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Abstract

Irisin and FGF21 are novel hormones implicated in the ‘‘browning’’ of white fat, thermogenesis, and energy homeostasis.
However, there are no data regarding these hormones in amenorrheic athletes (AA) (a chronic energy deficit state)
compared with eumenorrheic athletes (EA) and non-athletes. We hypothesized that irisin and FGF21 would be low in AA, an
adaptive response to low energy stores. Furthermore, because (i) brown fat has positive effects on bone, and (ii) irisin and
FGF21 may directly impact bone, we hypothesized that bone density, structure and strength would be positively associated
with these hormones in athletes and non-athletes. To test our hypotheses, we studied 85 females, 14–21 years [38 AA, 24 EA
and 23 non-athletes (NA)]. Fasting serum irisin and FGF21 were measured. Body composition and bone density were
assessed using dual energy X-ray absorptiometry, bone microarchitecture using high resolution peripheral quantitative CT,
strength estimates using finite element analysis, resting energy expenditure (REE) using indirect calorimetry and time spent
exercising/week by history. Subjects did not differ for pubertal stage. Fat mass was lowest in AA. AA had lower irisin and
FGF21 than EA and NA, even after controlling for fat and lean mass. Across subjects, irisin was positively associated with REE
and bone density Z-scores, volumetric bone mineral density (total and trabecular), stiffness and failure load. FGF21 was
negatively associated with hours/week of exercise and cortical porosity, and positively with fat mass and cortical volumetric
bone density. Associations of irisin (but not FGF21) with bone parameters persisted after controlling for potential
confounders. In conclusion, irisin and FGF21 are low in AA, and irisin (but not FGF21) is independently associated with bone
density and strength in athletes.
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Introduction

Irisin and FGF21 are novel hormones implicated in the

modulation of energy homeostasis [1], and more recently with

bone metabolism. A recently discovered myokine and adipokine,

irisin has been proposed to be an important mediator of the

beneficial metabolic effects of exercise [2]. It is released

systemically from skeletal muscle and induces the ‘‘browning’’ of

subcutaneous white adipocytes, uncoupling protein 1 (UCP1)-

mediated thermogenesis, and increased energy expenditure [2].

Irisin secretion also increases in men who exercise [2,3]. However,

the impact of chronic exercise on irisin in over-exercising females

has not been examined, and the impact of associated hypotha-

lamic amenorrhea is unknown.

FGF21 is secreted into the circulation from the adipocytes and

liver, and is expressed in fat, skeletal muscle and the pancreas.

FGF21 regulates carbohydrate and lipid metabolism, resulting in

improved glucose homeostasis and lipid parameters, and reduces

body weight in animal models. Like irisin, FGF21 promotes

conversion of white to beige adipose tissue, activation of UCP1-
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driven thermogenesis and energy expenditure, although this may

represent an autocrine/paracrine rather than endocrine effect

[4,5]. A positive relationship between FGF21 and physical activity

has been described [6], and initiation of an exercise regimen in

sedentary young women leads to increased FGF21 [7].

In addition, both irisin and FGF21 have been implicated in

bone metabolism. Brown adipose tissue is an independent

predictor of bone density in women [8], and the volume and

activity of brown adipose tissue is positively associated with total

and cortical bone cross-sectional area in young children and

adolescents [9]. In rodent models, irisin increases trabecular and

cortical thickness as well as trabecular density through increased

osteoblast activation and inhibition of RANKL mediated osteo-

clastogensis [10]. Effects of FGF21 on bone are still being defined,

with one study demonstrating deleterious effects on bone through

inhibition of osteoblastogenesis in favor of adipogenesis [11]

whereas a study in adult females reported a positive association

between FGF21 and bone density [12] supported by in vitro data

[13]. Thus irisin and FGF21 may impact bone both through

induction of brown adipogenesis, as well as through direct effects.

Data are lacking regarding associations of irisin and FGF21 with

bone parameters in athletes and non-athletes, and the impact of a

hypogonadal state (in athletes with functional hypothalamic

amenorrhea) on these associations.

Although exercise may increase irisin and FGF21 levels in

healthy individuals, we hypothesized that levels of irisin and

FGF21 would be low in amenorrheic athletes, signaling an

adaptive response to an overall state of energy deficit. In addition,

we hypothesized that irisin and FGF21 levels would be positively

associated with measures of bone density, structure and strength in

athletes and non-athletes.

Subjects and Methods

Subjects
We studied 85 adolescent women [38 amenorrheic athletes

(AA), 24 eumenorrheic athletes (EA) and 23 non-athletes] between

14–21 years of age enrolled in an ongoing study, all of whom were

.85% ideal body weight based on the 50th percentile for BMI for

age. Clinical characteristics of a subgroup of these women have

been previously reported [14,15,16,17]. However, levels of irisin

and FGF21, and the relationship between irisin and FGF21 levels

and measures of bone metabolism have not been previously

described. All study participants were recruited from the

community through advertisements and referrals from healthcare

providers. We defined ‘amenorrhea’ as absence of menses for 3

months in a 6-month period of oligo-amenorrhea (cycle length

greater than 6 weeks) or absence of menses at $15 years (upper

limit of normal for menarche), after other causes of amenorrhea

were ruled out. Duration since last menses in AA (median and

interquartile range) was 165 (24–360) days. We defined eumenor-

rheic athletes as those who had had $9 menses in the previous

year. Three athletes (all less than 17 years old) had not attained

menarche, and other causes of menarchal delay (other than

excessive exercise) were ruled out in these athletes.

Inclusion criteria for athletes included $4 hours of aerobic

weight-bearing activity or $20 miles of running weekly for the

preceding 6 months. Inclusion criteria for non-athletes included ,

2 hours per week of weight-bearing activities. Per study design, no

subject met criteria for anorexia nervosa at study enrollment,

although 34% of AA and 4% of EA had a past or current history

of some form of disordered eating behavior. The racial distribution

included 81.0% White or Asian, 13.1% Mixed and 6.0% Black,

while the ethnic distribution included 95.2% non-Hispanic and

4.8% Hispanic. Race and ethnic distribution did not differ

significantly across groups.

Subjects were recruited from local area high schools and

colleges and referrals from pediatricians, adolescent medicine

physicians, endocrinologists, nutritionists and sports medicine

physicians. All subjects who met inclusion criteria were included in

the study in a consecutive fashion.

Ethics Statement
The study was approved by the Institutional Review Board

(IRB) of the Partners HealthCare system (Protocol 2009-P-

000353). Per IRB guidelines and using IRB approved consent

and assent forms, (i) informed written consent was obtained from

subjects $18 years old and parents of subjects ,18 years, and (ii)

informed written assent was obtained from subjects ,18 years.

Study Design
Subjects were seen in the Clinical Research Center of

Massachusetts General Hospital. The screening visit included a

history and physical examination, and laboratory evaluations to

rule out conditions other than excessive exercise accompanied by

inadequate caloric intake that may cause hypothalamic amenor-

rhea. We thus ruled out hyperprolactinemia, primary ovarian

failure, polycystic ovarian syndrome (PCOS) and thyroid dysfunc-

tion.

Qualifying subjects underwent a history and physical examina-

tion, assessment of hours per week of physical activity (averaged

over a year) and measurement of fasting resting energy expendi-

ture using the VMAX Encore 29 metabolic cart (Viasys

Healthcare, Carefusion; San Diego, CA) [18,19]. Subjects did

not alter their usual food intake in the days preceding the study

visit. Similarly, exercise activity on the days preceding the study

visit was not curtailed to allow for usual levels of physical activity.

However, fasting morning blood for irisin and FGF-21 levels was

drawn before any exercise activity. EA and non-athletes were

assessed in the early to mid follicular phase of their cycles (based

on menstrual history). All subjects had assessment of (i) body

composition and areal bone density (spine, hip and whole body)

using dual energy x-ray absorptiometry (DXA), and a subset were

assessed for (ii) bone microarchitecture and estimates of strength at

the distal radius (site of non-weight bearing bone) using high

resolution peripheral quantitative computed tomography

(HRpQCT) and finite element analysis (FEA) using published

methods [14,15,16]. FEA-derived estimates of failure load using

these methods are strongly correlated (r2 = 0.75) with experimen-

tally measured failure loads that produce Colles’ fractures in

human cadaveric radii. HR-pQCT data were acquired on a single

instrument by one operator, who performed standard evaluations

(periosteal contouring). All finite element analyses (endosteal

contouring) were also performed by one blinded investigator [15].

Biochemical Analysis
We used an ELISA to measure irisin (Adipogen; Liestal,

Switzerland; intra-assay coefficient of variation (CV) 6.9%, inter-

assay CV 9.07%, detection limit 0.001 mcg/mL) and FGF21

(R&D Systems; Minneapolis, MN; intra-assay CV 3.4%, inter-

assay CV 7.5%, detection limit 4.67 pg/mL). For the irisin assay,

the laboratory evaluated thee different assay kits on the number of

standards (assay range), sample type (serum or plasma), sample

volume, sample dilution, assay range, sensitivity, assay time and

cost. The Adipogen assay was chosen because it had the greatest

detection range (0.001–5 ug/mL), required the least volume of

sample, and was the most sensitive (0.001 mcg/mL). This was

important given the limited studies of irisin in the pediatric age
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group, and some uncertainty regarding expected values in a

pediatric population. Of note, this assay reports irisin levels that

are an order of magnitude higher than the Phoenix Pharmaceu-

ticals assay [20]. All samples were processed immediately and

stored at 280 degrees Celsius until they were analyzed to

minimize peptide degradation, and contrary to one study that

demonstrated inverse associations of irisin levels with duration of

sample storage [21], we found no such inverse association of irisin

or FGF-21 levels with duration of storage. In fact, another study

found no impact of repeated freeze thaw cycles on irisin levels

[22], suggesting relative stability of this peptide hormone.

A chemiluminescent immunoassay was used to measure 25-

hydroxyvitamin D (DiaSorin, Stillwater, MN; intraassay CV 2.9–

5.5%, interassay CV 8%; sensitivity 4 ng/ml). A subset of at least

55 subjects were assessed for P1NP, CTX, testosterone, SHBG

and estradiol levels. We used an RIA to measure P1NP (Orion

Diagnostics, Espoo, Finland; intra-assay CV 3.5–5.3%, inter-assay

CV 3.6–5.4%), lower limit of detection 0.7 ng/ml), and an IRMA

to measure CTX (Immunodiagnostics Systems, Fountain Hills,

AZ; intra-assay CV 5.2–6.8%, inter-assay CV 5.6–7.4%, lower

limit of detection 0.02 ng/ml). Testosterone was measured by RIA

(Diagnostic Products Corp, Los Angeles, CA; intra-assay CV 5?1–

9?8%, inter-assay CV 8.2%, limit of detection 12 ng/dl), SHBG

by IRMA (Diagnostic Products Corp, intra-assay CV 2?8–5?3%,

inter-assay CV 8.2%, limit of detection 3 nmol/l), and estradiol by

ultrasensitive ELISA (ALPCO Diagnostics, Salem, NH; intra-

assay CV of 6.36% and inter-assay CV of 7.6%, minimum level of

detection 1.4 pg/mL). Free androgen index (FAI) was calculated

using the following formula: [total testosterone (nmol/l)6100]/

SHBG (nmol/l) [23]. All blood samples were spun immediately

after collection, and the serum separated and stored in 280 degree

Celsius freezers until analysis in duplicate.

Statistical Analysis
JMP Statistical Discoveries (version 10.0; SAS Institute, Inc.,

Cary, NC) was used for statistical analyses. Our sample size had .

80% power for detecting a significant difference between AA and

control groups for irisin and FGF21 respectively at an alpha level

of 0.05 based on published data [24,25]. Clinical characteristics,

hormone levels and bone parameters were compared across the

three groups (AA, EA and non-athletes) using analysis of variance

(ANOVA). Irisin and FGF21 levels were logarithmically trans-

formed prior to analyses to approximate a normal distribution.

When the overall ANOVA had a significant p-value, the Tukey

Kramer test was used to compare differences between groups

while controlling for multiple comparisons. For non-parametric

comparisons of three groups, we used the Kruskal-Wallis test

followed by the Steel-Dwass method for between group compar-

isons.

We used Pearson or Spearman correlations (depending on data

distribution) to determine associations of hormones with bone

measures, body composition and REE. Because irisin is a myokine,

associations of irisin with these measures may differ in chronically

exercising athletes compared with non-athletes. In addition,

amenorrhea may modify associations of irisin with various

parameters within athletes. For these reasons, we performed

exploratory analyses of associations of irisin and FGF21 not only

for the group as a whole, but also within AA, EA, all athletes (AA+
EA), and non-athletes. Multivariate least-square analyses were

constructed to control for confounders and to test interactions

between subject group and hormone levels. Significance was

defined as a two-tailed p-value ,0.05. Data are reported as mean

6 SD.

Results

Subject Characteristics
Subject characteristics are presented in Table 1. AA were

slightly older than the other groups, although bone age and

Tanner stage did not differ among groups. Mean duration since

the last menstrual cycle in AA was 9.762.4 months, and

menarchal age was older in AA than in EA and non-athletes.

BMI was lower in AA than EA. Total fat mass was lower in AA

than EA and non-athletes, and lean mass was higher in EA than in

non-athletes. Percent body fat was lower in both groups of athletes

versus non-athletes and in AA compared to EA. By design, hours

of weekly exercise were higher in AA and EA than non-athletes

(with no difference between AA and EA). Resting energy

expenditure (REE) was higher in EA than AA and non-athletes.

After controlling for lean mass, resting energy expenditure

remained higher in EA than AA. REE/lean mass was lowest in

AA.

Bone parameters are shown in Table 2 and have been

previously reported for a subset of 50 subjects [14,15,16]. Spine

BMD Z-scores were lower in AA than EA, whereas hip and whole

body BMD Z-scores were highest in EA. Trabecular and cortical

volumetric BMD (vBMD), cortical thickness, stiffness and failure

load were lower and cortical porosity higher in AA than in non-

athletes, and percent cortical area was lower in both groups of

athletes compared with non-athletes. Differences among groups

remained significant for most parameters after controlling for age,

and for age and race (Table 2). Levels of P1NP (a bone formation

marker) and CTX (a bone resorption marker) were available for a

subset of 55 subjects. P1NP levels did not differ across groups

(88.1637.9, 98.4655.2 and 83.8638.3 ng/ml in AA, EA and

non-athletes respectively, p = 0.60). CTX levels trended higher in

the athletes (1.0660.33, 1.1660.39 and 0.9160.30 ng/ml in AA,

EA and non-athletes respectively, p = 0.09). Estradiol levels and

the free androgen index (while lowest in AA) did not differ

significantly across groups.

Hormone Levels
Table 1 and Figure 1 demonstrate levels of irisin and FGF21

across the groups. Irisin and FGF21 levels were significantly lower

in AA than EA and non-athletes, and these differences persisted

after controlling for age (p = 0.0001 for both for the overall

ANOVA), or for body fat and lean mass (p,0. 05), while there

were no differences in hormone levels between EA and non-

athletes. Log irisin and log FGF21 correlated positively with each

other within athletes (r = 0.26, p = 0.04), but the association was

inverse in non-athletes (r = 20.50, 0.01). Within individual athlete

groups, associations were weaker, and mostly driven by AAs (AA:

Spearman Rho = 0.28, p = 0.09; EA: Spearman Rho = 0.13,

p = 0.54). Our results remained similar when we excluded the

three athletes who had not attained menarche from the analysis.

Relationship between Hormone Levels, Measures of
Energy Expenditure and Measures of Body Composition

Associations of irisin with measures of energy expenditure and

body composition are shown in Table 3. Irisin was positively

associated with resting energy expenditure in the group as a whole,

within athletes and also non-athletes. However, associations were

not significant for AA and EA analyzed separately. We found no

associations of irisin with hours/week of exercise or fat mass in any

of the groups. Log irisin was positively associated with lean mass in

all athletes and within AA, but not in EA, non-athletes or the

group as a whole.
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Associations of FGF21 with measures of energy expenditure,

body composition are shown in Table 4. Log FGF21 was

associated inversely with resting energy expenditure in EA and

non-athletes, but not in the other groups. Across all groups, there

were negative associations between log FGF21 and with hours/

week of exercise, and positive associations with body fat content.

Within individual groups, we found no associations of log FGF21

with hours/week of exercise, or percent body fat mass. There were

no associations of log FGF21 with lean mass. Irisin and FGF21

levels were overall not associated with age (p = 0.52 and 0.85

respectively), or bone age (p = 0.89 and 0.61).

Relationship between Hormone Levels and Sex Steroids
Log irisin levels were associated positively with the free

androgen index in AA (r = 0.63, p = 0.002), and with estradiol in

non-athletes (rho = 0.46, p = 0.05). Log FGF21 was associated

positively with the free androgen index in AA (r = 0.55, p = 0.009)

and inversely with estradiol levels in non-athletes (r = 20.63,

p = 0.005). Associations of irisin and FGF21 with the free

androgen index (but not estradiol) remained significant after

controlling for fat mass or lean mass.

Relationship between Hormone Levels and Bone
Parameters

Across all groups, irisin levels were positively associated with

spine, femoral neck and whole body BMD Z scores (Table 3).

Irisin levels were also associated with total and trabecular vBMD,

and with bone strength estimates, including stiffness and failure

load. All associations appeared to be driven mostly by the athletes

taken together (AA and EA). Associations within AA and EA

groups were weaker. Table 3 also shows associations that

remained significant after controlling for (i) lean mass, (ii) lean

mass and activity levels, and (iii) lean mass, fat mass and activity

levels. In contrast, the only associations observed between FGF21

and bone parameters were a positive association with cortical

volumetric BMD, and an inverse association with cortical porosity

for all groups taken together, and inverse associations with total

and trabecular vBMD in non-athletes.

We tested for interactions between subject groups and irisin and

FGF21 in determining associations of irisin with bone parameters

across groups, and our analysis did not show strong evidence that

the patterns of irisin effects on bone outcomes were different across

subgroups.

Across all groups, the association of irisin with whole body

BMD Z-scores, total and trabecular vBMD, percent cortical area,

cortical thickness, stiffness and failure load were significant after

controlling for FGF21 and lean mass (p = 0.01, 0.04, 0.02, 0.05,

0.04, 0.02, 0.02 and 0.04 respectively). In addition, spine and

whole body BMD Z-scores, stiffness and failure load remained

significantly associated with irisin after controlling for FGF21, lean

mass and hours/week of exercise (p = 0.03, 0.01, 0.05 and 0.04

respectively), and for FGF21, lean and fat mass and hours/week of

exercise (p = 0.04, 0.01, 0.06 and 0.04 respectively). Within

athletes, the association between irisin and spine and whole body

BMD Z-scores remained significant after controlling for FGF21,

lean and fat mass, and hours/week of exercise. A trend persisted

for the negative association between FGF21 and cortical porosity

after controlling for irisin and lean mass (p = 0.08), but not after

controlling for hours/week of activity and/or fat mass. Our results

were similar when we excluded the three premenarchal athletes

from our analysis.

Discussion

This is the first study to demonstrate low levels of irisin and

FGF-21 in adolescent amenorrheic athletes, which we speculate

represents an adaptive response to conserve energy in these young

women. Irisin levels were associated with resting energy expen-

diture and FGF-21 with body fat content. Importantly, irisin levels

were associated with measures of areal and volumetric bone

density and strength estimates in athletes, and associations with

bone density and strength measures persisted after controlling for

potential confounders. In contrast, FGF21 levels were associated

with only a few bone parameters.

Irisin and FGF-21 promote the ‘‘browning’’ of white adipose

tissue, resulting in ‘‘beige fat’’, a metabolically favorable fat

capable of burning energy through thermogenesis. This special-

ized tissue has features of brown fat, including multilocular fat

cells, an abundance of mitochondria, and UCP-1, an enzyme that

uncouples oxidative phosphorylation from ATP production,

leading to energy release as heat [2,4].

Irisin levels have not been previously reported in adolescent

female athletes. One study suggested that in moderately trained

young healthy male athletes, plasma irisin levels are increased

30 minutes after sprinting, but this effect is not seen after eight

weeks of training [3]. In another study, initiation of an endurance

exercise routine in sedentary men led to a two-fold rise in plasma

irisin levels at ten weeks [2], while a third study in adults reported

Figure 1. Irisin and FGF21 levels in athletes and non-athletes. (A) Irisin and (B) FGF21 levels were lower in amenorrheic athletes (AA)
compared to eumenorrheic athletes (EA) and non-athletes (NA) (ANOVA for three-group comparison for log converted values, followed by the Tukey
Kramer test to compare any two groups). *, p,0.05 vs. EA and NA.
doi:10.1371/journal.pone.0100218.g001

Irisin and Bone in Athletes and Non-Athletes

PLOS ONE | www.plosone.org 6 June 2014 | Volume 9 | Issue 6 | e100218



T
a

b
le

3
.

A
ss

o
ci

at
io

n
s

o
f

ir
is

in
(l

o
g

co
n

ve
rt

e
d

va
lu

e
s)

w
it

h
ar

e
al

(D
X

A
)

an
d

vo
lu

m
e

tr
ic

(H
R

p
Q

C
T

)
b

o
n

e
d

e
n

si
ty

m
e

as
u

re
s,

co
rt

ic
al

m
ic

ro
ar

ch
it

e
ct

u
ra

l
p

ar
am

e
te

rs
,

an
d

st
re

n
g

th
e

st
im

at
e

s
(F

EA
)

in
al

l
su

b
je

ct
s

(A
ll)

,
am

e
n

o
rr

h
e

ic
at

h
le

te
s

(A
A

),
e

u
m

e
n

o
rr

h
e

ic
at

h
le

te
s

(E
A

),
al

l
at

h
le

te
s

(A
T

H
)

an
d

al
l

n
o

n
-a

th
le

te
s

(N
A

).

A
ll

A
A

E
A

A
T

H
N

A

r
p

r
p

r
p

r
p

r
p

E
n

e
rg

y
S

ta
tu

s
a

n
d

B
o

d
y

C
o

m
p

o
si

ti
o

n

R
e

st
in

g
e

n
e

rg
y

e
x

p
e

n
d

it
u

re
(c

a
lo

ri
e

s)
0

.3
9

,
0

.0
0

0
1

0
.2

4
0

.1
5

0
.2

5
0

.2
5

0
.4

6
0

.0
0

0
2

0
.4

9
*

0
.0

2

H
o

u
rs

/w
e

e
k

o
f

e
x

e
rc

is
e

a
ct

iv
it

y
2

0
.1

0
0

.3
4

0
.2

0
0

.2
3

0
.2

7
0

.2
2

0
.1

8
0

.1
6

0
.0

7
0

.7
4

L
e

a
n

m
a

ss
(k

g
)

2
0

.0
1

0
.9

4
0

.3
4

0
.0

4
2

0
.0

9
0

.6
7

0
.2

6
*

0
.0

4
2

0
.0

7
0

.7
6

F
a

t
m

a
ss

(k
g

)
0

.0
3

0
.7

6
0

.1
1

0
.5

1
2

0
.1

1
0

.6
2

0
.2

1
0

.1
1

2
0

.3
7

0
.0

8

B
o

n
e

P
a

ra
m

e
te

rs

S
p

in
e

B
M

D
Z

-s
co

re
s

0
.2

1
0

.0
3

a
,b

,c
0

.0
3

0
.8

4
0

.2
8

0
.1

9
0

.3
3

0
.0

0
8

b
,c

2
0

.2
0

0
.3

5

T
o

ta
l

h
ip

B
M

D
Z

-s
co

re
s

0
.0

5
0

.6
3

0
.0

5
0

.7
7

0
.1

9
0

.3
9

0
.3

1
0

.0
2

2
0

.1
1

0
.6

F
N

B
M

D
Z

-s
co

re
s

0
.1

2
0

.2
2

0
.0

5
0

.7
8

0
.2

5
0

.2
4

0
.3

0
0

.0
2

0
.0

9
0

.7

W
h

o
le

b
o

d
y

B
M

D
Z

-s
co

re
s

0
.2

1
0

.0
4

a
,b

,c
0

.1
8

0
.3

0
0

.1
1

0
.6

3
0

.3
6

0
.0

0
5

a
,b

,c
0

.2
4

0
.2

7

T
o

ta
l

v
B

M
D

(m
g

H
A

/c
m

3
)

0
.3

0
0

.0
0

7
a

0
.2

5
0

.1
5

0
.4

3
*

0
.0

4
a

,b
0

.2
8

0
.0

3
0

.1
4

0
.5

3

T
ra

b
e

cu
la

r
v

B
M

D
(m

g
H

A
/c

m
3

)
0

.3
1

0
.0

0
5

a
0

.1
0

0
.5

4
0

.3
8

0
.0

8
0

.3
0

0
.0

2
0

.2
3

0
.3

0

C
o

rt
ic

a
l

v
B

M
D

(m
g

H
A

/c
m

3
)

0
.1

6
0

.1
9

0
.2

4
0

.1
8

0
.0

4
0

.8
7

0
.1

8
0

.2
2

0
.1

8
0

.4
4

T
o

ta
l

cr
o

ss
-s

e
ct

io
n

a
l

a
re

a
(m

m
2

)
0

.0
7

0
.5

8
0

.0
7

0
.6

9
0

.1
7

0
.5

1
0

.1
5

0
.2

9
0

.0
3

0
.9

0

C
o

rt
ic

a
l

a
re

a
/t

o
ta

l
a

re
a

0
.1

5
0

.2
1

0
.0

8
0

.6
6

0
.2

7
0

.3
0

0
.0

6
0

.5
5

0
.0

2
0

.9
0

C
o

rt
ic

a
l

th
ic

k
n

e
ss

(m
m

)
0

.1
8

0
.1

3
0

.0
9

0
.6

0
0

.5
1

*
0

.0
4

a
0

.1
4

0
.3

3
0

.0
8

0
.7

0

C
o

rt
ic

a
l

p
o

ro
si

ty
(%

)
2

0
.1

6
0

.1
8

2
0

.2
3

0
.1

8
2

0
.0

4
0

.8
7

2
0

.2
3

0
.1

0
0

.1
8

0
.4

4

S
ti

ff
n

e
ss

(k
N

/m
)

0
.3

4
0

.0
0

4
a

,b
0

.2
5

0
.1

5
0

.3
2

0
.2

2
0

.3
7

0
.0

0
7

0
.1

2
0

.6
3

F
a

il
u

re
lo

a
d

(k
N

)
0

.3
4

0
.0

0
3

a
,b

,c
0

.2
3

0
.1

8
0

.2
6

0
.3

2
0

.3
8

0
.0

0
6

0
.1

3
0

.5
9

P
1

N
P

(n
g

/m
l)

0
.0

5
0

.7
1

2
0

.1
6

0
.5

3
0

.0
2

0
.9

5
2

0
.1

2
0

.4
7

0
.6

0
*

0
.0

0
8

a
,b

,c

C
T

X
(n

g
/m

l)
2

0
.0

3
0

.8
4

0
.0

6
0

.8
2

2
0

.3
1

0
.2

0
2

0
.1

3
0

.4
6

0
.1

6
*

0
.5

2

Sp
e

ar
m

an
co

rr
e

la
ti

o
n

s;
*P

e
ar

so
n

co
rr

e
la

ti
o

n
s;

Fo
r

b
o

n
e

p
ar

am
e

te
rs

:a
p

,
0

.0
5

af
te

r
co

n
tr

o
lli

n
g

fo
r

le
an

m
as

s;
b

p
,

0
.0

5
af

te
r

co
n

tr
o

lli
n

g
fo

r
le

an
m

as
s

an
d

ac
ti

vi
ty

;c
p

,
0

.0
5

af
te

r
co

n
tr

o
lli

n
g

fo
r

le
an

m
as

s,
ac

ti
vi

ty
an

d
fa

t
m

as
s;

B
M

D
:b

o
n

e
m

in
e

ra
ld

e
n

si
ty

;F
N

:f
e

m
o

ra
ln

e
ck

;v
B

M
D

:
vo

lu
m

e
tr

ic
b

o
n

e
m

in
e

ra
l

d
e

n
si

ty
.

A
ll:

al
l

su
b

je
ct

s;
A

A
:

am
e

n
o

rr
h

e
ic

at
h

le
te

s;
EA

:
e

u
m

e
n

o
rr

h
e

ic
at

h
le

te
s;

A
T

H
:

al
l

at
h

le
te

s;
N

A
:

n
o

n
-a

th
le

te
s.

P
va

lu
e

s
#

0
.0

5
ar

e
b

o
ld

e
d

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
1

0
0

2
1

8
.t

0
0

3

Irisin and Bone in Athletes and Non-Athletes

PLOS ONE | www.plosone.org 7 June 2014 | Volume 9 | Issue 6 | e100218



T
a

b
le

4
.

A
ss

o
ci

at
io

n
s

o
f

FG
F-

2
1

(l
o

g
co

n
ve

rt
e

d
va

lu
e

s)
w

it
h

ar
e

al
(D

X
A

)
an

d
vo

lu
m

e
tr

ic
(H

R
p

Q
C

T
)

b
o

n
e

d
e

n
si

ty
m

e
as

u
re

s,
co

rt
ic

al
m

ic
ro

ar
ch

it
e

ct
u

ra
l

p
ar

am
e

te
rs

,
an

d
st

re
n

g
th

e
st

im
at

e
s

(F
EA

)
in

al
l

su
b

je
ct

s
(A

ll)
,

am
e

n
o

rr
h

e
ic

at
h

le
te

s
(A

A
),

e
u

m
e

n
o

rr
h

e
ic

at
h

le
te

s
(E

A
),

al
l

at
h

le
te

s
(A

T
H

)
an

d
al

l
n

o
n

-a
th

le
te

s
(N

A
).

A
ll

A
A

E
A

A
T

H
N

A

r
p

r
p

r
p

r
p

r
p

E
n

e
rg

y
S

ta
tu

s
a

n
d

B
o

d
y

C
o

m
p

o
si

ti
o

n

R
e

st
in

g
e

n
e

rg
y

e
x

p
e

n
d

it
u

re
(c

a
lo

ri
e

s)
2

0
.0

4
0

.7
2

0
.1

6
0

.3
5

2
0

.4
0

0
.0

5
0

.1
9

0
.1

4
2

0
.4

7
0

.0
2

H
o

u
rs

/w
e

e
k

o
f

e
x

e
rc

is
e

a
ct

iv
it

y
0

.0
4

0
.7

0
2

0
.0

9
0

.5
8

2
0

.0
2

0
.9

4
2

0
.0

5
0

.7
1

2
0

.0
5

0
.8

3

L
e

a
n

m
a

ss
(k

g
)

0
.0

2
0

.8
6

2
0

.0
1

0
.9

6
2

0
.3

4
0

.1
0

2
0

.0
5

0
.7

2
2

0
.2

0
0

.3
6

F
a

t
m

a
ss

(k
g

)
0

.3
4

0
.0

0
0

4
0

.1
6

0
.3

4
0

.0
1

0
.9

5
0

.2
2

0
.0

9
0

.3
2

0
.1

4

B
o

n
e

P
a

ra
m

e
te

rs

S
p

in
e

B
M

D
Z

-s
co

re
s

0
.0

7
0

.4
8

2
0

.0
1

0
.9

4
0

.0
2

0
.9

4
0

.1
5

0
.2

5
2

0
.0

6
0

.8
0

T
o

ta
l

h
ip

B
M

D
Z

-s
co

re
s

0
.0

3
0

.7
6

2
0

.0
4

0
.8

0
0

.0
4

0
.8

5
0

.1
4

0
.2

8
0

.0
4

0
.8

5

F
N

B
M

D
Z

-s
co

re
s

0
.0

4
0

.7
2

0
.0

3
0

.8
7

0
.0

0
3

0
.9

9
0

.1
5

0
.2

3
2

0
.1

2
0

.5
8

T
o

ta
l

v
B

M
D

(m
g

H
A

/c
m

3
)

0
.0

4
0

.7
3

2
0

.0
1

0
.9

4
0

.1
4

0
.5

1
0

.0
9

0
.5

2
2

0
.4

5
0

.0
3

a
,b

,c

T
ra

b
e

cu
la

r
v

B
M

D
(m

g
H

A
/c

m
3

)
0

.0
0

6
0

.9
6

2
0

.0
5

0
.7

7
0

.0
9

0
.6

9
0

.1
1

0
.4

0
2

0
.5

2
0

.0
1

a
,b

,c

C
o

rt
ic

a
l

v
B

M
D

(m
g

H
A

/c
m

3
)

0
.2

5
0

.0
4

0
.2

0
0

.2
6

0
.1

2
0

.6
4

0
.1

7
0

.2
3

0
.0

4
0

.8
7

T
o

ta
l

cr
o

ss
-s

e
ct

io
n

a
l

a
re

a
(m

m
2

)
2

0
.0

6
0

.6
4

2
0

.0
3

0
.8

6
2

0
.0

7
0

.7
9

0
.0

3
0

.8
6

0
.0

8
0

.7
3

C
o

rt
ic

a
l

a
re

a
/t

o
ta

l
a

re
a

0
.0

4
0

.7
1

2
0

.1
1

0
.5

4
0

.2
0

0
.4

3
2

0
.0

3
0

.8
4

2
0

.2
4

0
.3

1

C
o

rt
ic

a
l

th
ic

k
n

e
ss

(m
m

)
0

.0
8

0
.4

9
2

0
.1

1
0

.5
3

0
.2

7
0

.2
9

0
.0

1
0

.9
4

2
0

.2
7

0
.2

5

C
o

rt
ic

a
l

p
o

ro
si

ty
(%

)
2

0
.2

4
*

0
.0

4
a

2
0

.0
3

0
.8

4
2

0
.3

6
0

.1
6

2
0

.1
6

0
.2

5
2

0
.1

1
0

.6
3

S
ti

ff
n

e
ss

(k
N

/m
)

0
.0

9
9

0
.4

1
0

.0
0

5
0

.9
8

0
.0

3
0

.9
0

0
.1

5
0

.2
8

2
0

.3
0

0
.1

9

F
a

il
u

re
lo

a
d

(k
N

)
0

.0
9

0
.4

3
2

0
.0

1
0

.9
5

0
.0

6
0

.8
2

0
.1

5
0

.2
9

2
0

.2
7

0
.2

6

P
1

N
P

(n
g

/m
l)

2
0

.0
7

0
.6

2
0

.1
1

0
.6

7
2

0
.2

1
0

.3
9

2
0

.0
5

0
.7

7
2

0
.0

6
0

.8
0

C
T

X
(n

g
/m

l)
0

.0
5

0
.7

1
2

0
.0

4
0

.8
6

0
.1

4
0

.5
8

0
.1

1
0

.5
1

0
.0

8
0

.7
5

Sp
e

ar
m

an
co

rr
e

la
ti

o
n

s;
a
p

,
0

.0
5

af
te

r
co

n
tr

o
lli

n
g

fo
r

le
an

m
as

s;
b

p
,

0
.0

5
af

te
r

co
n

tr
o

lli
n

g
fo

r
le

an
m

as
s

an
d

ac
ti

vi
ty

;
c
p

,
0

.0
5

af
te

r
co

n
tr

o
lli

n
g

fo
r

le
an

m
as

s,
ac

ti
vi

ty
an

d
fa

t
m

as
s;

B
M

D
:

b
o

n
e

m
in

e
ra

l
d

e
n

si
ty

;
FN

:
fe

m
o

ra
l

n
e

ck
;

vB
M

D
:

vo
lu

m
e

tr
ic

b
o

n
e

m
in

e
ra

l
d

e
n

si
ty

.
A

ll:
al

l
su

b
je

ct
s;

A
A

:
am

e
n

o
rr

h
e

ic
at

h
le

te
s;

EA
:

e
u

m
e

n
o

rr
h

e
ic

at
h

le
te

s;
A

T
H

:
al

l
at

h
le

te
s;

N
A

:
n

o
n

-a
th

le
te

s.
P

va
lu

e
s

#
0

.0
5

ar
e

b
o

ld
e

d
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
0

0
2

1
8

.t
0

0
4

Irisin and Bone in Athletes and Non-Athletes

PLOS ONE | www.plosone.org 8 June 2014 | Volume 9 | Issue 6 | e100218



an increase in irisin following acute exercise, but a decrease in

irisin after a 12-week period of endurance and strength training

[26]. We found that irisin levels were lower in AA compared to EA

and non- athletes, and these differences persisted after controlling

for fat and lean mass. Our data likely reflect the effects of chronic

exercise on irisin levels, in contrast to some previous studies that

examined effects of short-durations of exercise on irisin secretion.

Our data are consistent with a study of adult men that reported

inverse associations of irisin with regular exercise related physical

activities [27]. Furthermore, irisin levels were positively associated

with resting energy expenditure. Irisin levels did not differ between

EA and non-athletes in our study, suggesting that chronic exercise

does not affect irisin levels in the setting of eumenorrhea and

preserved energy stores. Decreased irisin levels in AA likely

represent an adaptive response in chronic exercisers to reduce

REE and conserve energy by reducing brown adipogenesis. This is

corroborated by reports of lower irisin levels [25] and lower

occurrence of brown fat in conditions of extreme malnutrition,

such as anorexia nervosa [28], reductions in circulating irisin

following marked weight loss in patients after bariatric surgery

[22], and increased levels in obesity [25].

We did not assess brown fat in our subjects, and this is an area

of future study. Of note, although our AA subjects had lower BMI

than EA, their BMI was not as low as in girls with anorexia

nervosa. Thus, these AA subjects are in a state of subtle energy

deficit as indicated by their reduced fat mass and lower resting

energy expenditure after correcting for lean mass, but not in the

state of extreme energy deficit observed in anorexia nervosa.

Another small study in patients with anorexia nervosa assessed

irisin levels in those reporting moderate vs. high levels of physical

activity, and found no differences in BMI, REE or irisin levels

across groups, although the higher activity group had higher total

energy expenditure [29]. These data suggest that irisin drives

changes in REE (or vice versa), but not in total energy

expenditure, consistent with irisin being an inducer of brown

adipogenesis (and driver of REE), and the positive associations of

irisin with REE in our subjects.

In addition, consistent with irisin being a myokine and with

other studies that have reported positive associations of irisin with

muscle mass [22,25,30], we observed positive associations of irisin

with lean mass in athletes. Other studies have reported positive

associations of irisin with nutritional markers such as BMI, fat

mass, IGF-1 and insulin, and with markers of the metabolic

syndrome such as higher blood pressure, insulin resistance and

lipid levels, [22,25,27]. Higher irisin levels in obesity, and in

patients with the metabolic syndrome may represent a physiolog-

ical response to improve glucose tolerance and lipid parameters in

these individuals [25,26,27]. One study reported lower irisin levels

in patients with type 2 diabetes than controls of similar BMI,

which may represent a failure of this physiological response

leading to diabetes [31]. However, a study in obese children

reported an increase (rather than a decrease in irisin levels after a

year of exercise and lifestyle intervention [32]. These seemingly

conflicting data speak to the complexity of irisin interactions with

metabolic endpoints, and the need for further studies to clarify the

role of irisin as a regulator of metabolism. We found no

associations of irisin with fat mass in our study, maybe because

we assessed only lean individuals in our cohort.

Of interest, irisin levels were higher in our study than reported

in many previous studies, likely consequent to differences in the

specific assay used for analysis [20] and the younger age of our

subjects. Some studies have reported inverse associations of irisin

with age [22,33], and several fold higher irisin levels in young

adult men compared with middle aged women [22].

Moreover, irisin has a potential role in modulating bone

metabolism through direct [10,34] and indirect (brown fat

mediated) effects. A recent study demonstrates that irisin may

affect osteoblastogenesis via the Wnt/beta-catenin pathway

downstream of the BMP receptor signal, and also inhibits

osteoclast differentiation [10]. Furthermore, in vivo studies indicate

that irisin increases bone trabecular volume and cortical thickness

in mice [10]. Our data are consistent in that irisin levels predicted

trabecular volumetric BMD measures in addition to other

measures of bone density and strength estimates in athletes.

Effects of irisin on bone may also be mediated via induction of

brown adipogenesis given reports of associations of brown fat with

bone strength estimates in women [8], and with cortical thickness

in children and adolescents [9]. In adult women, lower irisin levels

have been associated with a higher risk of osteoporotic fractures

[33].

Similar to irisin, FGF21 levels increase with acute or short

durations of exercise [35,36], decrease with regular exercise and

caloric restriction in animals and humans [37,38], decrease in

extreme states of malnutrition (as in anorexia nervosa) related to

BMI [24], and increase in obesity and the metabolic syndrome

related to fat mass [39,40,41]. Given known effects of FGF21 in

inducing brown adipogenesis [4,5] and increasing REE, these

changes likely represent an adaptive response to decrease brown

adipogenesis and conserve energy in anorexia nervosa, and to

increase brown adipogenesis and expend energy in obesity.

Conversely, these changes may also signal an FGF21 resistant

state. Consistent with the study in women with anorexia nervosa

[24], we found that FGF21 levels were low in AA compared to EA

and non athletes and inversely associated with hours per week of

exercise, likely again an adaptive response to conserve energy. In

contrast, a study of sedentary healthy young women reported an

increase in FGF-21 levels after two-weeks of exercise [24],

suggesting that short-term energy expenditure in sedentary women

may result in increases in FGF-21 whereas longer-term chronic

energy expenditure leads to decreased FGF-21 to preserve energy.

FGF21 also impacts bone metabolism, although available reports

are contradictory with some studies indicating beneficial [12,13],

and others indicating deleterious [11] effects of FGF21 on bone. In

our study, FGF21 was associated positively with cortical volumet-

ric BMD and inversely with cortical porosity for the group taken

together, consistent with a beneficial effect of FGF21 on bone.

However, associations were lost after controlling for irisin, body

composition and exercise activity. Further studies are needed to

clarify effects of FGF-21 on bone.

Few studies have examined associations of irisin and FGF21

with the sex steroids. We observed positive associations of both

hormones with the free androgen index in AA. However,

associations of these hormones with estradiol were conflicting,

with positive associations noted with irisin and inverse associations

with FGF21 in non-athletes. Of interest, positive associations of

FGF21 with testosterone levels have been reported in women with

polycystic ovarian syndrome (PCOS) [42], and positive associa-

tions of irisin and FGF21 with testosterone levels may reflect

associations of these hormones with components of the metabolic

syndrome. Although one study reported higher FGF21 levels in

women with PCOS than in those without this condition, another

study found no differences in FGF21 across groups [43].

Conclusions

We report low levels of irisin and FGF-21 in young amenorrheic

athletes compared with eumenorrheic athletes and non-athletes,

even after taking into account fat and lean mass. In addition, we
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demonstrate that irisin levels are a determinant of measures of

areal and volumetric bone mineral density and bone strength

estimates in athletes, but not non-athletes. While this is the first

study to report levels of irisin and FGF21 in adolescent female

athletes and non-athletes, it is a cross-sectional study and therefore

causality cannot be inferred from our data. Further research

regarding the role of these hormones in regulating bone

metabolism will be important.
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