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Abstract 

The mechanism (or mechanisms) of enthalpy-entropy (H/S) compensation in protein-ligand 

binding remains controversial, and there are still no predictive models (theoretical or 

experimental) in which hypotheses of ligand binding can be readily tested. Here we describe a 

particularly well-defined system of protein and ligands—human carbonic anhydrase (HCA) and 

a series of benzothiazole sulfonamide ligands with different patterns of fluorination—that we use 

to define enthalpy/entropy (H/S) compensation in this system thermodynamically and 

structurally. The binding affinities of these ligands (with the exception of one ligand, in which 

the deviation is understood) to HCA are, despite differences in fluorination pattern, 

indistinguishable; they nonetheless reflect significant and compensating changes in enthalpy and 

entropy of binding. Analysis reveals that differences in the structure and thermodynamic 

properties of water surrounding the bound ligands are an important contributor to the observed 

H/S compensation. These results support the hypothesis that the molecules of water filling the 

active site of a protein, and surrounding the ligand, are as important as the contact interactions 

between the protein and the ligand for biomolecular recognition, and determining the 

thermodynamics of binding. 
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Introduction 

The hydrophobic effect—the tendency of nonpolar molecules or parts of molecules to 

aggregate in aqueous media—is central to biomolecular recognition. It now seems that there is 

no single “hydrophobic effect”1-4 that adequately describes the partitioning of a small apolar 

ligand between both i) an aqueous phase and a non-polar organic phase (e.g., buffer and octanol), 

and ii) bulk aqueous buffer and the active site of a protein (i.e., biomolecular recognition). While 

the molecular-level mechanisms of hydrophobic effects in biomolecular recognition remain a 

subject of substantial controversy, it is clear that the water molecules surrounding the apolar 

ligand and filling the active site of the protein are an important part of these mechanisms.1-10 

Clarifying the role of water in the hydrophobic effect in protein-ligand binding would be an 

important contribution to understanding the fundamental, mechanistic basis of molecular 

recognition. Resolving this mechanism would, however, still leave a (presumably) related 

phenomena unresolved: so-called, enthalpy-entropy compensation (H/S compensation).  

H/S compensation is often encountered in the putative design of tight-binding, low-

molecular-weight ligands for a protein.11,12 Changes in the structure of the ligand often lead to 

opposite and compensating changes in the enthalpy and entropy of binding, but result in 

surprisingly small changes in the free energy of binding. The molecular-level mechanism of H/S 

compensation in protein-ligand binding – and even its existence as a phenomenon12 – remains a 

subject of substantial controversy—even at a conceptual level—despite qualitative 

rationalizations based upon: i) an unfavorable entropy of binding caused by conformational 

restrictions of the ligand upon binding;13-15 ii) small conformational changes throughout the 

protein upon ligand binding;16,17 iii) reorganization of solvent molecules within the active site of 

a protein after ligand binding.18-20  
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Human carbonic anhydrase II (HCA, EC 4.2.1.1) is an excellent model system with which to 

study H/S compensation because it allows us to answer the question: “Do changes in the 

structure of the networks of hydrogen bonded waters – that result upon ligand binding – 

determine H/S compensation?”. Thiazole-based sulfonamide ligands bind to HCA with an 

enthalpy-dominated hydrophobic effect,2,4 and are not compatible with an entropy-dominated 

hydrophobic effect proposed by Kauzmann and Tanford.21,22 or the H/S compensation proposed 

by Dunitz, Williams, and others.13-15 HCA is conformationally rigid and undergoes minimal (< 1 

Å) conformational changes upon binding of most arylsulfonamide ligands23—and, more 

importantly for this study thiazole-based sulfonamide ligands2,4—and allows us to focus solely 

on rearrangements of solvent within the active site of the protein, and not on contributions 

caused by conformational changes in the protein. 

We have measured changes in the thermodynamics of binding of a series of 

heteroarylsulfonamide ligands to HCA with isothermal titration calorimetry (ITC) in which a 

benzo-, fluorobenzo-, or tetrahydrobenzo-group was added to one edge of the ligand (Figure 

1A).2,4 Remarkably, the free energies of binding (∆Go
bind) of benzothiazole sulfonamide 

(H4BTA) and perfluorobenzothiazole sulfonamide (F4BTA) to HCA are indistinguishable,2 and 

suggests that the hydrophobic effects in this protein-ligand system are insensitive to this 

substantial change in the chemical composition and electronic structure of the ligand. While the 

values of ∆Go
bind of H4BTA are unchanged upon fluorination, we do observe significant and 

compensating changes in the enthalpy (∆Ho
bind) and entropy (–T∆So

bind) of binding,2 indicating 

that the underlying mechanism of molecular recognition may be different even though the total 

free energy of binding is the same. 
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ITC thermograms of protein-ligand binding contain three values—the binding affinity of the 

ligand, the ∆Ho
bind, and the stoichiometry of binding—that are obtained from a non-linear fit of 

the data. Uncertainty in the concentration of the ligand is the main source of measurement error 

in ITC, and leads to errors in Ka and ∆Ho
bind—as well as ∆Go

bind and –T∆So
bind, which are 

calculated from these values.12,24 In order to reduce artifacts in our ITC measurements that could 

lead to perceived H/S compensation we: i) measured the binding of a standard sulfonamide 

(methazolamide), whose concentration was determined accurately with NMR standards, to HCA 

and obtained the concentration of active protein; ii) prepared stock solutions of each ligand, and 

used these stocks solutions for each experiment to eliminate changes in the concentration of the 

ligand between experiments; iii) compared the binding stoichiometry of each ligand with the 

methazolamide standard to obtain an accurate concentration of each ligand; iv) accounted for the 

uncertainties associated with the nonlinear fits used to analyze the thermograms (∆Ho
bind less 

than ~10%), and compared the average value of (n = 7 runs) each ligand with a Student’s t-test 

with a 95% confidence interval.  

In this paper we wished to determine if selectively replacing the hydrogen atoms of the 

benzothiazole moiety with fluorine atoms would change the network of waters in the active site 

of HCA, and result in an H/S compensation similar to that observed between H4BTA and 

F4BTA. Selective replacement of the C-H bonds of the benzo-group with C-F bonds allow us to 

study the binding of a set of ligands that are similar in size, but have entirely different group 

dipole moments and therefore different interactions with the networks of water in the active site. 
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Results and Discussion 

Fluorination of the benzothiazole ligand changes its electronic structure, but leaves the size 

of the ligand and its binding geometry relatively unchanged. Replacing all of the C – H bonds of 

the benzo-extension of H4BTA with C – F bonds results in a decrease of the average dipole 

moment, but does not result in large changes in: i) the pKa of the ligand (a decrease of 0.3 units); 

ii) the solvent accessible surface area of the ligand in crystal structures of the HCA: ligand 

complex (an increase of 34 Å2); iii) the binding geometry of the ligands (a shift of 0.7 Å in the 

binding pocket toward the hydrophobic wall).2 

We compared the binding geometry of six of the partially fluorinated ligands (4-F1BTA, 7-

F1BTA, 5,6-F2BTA, 6,7-F2BTA, 4,6-F2BTA, and 4,7-F2BTA) to HCA with previously solved 

structures of HCA complexed with H4BTA4 and F4BTA2. Each of the high-resolution crystal 

structures (Figure 2, resolutions ranging from 1.25–1.50 Å) show that a fluorine atom in the 4-

position causes the ligands to: i) bind to HCA with the same geometry as F4BTA; ii) rotate 180o 

around the molecular axis of the sulfonamide–benzothiazole bond when there is not a fluorine in 

the 7-position. We attribute these changes in the position of the partially fluorinated ligands to a 

repulsive interaction between the fluorine atom of the ligand and Thr 200 (Figure 1C). 

Surprisingly, the position of the amino acids lining the active site of HCA are not affected by 

the position or orientation of the ligand: the average root-mean square deviation (RMSD) of the 

heavy atoms of the amino acids lining the active site of all of the partially-fluorinated ligand with 

H4BTA and F4BTA is 0.132 Å and 0.112 Å, respectively.  

These crystal structures suggest that the interactions between the benzothiazole ligands and 

the binding pocket of HCA are mediated by the molecules of water in the active site, and not 

through the traditional lock-and-key model of direct interactions between protein and ligand. 
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The binding affinity of benzothiazole is relatively unaffected by fluorination, and in certain 

cases is the result of compensating values of enthalpy and entropy of binding. We measured the 

enthalpies of binding (∆Ho
bind) and the association constants (Ka) for the series of the partially 

fluorinated ligands in Figure 1A with isothermal titration calorimetry (ITC), and estimated the 

free energies (∆Go
bind) and entropies (−T∆So

bind) of binding. Figure 3 plots the pKa-corrected 

values of ∆Jo
bind for each ligand (where ∆J = ∆G, ∆H, or –T∆S); these values represent the 

binding of the sulfonamide anion to HCA (details in the SI).4,25 We classified the ligands into 

three categories: i) ligands in which ∆Ho
bind and  –T∆S o

bind are unchanged, and result in an 

unchanged binding affinity (7-F1BTA, 5,6-F2BTA, 4,7-F2BTA, and 5,6,7-F3BTA); ii) ligands in 

which –T∆So
bind is significantly different, and results in an increase in binding affinity (6,7-

F2BTA); iii) ligands in which ∆Ho
bind and –T∆S o

bind are significantly different, but compensate 

and result in an unchanged binding affinity (4-F1BTA and 4,6-F2BTA). A change is considered 

significant if the values of ∆Jo
bind are statistically distinguishable from H4BTA at p <0.05 (by 

Student’s t-test). 

 
Molecular dynamics simulations support the role of water in H/S compensation. Our 

previous studies of HCA-arylsulfonamide ligand complexes support the hypothesis that the 

network of waters within the active site of HCA is an integral component in enthalpically driven 

hydrophobic effects. Structural and thermodynamic data of the partially fluorinated ligands 

binding to HCA suggest that the network of hydrogen-bonded water molecules in the active site 

of a protein-ligand complex could be responsible for changes in the ∆Ho
bind and  –T∆So

bind, but 

there are currently no experiments to probe the thermodynamic characteristics of individual 

water molecules directly in the active site of a protein. X-ray and neutron-diffraction data 

provide information about some of the so-called “fixed” water molecules, but these techniques 
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cannot capture the location of the majority of the waters in the active site (before or after the 

ligand binds).3,26,27 In addition, a water molecule that diffracts simply implies that it is spatially 

immobilized but does not provide information about the energetics of the water. 

To understand the thermodynamics of the network of waters in the active site of each HCA-

ligand complex better we performed WaterMap calculations (see Figure 4),9,28,29 which are 

explicit solvent calculations that determine a free energy, enthalpy, and entropy value for each 

molecule of water in the active site of the protein-ligand complex2,4 using an approach called 

inhomogeneous solvation theory.30,31 These calculations support the H/S compensation we 

observe in the ITC measurements of HCA-ligand binding, and show: i) 4-F1BTA and 4,6-

F2BTA have the most favorable entropy of binding, and the least favorable enthalpy of binding. 

These effects result from subtle disruptions in the network of waters in the solvent-exposed 

region of the binding site, as seen in Figure 5 (the 4-F1BTA results look highly similar to 4,6-

F2BTA and are therefore omitted for clarity). The fluorination pattern of these ligands apparently 

disrupts the water network in a way that results in less restricted water motion and therefore 

better entropy. ii) WaterMap calculates 5,6-F2BTA to have the least favorable entropy of 

binding, a result that is also consistent with the experiment. The 5- and 6-positions of the benzo –

extension are directed toward bulk solvent, and the difluoro substitution is predicted to restrict 

the mobility of a local region of waters around the ligand. Figure 5 shows an additional hydration 

site localized above the 5,6-F2BTA ligand (denoted by a black arrow). WaterMap predicts an 

additional region of entropically unfavorable water to the side of the 5,6-F2BTA ligand (denoted 

by the dashed oval), further contributing to the unfavorable entropy of binding.  iii) 6,7-F2BTA 

has a value for the entropy of binding between the values of 4,6-F2BTA and 5,6-F2BTA. As seen 

in Figure 5, the region to the right of the ligand (see dashed oval) is similarly unfavorable to 5,6-
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F2BTA, but the region extending toward bulk solvent does not have the additional localized 

hydration site observed in 5,6-F2BTA (see hydration site indicated by the black arrow in 5,6-

F2BTA that is missing from 6,7-F2BTA) 

The improved free energy of binding of 6,7-F2BTA (compared to H4BTA) arises from 

desolvation of the ligand upon binding, and most likely is not from a rearrangement of the 

solvent in the active site of HCA. 6,7-F2BTA is the only ligand that binds to HCA with a higher 

binding affinity than H4BTA; this difference in free energy of binding (∆Go
bind, x-FyBTA −∆Go

bind, 

H4BTA = ∆∆Go
bind, Fluorination) is 1.1 ± 0.3 kcal mol-1 more favorable (Figure S1). The increased 

binding affinity of 6,7-F2BTA over H4BTA cannot be attributed to differences in buried 

hydrophobic area upon ligand binding (Figure S1), but arises from a more favorable entropy of 

binding. There are two plausible explanations for this increased binding affinity: i) the re-

organization of the waters in the active site of HCA upon binding of the ligand are responsible 

for the more favorable –T∆S o
bind of 6,7-F2BTA; or ii) the desolvation of 6,7-F2BTA, in addition 

to the desolvation of the active site of HCA, influences the ∆Go
bind. 

Entropy-driven binding is compatible with the mechanism of the hydrophobic effect 

proposed by Kauzmann and Tanford, but is the only thiazole-based ligand studied thus far that is 

not enthalpy-dominated. The contribution of the enthalpy (∆Ho
OW) and entropy (-T∆So

OW) of 

partitioning of H4BTA and 6,7-F2BTA to the free energy of partitioning (∆Go
OW) mirrors the 

contributions of ∆Ho
bind and -T∆So

bind in the binding of these ligands to HCA (Figure S1).  

WaterMap predicts 6,7-F2BTA to be roughly equientropic with H4BTA. WaterMap only 

accounts for first-order water correlation terms and only considers regions of high water density 

for the thermodynamic calculations and not for desolvation of the ligand. The most plausible 

explanation for this mirroring of trends of partitioning and binding is therefore that the 



 

 10 

desolvation of the ligand, and not just the desolvation of the active site of HCA, influences the 

∆Go
bind.  

The HS compensation observed in the binding of 4-F1BTA and 4,6-F2BTA arise from a 

reorganization of the solvent. The values of ∆Ho
bind and –T∆So

bind of 4-F1BTA and 4,6-F2BTA 

are significantly different than H4BTA (> 4 kcal mol-1), but compensate and result in unchanged 

binding affinities. Interestingly, these ligands are the only two that rotate within the active site 

(Figure 2), possibly to reduce the unfavorable interaction of the fluorine at the 4-position with 

the backbone carbonyl of Thr 200 if the pose did not undergo rotation. The conserved binding of 

these ligands to HCA, and the conserved structure of the side chains of the amino acids of HCA 

in the active site suggest that neither changes in structure nor interaction of the protein and ligand 

are plausible candidates for significant changes in the thermodynamics binding. The most 

plausible candidate for the source of these compensated changes in ∆Ho
bind and −T∆So

bind is 

therefore the networks of hydrogen bonds of waters in the active site, and surrounding the 

ligands in solution and in the protein-ligand complex. WaterMap predicts the same trends for the 

observed thermodynamic of binding; the changed networks of water of 4-F1BTA and 4,6-

F2BTA in the active site of HCA clearly indicate the importance of water in H/S compensation 

(Figure 5).  
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Conclusions and interpretations 

The results obtained from the thermodynamic analysis, X-ray crystal structures, and 

molecular dynamics simulations described in this work show that a series of ligands with 

different electronic structure bind to HCA with very similar values of ∆Go
bind, but with very 

different (and compensating) values of ∆Ho
bind and −T∆So

bind. These results suggest that the 

“size” (a term we cannot presently disaggregate into surface area, molecular volume, or dipole 

moment) of the ligand, and thus the water that is displaced from, or perturbed in the active site of 

HCA, is primarily responsible for the ∆Go
bind; it also implies that changes in the structure of the 

networks of hydrogen bonded waters, that result upon ligand binding, determine the values of 

∆Ho
bind and −T∆So

bind. This water-centric view of ligand binding—and H/S-compensation—

cannot be rationalized by the lock-and-key principle, and suggest that the molecules of water 

surrounding the ligand and filling the active site of a protein are as important as the structure of 

the ligand and the surface of the active site. 
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Figure Legends  

Figure 1: (a) Structures of the partially fluorinated ligands used in this study, and their 

abbreviations. The abbreviation of each ligand indicates the number of fluorine atoms on the 

benzo-extension (e.g., F2BTA contains two fluorine atoms). (b) An overlay of the heavy atoms 

of the H4BTA and F4BTA ligand from (aligned) crystal structures of the two HCA-ligand 

complexes. (c) Diagram of the amino acid residues of HCA that form contacts with the 

benzothiazole (H4BTA) and per-fluorobenzothiazole (F4BTA) sulfonamide ligands, determined 

previously from crystal structures of each complex. Favorable interactions between the ligand 

and the protein are represented with a blue dashed line, and unfavorable interactions with a red 

dashed line.  

 

Figure 2. Crystal structures of the active site of HCA complexed with: (a) 4-F1BTA, (b) 7-

F1BTA, (c) 4,6-F2BTA, (d) 6,7-F2BTA, (e) 4,7-F2BTA, and (f) 5,6-F2BTA. To the right of each 

crystal structure is an overlay of the heavy atoms of the ligand with H4BTA or F4BTA from 

aligned structures of the two HCA-ligand complexes: (a) 4-F1BTA and F4BTA; (b) 7-F1BTA 

and H4BTA (c) 4,6-F2BTA and F4BTA; (d) 6,7-F2BTA and H4BTA; (e) 4,7-F2BTA and 

F4BTA; and (f) 5,6-F2BTA and H4BTA 

 

Figure 3 Diagram of the pKa-corrected thermodynamic results ∆∆Jo
bind (compared to H4BTA)—

where J = G (blue), H (green), and S (red)—obtained from ITC measurements. The relative 

differences in the enthalpy and entropy of binding (i.e., mutual H/S compensation) result in 

indistinguishable values of ∆Go
bind for 4-F1BTA, 5,6-F2BTA, 4,7-F2BTA, 4,6-F2BTA, 4,5,6-
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F3BTA, and F4BTA. The gray region demarcates the 95% confidence interval (i.e., two standard 

deviations) of ∆∆Go
bind for H4BTA. 

 

Figure 4. Diagram comparing of the pKa-corrected thermodynamics of ΔJo
bind results from ITC 

measurements with WaterMap calculations for ∆Go
bind (a), ∆Hbind (b), and -T∆So

bind (v). 

 

Figure 5. Hydration site thermodynamics for H4BTA and three fluorinated variants (4,6-

F2BTA, 5,6-F2BTA, and 6,7-F2BTA).  Hydration site colors range from green (favorable) to red 

(unfavorable). The range for ∆Ho
bind (left panel) is [-5.0 to +5.0 kcal mol-1] whereas for −T∆So

bind 

(right panel) the range is [0.0 to +5.0 kcal mol-1]. WaterMap computes all values relative to bulk 

solvent. The black arrow indicates an additional localized hydration site in 5,6-F2BTA that is not 

observed in other x-F2BTA variants. The dashed oval indicates a cluster of hydration sites that is 

entropically unfavorable in 5,6-F2BTA and 6,7-F2BTA relative to 4,6-F2BTA. 
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