiplexing barcode and index data. We associate a

single sample with up to four pieces of information: a flowcell

designator, a lane number, the microplate well address of the

adapter (and therefore adapter barcode), and optionally the

multiplexing PCR primer index. This allows straightforward ‘‘de-

multiplexing’’ of resulting data in the first phase of data analysis.

Briefly, Illumina fastq format files (which have been processed into

separate files based on Illumina multiplex read indices, if

applicable) are further de-multiplexed by matching the first k

bases of the read (where k is the length of the in-line barcode set,

obtained from Google Spreadsheets LIMS) to the set of barcoded

sequences expected in that lane (or in that multiplex read index

set, from that lane). As all in-line adapter barcodes reported here

differ by at least two positions, we retain any read that aligns, with

one or fewer mismatches, to one and only one valid index and

assign that read to the corresponding individual (and if desired,

write that read data with quality to a new fastq file containing only

reads from that individual). Together, this combination of

inexpensive high-order multiplexing and free, familiar tools for

tracking and resolving samples in a pooled sequencing experiment

serves to substantially reduce barriers of cost and complexity for

genome-scale analyses of large numbers of individuals.

Polymorphism Discovery and Genotyping without a
Reference Genome

Due to short read lengths and high error rates, methods for

analyzing second-generation sequencing data generally require

mapping sequencing reads to a fully sequenced genome from the

same or a very closely related species (divergence must be low

enough to expect that seed conditions for read mapping will be

met even in rapidly evolving sequence, generally ,1–5%

divergence overall [24,25]). In contrast to random shotgun

libraries, in which reads are expected to start at all possible

genomic positions, RADseq data consist of reads beginning only at

restriction sites. As such, in the absence of error or polymorphism,

the 10–100e6 reads generated by a single lane of parallel

sequencing should represent no more than 1–100e3 unique

sequences depending on enzyme choice, genome size and size-

selection strategy. Thus, we have developed a de novo analysis

strategy, which leverages this inherent reduction in data complex-

ity to perform reference-free variant discovery and genotyping

from ddRAD data.

Short-Read Data Analysis
We begin by collapsing all identical sequences within a lane into

a single record retaining the number of times the sequence was

observed in each individual (based on barcoding and indexing),

the average per-base quality across the sequence in all observa-

tions, and, if paired-end sequencing was performed, the associated

unique paired-read sequences and counts. The resulting set of

unique sequences consist of: single copy sequences with no

nucleotide variation across sampled individuals, sequences repre-

senting segregating haplotypes of single-copy loci, high-copy or

paralogous sequences, and error-containing reads. Previous

RADseq unreferenced analyses have employed a variety of

heuristic approaches to distinguish among these categories, such

as discarding singleton reads to eliminate error-containing reads,

grouping sequences that differ by 1–3 mismatches to identify sets

of homologous alleles, and discarding homolog sets consisting of

unusually large numbers of reads to eliminate paralog and

interspersed repeats [10,12]. These approaches are both inefficient

(it is likely that an error that generates a singleton will occur at a

non-polymorphic site and as such, the majority of error-containing

reads are still informative) and arbitrarily restrictive, as insertions/

deletions (indels), polymorphisms and multiple SNP haplotypes

require extension beyond single-mismatch homology.

In place of individual heuristics for read trimming, ortholog

inference, and paralog/repeat pruning, we employ a graph-based

distance clustering approach to recover groups of maximally

similar sequences followed by a novel ‘‘ploidy-aware’’ quality filter.

We first compute pairwise distances between all unique sequences

using BLAT [26]; while slower than short-read mapping

approaches, this permits detection of more divergent haplotypes,

including indel-containing regions. We then employ the MCL

(Markov Cluster Learning) graph clustering algorithm to discover

groups of unusually similar sequences, analogous to the

OrthoMCL phylogenetic ortholog finding approach [27]. Next,

we separately consider counts of all unique sequences from every

individual in each cluster, and ask what fraction of reads report

haplotypes beyond the ploidy of the organism under study (i.e.,

total counts of each unique sequence after the two most highly

recovered in a diploid, one in a haploid, or four in a tetraploid).

This results in a conservative estimate of either the fraction of

error-containing sequences in a legitimate single-copy cluster, or

the proportional representation of the top paralog in a cluster

which groups sequences from more than one genomic region. Per-

base error rates on the Illumina platform are generally 0.1–1.0%,

therefore we expect 31*0.001–31*0.01 = 3.1–31% of 31 bp reads

to contain an error. In the experiments reported here (see below),

our per-base error rate ranged from 0.18–0.22%, suggesting

approximately one in ten 31 bp reads are expected to contain an

error, and we therefore discard any graph cluster consisting of

more than 10% ‘‘non-first-two’’ sequences for each (diploid)

individual; in other words, we retain only putative ortholog sets for

which greater than 90% of reads were one of the two most

frequent unique sequences in that set for each individual.

After assigning reads and filtering ortholog groups, we perform

multiple alignments of all sequences in a group using MUSCLE

[28]. Multiple alignment has the advantage of both correcting for

register errors introduced early in individual reads, and maximiz-

ing the probability of correctly positioning indels between

haplotypes [29]. Alignments are then written as reference-ordered

SAM/BAM files [18] including @RG and @SQ headers, treating

the most highly represented of the set of longest reads in each

cluster as a pseudo-reference which is written to an accompanying

reference fasta file. Converting ddRADseq clusters to SAM/BAM

with preserved individual and sample metadata facilitates popu-

lation-aware variant detection and genotyping on virtually all

modern short-read analysis platforms, including samtools mpileup

[18] and the Genome Analysis Toolkit (GATK) UnifiedGenotyper

[17]. All new software described in this work is available at http://

github.com/brantp/rtd.

Results

Implementing ddRADseq in an Emerging Model Rodent

We applied the double digest RADseq (ddRADseq) method for

genotyping in an emerging model system, the deer mouse (genus

Peromyscus). First, we developed and validated our method by

genotyping ,1000 segregating fixed differences in a cross between

two sister species (P. maniculatus and P. polionotus). Second, we

sought to genotype approximately 10,000 SNPs in natural
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populations of P. leucopus to test the utility of this approach in wild-

caught samples. These proof-of-concept studies are described in

detail below.

RE Choice and Size Selection in Determining the Number
of Sites to be Genotyped

To construct a high-density genetic map in a cross between

sister species P. polionotus and P. maniculatus, we required genotype

information for each animal in our cross at approximately 1,000

markers genome wide. We assumed a lower bound on the rate of

fixed differences between G0 parents of approximately 0.001

[30,31] and for sequence read lengths (and thus sampled region

sizes) of 30 bp, we expected to sample a variable site (fixed

between species) at a rate of one region in 30, which suggested a

target set of 3e4 regions total. We estimated the appropriate set of

REs and size-selection conditions to recover the appropriate

number of genomic regions by performing simulations using the

sequenced genomes of three distantly related rodents (laboratory

mice [Mus musculus], rats [Rattus norvegicus], and the thirteen-lined

ground squirrel [Spermophilus tridecemlineatus]; Analysis S1 ‘‘prelim-

inary expectation’’), which diverged from Peromyscus over 25 Mya

[32]. As the results described below are consistent across all three

comparisons, we report values only for Mus.

We surveyed several combinations of REs, seeking a pair that

would yield between 1e4 and 5e4 fragments (targeting the 3e4

calculation above) when subjected to size selection appropriate for

Illumina library preparation: a mean fragment size between

200 bp and 400 bp and the size-selection window not more than

50–100 bp wide [33]. We estimated 1.5e6 regions flanking cut sites

for the enzyme EcoRI (both directions from each GAATTC

sequence) in the Mus musculus genome (Ensembl release 61, NCBI

M37), yet sampling only those sites that lie between 275 and 325

bases from a second cut site–MspI (CCGG)–is expected to yield a

set of just 2e4 fragments (Figure 3; Analysis S1 ‘‘preliminary

expectation’’). Substitution of one or both REs for one with

different recognition sequence frequencies was expected to modify

the number of fragments recovered at a given size-selection

window over a range of three orders of magnitude (see Table 1).

Changing the size-selection window breadth within the range of

constraints on sequencing libraries was expected modulate the

number of fragments recovered over a range of approximately

twofold (e.g., by doubling the size-selection window to 250–

350 bp, 4e4 regions were expected to be included; Figure 3). Thus,

simulations suggested that tuning two parameters–choice of REs

and size-selection window–should permit optimal marker number

recovery.

As current ‘‘second generation’’ sequencing technology is

subject to relatively high error rates (in excess of 0.1%), it is

necessary to sequence each base several times to produce confident

genotypes (in our experience and concordant with [34], greater

than 76 coverage is generally required). To achieve at least this

level of coverage in 1.5e4–2e4 regions size selected from 275 to

325 bp in an EcoRI-MspI digest of the Mus genome (see above;

Figure 3), we aimed for an average of 10x coverage, which

corresponds to between 2e5 and 5e5 reads for each individual.

Based on this estimate and an expected yield of 2.5e7 reads per

lane of Illumina GAII sequencing, we prepared pools of 48

separately barcoded individuals per sequence lane.

Experimental ddRADseq Results
To evaluate the performance of this approach, we prepared

libraries as described (Analysis S1 ‘‘library construction’’) and

tested three methods of size selection. First, we attempted standard

agarose gel electrophoresis on 2% agarose gels followed by

excision of a band corresponding to the 300 bp; we prepared 48

individuals in six agarose gel lanes. Second, we tested the impact of

changes in size-selection range and the efficacy of automated versus

manual DNA size selection using automated size-selection

technology, Pippin Prep (Sage Science, Beverly, MA; 2% agarose

cartridge). We produced one 48-individual library in four lanes

using automated size selection set to ‘‘narrow’’ setting with a mean

of 300 bp and range of 624 bp (276 bp–324 bp; the narrowest

achievable range for this size mean) and a similar library under a

‘‘wide’’ setting with a mean of 300 bp and range of 636 bp

(264 bp–336 bp). Bioanalyzer (Agilent, Santa Clara, CA) results

suggested that automated size-selection libraries were substantially

more consistent than gel extraction libraries, but that we were

generally able to achieve peaks within 10 bp of the expected size

using gel excision (data not shown).

Three Illumina GAII sequencing lanes averaged 21.7 M reads,

and after resolving reads by individual barcode (described above),

individuals averaged 440 K reads (see Table S1). As divergence

between Peromyscus and a closely related species with a fully

sequenced genome (the house mouse Mus musculus) is substantially

greater than the approximately 5% maximum nucleotide diver-

gence for mapping short reads to a reference sequence (only

28.1% of 84 bp Peromyscus sequences are assigned to unique

positions in the Mus musculus genome by BLAT [26], sequences

with unique matches average 61% identity), the data were

analyzed as described in ‘‘Methods; polymorphism discovery and

genotyping without a reference genome’’. We observed that

individuals receiving .200 K reads in the narrow size-selection

condition saturated at an average of 14–17 K shared regions

(Analysis S1 Supporting Figure 2A, B). In the wide size selection,

this saturation required 400 K reads and reached an average of

20–24 K shared regions (Analysis S1 Supporting Figure 2B, C).

For automated size-selection libraries, region coverage was highly

correlated between samples (r2:0.71–0.93). The results demon-

strate that it is straightforward to design an experiment (i.e.,

choose REs) targeting a given number of regions using an

approximate expectation for cut site frequency and nucleotide

variability, and then to precisely tune resulting recovery by

modifying size selection. In contrast to automated size-selected

samples, gel excision samples did not appear to saturate in the

range of coverage observed. This is likely because size selection

was imprecise or ‘‘leaky’’, with substantial representation of

fragments of lengths relatively distant from the size-selection target

mean. While this prevents fine-tuning in the size-selection step, gel

excision samples nevertheless exceeded 14 K regions for upper-

quartile read sampling (.400 K reads per individual) indicating

that careful practitioners can achieve roughly 50% of the precision

and repeatability of automated DNA size selection.

Comparison of Observed and Simulated ddRADseq
We evaluated the accuracy of original estimates using simple

simulation modeling of these experiments with our three size-

selection regimes. We approximated size selection as a simple

model of normally distributed sampling with mean 300 bp and

unknown variance from the observed fragment size distribution

derived from an in silico RE digest of the Mus genome with EcoRI

and MspI (see above). We tested goodness-of-fit (Pearson r2 of log-

transformed coverage across regions) of our Peromyscus-derived

data for fragment coverage against that calculated from simula-

tions with size-selection sampling distributions

(SD = 1 bp 100 bp). Using best-fit size-selection sampling distri-

bution parameters (mean = 300 bp, SD = 11.5 bp, 17.5 bp and

30 bp for narrow automated size selection, wide automated size

selection and manual gel excision, respectively), we evaluated
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PLoS ONE | www.plosone.org 6 May 2012 | Volume 7 | Issue 5 | e37135



simulated region recovery and our real data with respect to: mean

coverage, number of total regions covered at or above 76, and the

average number of regions shared between that data point (real

individual or simulation result) and all others where presence in

both is defined as coverage at or above 76 (Figure 4). For both

automated size-selection conditions, all measured properties in

real Peromyscus data were extremely well captured by Mus

simulation results, indicating that with precise size selection,

recovery in ddRADseq experiments both within and across

individuals is highly predictable from genomes with even .40%

average sequence divergence (see above) Thus, information from

the genome of a related species (with similar base composition) can

produce accurate estimates of required sequencing effort, thereby

minimizing ‘‘over sequencing.’’

Simulation results predict the observed sharp saturation of new

regions recovered after approximately 200,000 reads in the

‘‘narrow’’ automated selection and 400,000 reads in the ‘‘wide’’

sizing conditions. This effect is not a result of averaging shared

regions across individuals that received fewer reads overall

(Analysis S1 Supporting Figure 2; Analysis S1 ‘‘modeling

simulation’’). Instead, read and region counts at which this

saturation is observed in real data correspond well with the

transition from logistic to asymptotic accumulation of new regions

with additional sequencing investment in simulations (Figure 4C;

Analysis S1 Supporting Figure 3; Analysis S1 ‘‘modeling

simulation’’). This saturation represents the optimal investment

of sequencing resources for a particular combination of target

genome, RE digest and size selection, since sequencing beyond this

point primarily recovers poorly sampled regions unlikely to be

shared among individuals. By performing simulations using the

‘‘narrow’’ and ‘‘wide’’ sampling models trained from our

Peromyscus EcoRI - MspI data, we similarly can predict the

saturation point in region counts and corresponding required read

depth for fragment distributions resulting from in silico digest of any

combination of target genome and restriction enzymes.

Validation of ddRADseq Derived Genotypes in a
Laboratory Cross

We produced the remaining ddRADseq libraries for all

purebred parents, a single F1 individual and 192 F2-backcross

progeny using the EcoRI/MspI enzyme pair and ‘‘wide’’ size

selection scheme described above to complete our sampling of

2e4–3e4 regions from each animal with the goal of identifying and

genotyping ,1000 diagnostic SNP markers. We sequenced all

libraries on an Illumina GAII and analyzed sequence reads as

described (see ‘‘Methods’’); all analyses reported here use

genotypes from the GATK UnifiedGenotyper [17] with param-

eters QD (quality-by-depth) $6 and GQ (genotype quality) $20

based on optimization in other applications (data not shown).

Because loci that are different between, but fixed within, each

parental species are most informative for QTL analyses, we

screened for markers that met these criteria, and that we could

infer diploid genotypes for at least 150 (of 192) individuals in our

cross. This filter produced 1,886 SNPs in 1,638 unique sequence

regions. We estimated the genotype frequencies of each marker

across all F2 progeny, and also the fraction of recombination

events and LOD score between all marker pairs (Figure 5A). By

varying the maximum fraction of recombination and minimum

LOD score allowed among markers on a single linkage group, we

constructed a linkage map using R/qtl [35] that contained

1,158 SNP markers in 24 linkage groups, consistent with the P.

maniculatus karyotype, with a total length of 1,759.7 cM and an

average inter-marker distance of 1.6 cM (Figure 5B). Our ability

to construct a well-resolved genetic map of total map length

similar to published high-density genetic maps for Mus [36] and

associating the majority of genotyped sites with a number of

linkage groups matching the P. maniculatus karyotype suggests that

the ddRADseq approach efficiently generates high quality

genotypes for laboratory crosses.

De novo Analysis of ddRADseq Data in Outbred
Populations

While library construction and sequencing for outbred wild

population samples can be performed in a manner equivalent to

that described for a laboratory cross, thorough analysis of resulting

data in the absence of a reference genome is substantially more

challenging due to the potentially much greater haplotype diversity

at each locus in the recovered region set. Because our de novo

sequence analysis pipeline is designed to be able to operate at

greater sequence divergence between haplotypes at each genomic

Figure 3. Double digest RAD sequencing provides flexibility in the number of homologous fragments recovered. Changing the
restriction enzyme (RE) or size-selection regime modifies the fraction of genome recovered. Simulation 1 (blue lines, shading): the expected
fragment size distribution for a RE digest with NlaIII and MluCI (CATG and AATT) in the Mus musculus genome is shown (solid blue line). ‘‘Broad’’ size
selection (300 bp650 bp) is modeled by a normal sampling distribution (mean = 300 bp, SD = 25 bp). Under this sampling distribution, 4,900,000
sequence reads (dashed blue line) are expected to cover ,119,000 regions at 76 or greater (blue area). Simulation 2 (red lines, shading): the
expected fragment size distribution for a digest with EcoRI and MspI (GAATTC and CCGG) is shown (solid red line). ‘‘Narrow’’ size selection
(300 bp624 bp; see text) is modeled by a normal sampling distribution (mean = 300 bp, SD = 11 bp; see Analysis S1 Supporting Figure 1). Under this
sampling distribution, an investment of 315,000 sequence reads (dashed red line) is sufficient to recover ,17,000 regions at 76or greater (red area).
doi:10.1371/journal.pone.0037135.g003
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region, we tested our approach by performing genome-wide SNP

genotyping in wild populations of Peromyscus. We first prepared two

ddRADseq libraries containing a total of 54 wild-caught Peromyscus

leucopus individuals collected from a single population in Louisiana.

Libraries were prepared, sequenced, and analyzed according to

the protocol described with the EcoRI/MspI enzyme pair, and

‘‘wide’’ size selection conditions as above (see ‘‘Methods’’; Analysis

S1 ‘‘Genotyping in a wild population’’). We sequenced these

libraries in two GAII lanes. Our de novo analysis pipeline recovered

6,199 variable regions, and yielded 15,962 total polymorphic sites

with genotypes for at least 70% of individuals. We next calculated

the distribution of minor allele frequencies (site frequency

spectrum) for this population, which demonstrated consistent

recovery of common variants and the expected roughly exponen-

tial distribution of rare alleles (Figure 5C).

We further explored the applicability of ddRADseq-derived

markers in outbred samples by estimating structure among

several P. leucopus populations. We generated ddRADseq

libraries as above for a total of 92 individuals collected from

four wild populations (Louisiana, Nebraska, Pennsylvania and

Massachusetts, see Analysis S1) and a laboratory population

(derived from North Carolina). Our analysis returned

18,907 SNPs from 7,435 orthologous fragments when we

required 70% completeness. We used these SNPs to run a

genetic principal component analysis (PCA) using the statistical

software package, Eigensoft 3.0 [37] and found 7 significant

eigenvectors (first two shown in Figure 5D). Genetic principal

components support the expected geographic isolation as the

dominant source of structure among these samples.

Figure 4. Recovery of genomic regions in deer mice (Peromyscus maniculatus and P. polionotus) is well predicted by simulation based
on the laboratory mouse (Mus musculus) genome with precise size selection. Simulated data based on the Mus musculus genome (dashed
lines) and actual data from a distantly related rodents Peromyscus maniculatus and P. polionotus (solid lines), both fragmented with EcoRI and MspI
recognition sites. Sampling from the Mus genome is drawn from a normal distribution (mean = 300 bp and SD = 11.5, 17.5, and 30), which represents
the best match for Peromyscus ddRADseq with size-selection windows of 624 bp (‘‘narrow’’, green), 636 bp (‘‘wide’’, blue) and 625–50 bp (‘‘gel’’,
red) respectively. The narrow and wide selection sets are based on a more precise automated size-selection method (PippinPrep, Sage Science).
Recovery in ddRADseq experiments, both within and across individuals, is highly predictable: (A) Region coverage is highly correlated between
simulated Mus and observed Peromyscus data. Simulations show good fit to automated size selection (median samples from each sizing strategy and
simulation of matched read counts, r2 0.99 and 0.98 for narrow and wide sizing, respectively), but match less well for gel extraction (median r2 0.94).
(B) Simulated data are concordant in mean sequence coverage across fragments as a function of total read depth per individual in all size-selection
schemes (open circles: observed data, dotted line: simulation). (C) The number of regions with coverage $76as a function of total read depth per
individual, and (D) mean number of regions with coverage $76 shared with other individuals, show very high concordance with normal sampling
distributions in both narrow and wide automated size selection but are less well fit by any tested sampling distribution for the gel extraction method.
doi:10.1371/journal.pone.0037135.g004
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These applications of the ddRADseq approach not only

demonstrate its success in species lacking a complete genome

sequence, but also highlight a key advantage to our MCL

clustering analysis: fewer than 20% of the informative SNP

markers used in the outbred population analyses described

above reside in single-SNP regions, and less than half in

,3 SNP loci, which would have rendered the majority of that

dataset unavailable to previous reference-free methods such as

Stacks [38] as employed by analyses to date [10–12]. By not

requiring a threshold identity for assignment of homology in our

de novo analysis, we were able retain more sequence data, avoid

bias against rapidly diverging or polymorphic regions, and

incorporate longer reads than otherwise would have been

possible.

Discussion

Here we describe a combination of laboratory and computa-

tional methodology to permit highly repeatable and tunable

Figure 5. Discovery and genotyping of ddRADseq markers in a laboratory cross and wild populations without a reference genome.
ddRADseq was used to identify SNPs between two Peromyscus species, neither of which had a genome sequence available, that were crossed as part
of a QTL experiment. This yielded 1158 unique markers that were fixed within, but different between, the parental species. By calculating the fraction
of recombinant genotypes and LOD of linkage between markers, we generated (A) 24 groups of strongly linked markers, heatmap colors represent
strength of linkage in both recombination frequency (upper left) and LOD (lower right) between all pairs of markers; and (B) a genetic map with
average inter-marker distance of 1.6 cM. ddRADseq was also used to genotype wild-caught and lab-reared individuals of P. leucopus. Our ddRADseq
method permitted successful genotyping of wild-caught individuals even when the allelic variants within a population are unknown. (C) Estimated
site frequency spectrum of a wild population of P. leucopus caught in a single Louisiana population. (D) Genetic structure between five populations of
P. leucopus. Dots represent individuals (N = 92) and color indicates the states from which individuals were collected: LA = Louisiana; NE = Nebraska;
PA = Pennsylvania; MA = Massachusetts; NC = North Carolina.
doi:10.1371/journal.pone.0037135.g005
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recovery of hundreds to hundreds of thousands of randomly

sampled regions from a target genome. In comparison to

traditional RADseq methods, ddRADseq library preparation is

less expensive and rapid (,8 hours hands-on time for dozens to

hundreds of samples), completely compatible with microplate

format, and can be performed using limited amounts of genomic

material (,100 ng). Furthermore, due to the removal of random

shearing (and therefore random recovery), correlated recovery of

regions across individuals results in increased robustness to

variability in read count (see ‘‘Results’’; Analysis S1 Supporting

Figure 4). As sequencing depth required to reach saturation is a

direct function of the number of regions sampled (Table 1), the

number of individuals which can be genotyped in a single

sequencing lane is inversely proportional to the number of regions

recovered. For example, we chose to recover 15–25 K regions in

one experiment described here, for which saturation was achieved

at less than 500 K reads per individual.

Combinatorial Multiplex Indexing
For experiments other than genome-wide association studies,

whole-genome scans for selection and population differentiation,

recovery of tens of thousands of regions is often sufficient. Our

simulations suggest that per-sample investment of less than 1 M

reads in the appropriate digest and size-selection strategy is

sufficient to achieve coverage enabling confident genotype

determination at such region counts, which means that with

modern sequencing capacity (20–200 M reads per lane, depending

on technology) dozens to hundreds (and potentially thousands) of

individuals can be pooled in a single sequencing lane. To facilitate

inexpensive construction of libraries with large numbers of

individuals, we developed a combinatorial indexing scheme that

requires no modification to standard Illumina sequencing. Our

applications of combinatorial indexing have combined $192

samples in a single Illumina HiSeq lane, with a recent example

lane yielding 167 M reads in total amongst 192 individuals with

median individual read count of 0.7 M reads and interquartile

range of 0.3 M–1.2 M reads. Coefficients of variation across all

pooled-sampled sequencing lanes range from 0.4–0.8 for all

experiments performed to date. Thus, generating an average of

double the desired minimum read count has proven sufficient to

completely cover most or all samples. To simplify the process of

handling sequence data generated from hundreds of pooled

individuals we have implemented a lightweight LIMS for tracking

and de-multiplexing samples based on the freely available Google

Documents Spreadsheet platform.

Reference-free RADseq Analysis by Graph Clustering
Analysis of RADseq data in the absence of a reference genome

has been performed in a small but growing collection of studies

employing the open-source Stacks package [38]. Stacks includes a

full suite of tools for tracking pooled samples and performing the

‘‘off-by-N’’ assignment of alleles to a locus described above, as well

as sample-by-sample genotyping and data storage. While the

Stacks package is a complete and robust solution tailored to de novo

analysis of random shearing RADseq data, we were motivated to

develop our own implementation for four principle reasons. First,

we wished to avoid an arbitrary sequence distance threshold

between alleles for a single locus, as described above. Second,

Stacks filters paralog and high-copy loci by read coverage,

assuming random coverage across loci; this assumption is violated

by the correlated recovery observed in ddRADseq, necessitating

development of the ploidy-based filter (see ‘‘Methods’’). Third, to

increase efficiency of ddRADseq de novo analysis we sought to

incorporate error-containing reads in our analysis rather than

filtering these at the outset. Fourth, we wanted to be able to take

advantage of recent improvements in statistical methods for

genotype calling from short read data, such as multiple sample

genotyping in the GATK program [17]. Our computational

pipeline for genotyping in the absence of a reference genome

achieves approximately 30–50% higher sensitivity in read

incorporation than observed in the previously described applica-

tions of Stacks (62–75% of reads fall into well-recovered regions;

greater than 68% for all automated size-selection samples,

compared to approximately 50% [10]). Because error, frameshift,

and low-quality containing reads are incorporated by the

clustering process, our de novo analysis approaches the efficiency

of read incorporation observed in reference-mapping approaches

such as BWA (,80% mapping for 32 bp reads [39]). In addition,

graph clustering permits grouping of haplotypes with any number

of mismatches, provided the global similarity relationships among

all reads support significant sequence homology between them; for

instance, in an outbred wild population this increased sensitivity by

five fold over single-mismatch haplotype pairing. Our analysis also

produces standard SAM/BAM formatted alignments that retain

sequence read quality scores. This feature permits employment of

quality-adjusted metrics in variant detection (such as quality-by-

depth in the Genome Analysis Toolkit [17]) to prevent reduction

of specificity in resulting genotype data, and facilitate accurate

genotype determination even at relatively low read investment

(.76; [34]). We combined these features to simultaneously

discover and genotype thousands of fixed differences in a

laboratory cross and tens of thousands of SNPs in wild population

samples for ,$20 per sample total (,$5 sample prep, $15

sequencing) on the Illumina GAII platform and well under $10

(,$5 sample prep +,$5 sequencing) on the Illumina HiSeq 2000

platform.

Conclusions
The ddRADseq method described here, in conjunction with

huge strides in both the throughput of sequencing (e.g., Illumina

HiSeq 2000) and in genotype analysis based on short read

sequence data (e.g., GATK UnifiedGenotyper, samtools) permits

high throughput simultaneous discovery and genotyping of

sequence polymorphism either with or without an existing

reference genome. Compared to existing RADseq approaches,

ddRADseq permits greater flexibility and robustness in region

recovery, and a substantial decrease in cost, required genomic

material from samples and researcher time investment. Here, we

provide a detailed protocol for the laboratory methods as well as

an open-source computational pipeline (based on freely available

software), which we hope will make this method accessible and

widely applied to a range of biological problems in a diversity of

organisms.

Supporting Information

Protocol S1 Detailed Protocol. Complete laboratory proto-

col for design and execution of ddRADseq studies. The up-to-date

protocol is also available at http://www.bit.ly/ddRAD.

(DOC)

Sequences S1 Oligonucleotide sequences. This Microsoft

Excel spreadsheet documents all sequences of PCR primer and

adapter oligonucleotides for experiments described in this work.

(XLS)

Analysis S1 Additional details on simulations described in this

work. Also includes parameter values and run conditions for proof-
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experiments.
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