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and Missing Data∗
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Abstract

Although social scientists devote considerable effort to mitigating measurement error during
data collection, they usually ignore the issue during data analysis. And although many sta-
tistical methods have been proposed for reducing measurement error-induced biases, few have
been widely used because of implausible assumptions, high levels of model dependence, difficult
computation, or inapplicability with multiple mismeasured variables. We develop an easy-to-use
alternative without these problems; it generalizes the popular multiple imputation (mi) frame-
work by treating missing data problems as a special case of extreme measurement error and
corrects for both. Like mi, the proposed “multiple overimputation” (mo) framework is a simple
two-step procedure. First, multiple (≈ 5) completed copies of the data set are created where
cells measured without error are held constant, those missing are imputed from the distribution
of predicted values, and cells (or entire variables) with measurement error are “overimputed,”
that is imputed from the predictive distribution with observation-level priors defined by the
mismeasured values and available external information, if any. In the second step, analysts can
then run whatever statistical method they would have run on each of the overimputed data sets
as if there had been no missingness or measurement error; the results are then combined via a
simple averaging procedure. We also offer easy-to-use open source software that implements all
the methods described herein.
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1 Introduction

Social scientists recognize the problem of measurement error in the context of data collection, but

seem to ignore it when choosing statistical methods for the subsequent analyses. Some seem to

believe that analyses of variables with measurement error will still be correct on average, but this

is untrue; others act as if the attenuation that occurs in simple types of random measurement error

with a single explanatory variable holds more generally, but this too is incorrect. More sophisticated

application-specific methods for handling measurement error exist, but they are complicated to im-

plement, require difficult-to-satisfy assumptions, and often lead to high levels of model dependence;

few such methods apply when error is present in more than one variable and none are widely used

in applications, despite an active methodological literature. Unfortunately, the corrections used

most often are the easiest to implement but typically have the strongest assumptions, which we

discuss below (see Stefanski (2000) and Guolo (2008) for literature reviews).

We address this challenge by offering a unified approach to correcting for problems of mea-

surement error and missing data in a single easy-to-use procedure. We do this by generalizing the

multiple imputation (mi) framework designed for missing data (Rubin, 1987; King et al., 2001) to

broadly deal with measurement error as partially missing information and treat completely missing

cell values as an extreme form of measurement error. The proposed generalization, which we call

multiple overimputation (mo), enables researchers to treat cell values as either observed without

(random) error, observed with error, or missing. We accomplish this by constructing prior distri-

butions for individual cells (or entire variables) with means equal to the observed values, if any,

and variance for the three data types set to zero, a (chosen or estimated) positive real number, or

infinity, respectively.

Our derivations are all fully Bayesian and so inherit the attractive properties of other standard

Bayesian approaches. And by using the insights and procedures from mi, mo also inherits the

attractive properties already proven in the extensive missing data literature.

Like mi, mo is easy to use and involves two steps. First, analysts can create multiple (usually

about five) data sets by drawing them from their posterior predictive distribution conditional on

all available observation-level information. This procedure leaves the observed data constant across

the data sets, imputes the missing values from their predictive posterior as usual under mi, and
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overimputes, that is, replaces or overwrites the values or variables measured with error with draws

from their predictive posterior. Our basic approach to measurement error, which involves relatively

minimal assumptions, allows for random measurement error in any number or combination of

variables or cell values in a data set. With somewhat more specific assumptions, we also allow

for measurement error that is heteroskedastic or correlated with other variables. As we show, the

technique allows only some types of measurement error, but it is relatively robust to violations of

either set of assumptions and easy to apply.

An especially attractive advantage of mo (like mi) is the second step, which enables analysts

to run whatever statistical procedure they would have run on the completed data sets, as if all the

data had been correctly observed. A simple procedure is then used to average the results from the

separate analyses. The combination of the two steps enables scholars to overimpute their data set

once and to then set aside the problems of missing data and measurement error for all subsequent

analyses. As a companion to this paper, we have modified a widely used mi software package to

also perform mo (Honaker, King and Blackwell, 2010).

Section 2 describes our proposed mo framework, in the context of multiple variables measured

with random error with a known, assumed, or completely unknown variance. There, we generalize

the mi framework, prove that a fast existing algorithm can be used to create imputations for mo,

and offer Monte Carlo evidence that it works as designed. Section 3 goes further by deriving

methods of estimating the (possibly heteroskedastic) measurement error variance so it need not

be assumed. Section 4 then offers empirical illustrations. Appendix A gives technical details and

Appendix B generalizes our approach by allowing measurement error that is correlated with the

true values of the variables.

2 A Multiple Overimputation Model

We conceptualize the linkage between measurement error and missing data in two equivalent ways.

In one, measurement error is a type of missing data problem where observed proxy variables provide

probabilistic prior information about the true unobserved cell values. In the other, missing cell

values have an extreme form of measurement error where no available prior information exists.

More simply, measurement error can be seen as a mitigated form of missing data, or conversely

missing data can be seen as the most extreme possible form of measurement error. Either way, they
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are linked methodological problems whose treatments go well together because variables (or cell

values) measured with some degree of error fall logically between the extremes of observed without

error and completely unobserved. This dual conceptualization also means that our mo approach

to measurement error has all the advantages of mi in ease of use and robustness (Schafer, 1997;

Freedman et al., 2008), and treatment for measurement error can be taken in the same instance as

treatment for missingness, which is often already a necessary step in the analysis.

The validity of our approach is also easy to understand within this framework. Consider the

following thought experiment. Some small number of cell values in a variable are known to be

measured with error, so a researcher decides to throw away those values and treat them as missing.

Under the same assumptions as mi for missing data, deleting cell values with measurement error and

using mi introduces no biases. However, this is inefficient as we know the mismeasured observations

provide considerable information about the true location of those cell values. We know that the true

latent value is close to the mismeasured value, where the relative meaning of “close” is determined

by the degree of measurement error. We want to be able to correctly incorporate that information

into the model, which we accomplish by running mi while also using observed cell values that

are informative, but measured with some error, to help inform cell-level priors so as to improve

efficiency and reduce model dependence.1

Assume a cell value xi is a combination of the true latent value we would like to record, and

some degree of measurement error ui drawn independently from some distribution. For example,

if that distribution is Normal with variance σ2
u we have:

x∗i=xi + ui

latentobserved error
measurement

∼ui|x∗i N (0,σ2
u) variance

error
measurement

(1)
1Scholars who have made this connection before have focused on data with validation subsamples, which are rela-

tively rare in the social sciences (Wang and Robins, 1998; Brownstone and Valletta, 1996; Cole, Chu and Greenland,
2006). For a related problem of “editing” data with suspicious cell values, Ghosh-Dastidar and Schafer (2003) develop
an innovative mi framework similar in spirit to ours, albeit with an implementation specific to their application.
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The central point to understand is the continuous spectrum of measurement error as σ2
u varies

across the set of possible values. All cell values in the data set have some associated value of σ2
u .

At one extreme, when σ2
u = 0, we observe the latent variable perfectly. Our belief about where the

true value x∗i is located is just a spike at the observed location, xi. We visualize the set of all σ2
u

values as a line in figure 1, and this σ2
u = 0 is the left endpoint of this line, denoted in blue. Above

this we draw out the shape of the distribution that describes the true latent value conditional on

the observed value, which again in this case is a spike because they are the same.

missing
fully

observed
fully

missing
partially

σ2
u = 0 σ2

u = ∞0 < σ2
u < ∞

Figure 1: The continuum of measurement error, with observation-level priors illustrated in the top
row

As measurement error begins to increase, σ2
u moves to the right in this continuum. Now we no

longer know with certainty the location of the latent value from the observed value, but with small

error distributions this distribution is still very tight and as σ2
u becomes larger the distribution has

increased variance. At the extreme, as σ2
u → ∞ the distribution of the expected location of the

latent value becomes flat and we have no information about where the latent value is located from

the mismeasured value. At this point, there is nothing in the observed value to tell us about the

latent value, the cell value itself is entirely uninformative, and thus it is a missing value in the data

set. Missing data is thus merely the extreme form of measurement error. Classical missing data
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methods are only able to deal with observations at this extreme. Or more precisely, they can only

deal with cell values at σ2
u = 0 or σ2

u = ∞, the red and the blue distributions, because they are

unable to incorporate the additional information contained in the observed data when 0 < σ2
u < ∞

into the missing data algorithm. This forces us within the mi framework to think in terms of a

false dichotomy between cells that are fully observed and cells that are fully missing, when a whole

continuum of measurement error is possible.

We use cell level priors to incorporate the fact that the latent locations of some cell values

are neither spikes nor flat slabs, but proper distributions. If we used only information from the

mismeasured observation, our prior describes the latent value of that cell as a distribution, as for

example we depicted in the top row of figure 1. Treating instead that cell as if it were missing

data, mi would construct a distribution conditional on all the rest of the observed data in the data

set, from which we would classically draw random imputations. Combining these distributions,

that is jointly using the information from the mismeasured observation itself and the patterns in

the rest of the observed data, we show that the correct posterior can be formed as the product

of these distributions, and estimated with algorithms that already exist in the literature for other

purposes. When there is no measurement error in an observation, this degenerates to a spike and

the observation remains unchanged. When measurement error is so extreme we that we encounter

a missing value, the prior is now flat and the missing value is imputed solely conditional on the

rest of the observed data. However, now we can also deal with all the values with intermediate

measurement error — neither σ2
u = 0 nor σ2

u = ∞ — by replacing the mismeasured value with

a series of draws from the posterior for the true latent value. We call this framework Multiple

Overimputation. In the rest of this section we provide a more technical explanation of our model,

mo, as well as the mi foundation we generalize from, both of which some readers may skip, while

those looking for even more detail on the modeling assumptions and implementation details should

also see appendix A.

2.1 The Foundation: A Multiple Imputation Model

mo builds on mi, which we now review. mi involves using a model to generate multiple imputations

for each of the missing cell values (as predicted from all available information in the data set),

separate analysis of each of the completed data sets without attending to missing data issues, and
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then the application of some easy rules for combining the separate results. The main computational

difficulty comes in developing the imputation model.

For expository simplicity, consider a simple special case with only two variables, yi and xi

(i = 1, . . . , n), where only xi contains some missing values. These variables are not necessarily

dependent and independent variables, as they can each play any role in the subsequent analysis

model. Everything in this section generalizes to any number of variables and arbitrary patterns of

missingness in any or all of the variables (Honaker and King, 2010).

We now write down a common model that could be used to apply to the data if they were

complete, and then afterwards explain how to use it to impute any missing data scattered through

the input variables. This model assumes that the joint distribution of yi and xi, p(yi, xi|µ,Σ), is

multivariate normal:

(xi, yi) ∼ N (µ,Σ), µ = (µy, µx), Σ =
(

σ2
y σxy

σxy σ2
x

)
, (2)

where the elements of the mean vector µ and variance matrix Σ are constant over the observations.

This model is deceptively simple but powerful: As there is no i subscript on the scalar means µx

and µy, it may appear as though only the marginal means are used to generate imputations. In

fact, its joint distribution implies that a prediction is always based on a regression (the conditional

expectation) of that one variable on all the others, with the population values of the coefficients in

the regression a deterministic function of µ and Σ. This is extremely useful in missing data problems

for predicting a missing value conditional on observed values. For instance, given model (2), the

conditional expectation is E[xi|yi] = γ0 +γ1(yi−µy), where γ0 = µx and γ1 = σxy/σx. Researchers

have repeatedly demonstrated that this imputation model works as well as more complicated non-

linear and non-normal alternatives even for ordinal or categorical variables, and even when more

sophisticated models are preferred at the analysis stage (Schafer 1997 and citations in King et al.

2001).

Thus, to estimate the regression of each variable in turn on all the others, we only need to

estimate µ and Σ. If there were no missing data, the results would be equivalent to running each

of the separate regressions (yi on xi and xi on yi). But how can we run either of these regressions

with arbitrary missing data? The trick is to find a single set of estimates of µ and Σ from data

with scattered missingness, and then to use these to deterministically compute the coefficients of
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all the separate regressions. To be more specific, the “complete-data” likelihood (i.e., still assuming

no missing data) is simply the product of model (2) over the n observations:

L(θ|y, x) ∝
∏

i

p(yi, xi|θ) (3)

=
∏

i

p(xi|yi, θ)p(yi|θ), (4)

where θ = (µ,Σ). (We use variables without an i subscript to denote the vector of observations,

so y = (y1, . . . , yn).) This likelihood is not usable as is because it is a function of the missing data,

which we do not observe. Thus, we integrate out whatever missing values happen to exist for each

observation to produce the actual (“observed-data”) likelihood:

L(θ|y, xobs) ∝
∏

i

∫
p(xi|yi, θ)p(yi|θ)dxmis (5)

=
∏

i∈xmis

p(yi|θ)
∏

j∈xobs

p(xj |yj , θ)p(yj |θ), (6)

where xobs denotes the set of cell values in x that are observed and xmis the set that are missing.

That we can partition the complete data in this way is justified by the standard “missing at random”

(mar) assumption that the missing values may depend on observed values in the data matrix but

not on unobservables (Schafer, 1997; Rubin, 1976). The key advantage of this expression is that it

appropriately assumes that we only see what is actually observed, xobs and y, but can still estimate

µ and Σ.2

This result enables one to take a large data matrix with scattered missingness across any or all

variables and impute missing values based on the regression of each variable on all of the others. The

actual imputations used are based on the regression predicted values, their estimation uncertainty

(due to the fact that µ and Σ, and thus the calculated coefficients of the regression, are unknown),

and the fundamental uncertainty (as represented in the multivariate normal in (2) or, equivalently,

the regression error term from each conditional expectation).

mi works by imputing about five values for each missing cell entry (or more for data sets with

unusually high missingness), creating “completed” data sets for each, running whatever analysis
2This observed-data likelihood is difficult to maximize directly in real data sets with arbitrary patterns of miss-

ingness. Fast algorithms to maximize it have been developed that use the relationship between (2), (5), and the
implied regressions, using iterative techniques, including variants of Markov chain Monte Carlo, em, or em with
bootstrapping.
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model we would have run on the each completed data set as if there were no missing values, and

averaging the results using a simple set of rules. The assumption necessary for mi to work properly

is that the missing cell values are mar. This is considerably less restrictive than, for example, the

“missing completely at random” assumption required to avoid bias in listwise deletion, which is

equivalent to assuming that missingness is determined by only random coin flips. See the Appendix

for a more formal treatment of the assumptions behind mo.

2.2 Incorporating Measurement Error

The measurement error literature uses a variety of assumptions that are, in different ways, more

and also less restrictive than our approach. The “classical” error-in-variables model assumes the

error is independent of the true value being measured. “Nondifferential” or “surrogate” error is

that assumed independent of the dependent variable, conditional on both the true value being

measured and any observed pre-treatment predictor variables. Other approaches use assumptions

about exclusion restrictions or auxilliary information such as repeated measures. See Imai and

Yamamoto (2010) for formal definitions and citations.

In our alternative approach, we marshall two distinct sources of information to overimpute

cell values with measurement error. One could think of cell values with any positive level of

measurement error as effectively missing values, and the observed cell value is useless information.

In this situation, we can easily translate a measurement error problem into a missing data problem,

for which the observed-data likelihood derived in Section 2.1 applies directly. The assumption

required for this procedure is mar, which is considerably less restrictive than the assumptions

necessary for most prior approaches to dealing with measurement error, and, unlike most other

measurement error approaches, it may be used for data sets with arbitrary patterns of measurement

error (and missingness) in any (explanatory or dependent) variables.

Of course, if we are willing to assume that observations measured with error are reasonable

proxies for unobserved values, then treating them as missing will work but will discard considerable

valuable information. Thus, we supplement the information from the fully observed cell values with

a second source of information — the proxy measurements themselves, along with assumptions

about the process by which the proxies are observed. This second source of information enables

researchers to use this additional information in return for considerably more efficient estimates.
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For expository clarity, we continue, without loss of generality, our simple two-variable example

from the previous section. Thus, let yi be a single fully observed cell value and x∗i be a true but

unobserved cell value, with (yi, x
∗
i ) ∼ N (µ,Σ). To this, we add an observed wi which is a proxy,

measured with error, for x∗i . For expository simplicity, we focus on the case with no (fully) missing

values, which in this context would be unobserved cell values without corresponding proxy values.

With this setup, we describe the second source of information in our approach as coming

from the specification of a specific probability density to represent the data generation process for

the proxy wi. This, of course, is an assumption and we allow a wide range of choices, subject

to two conditions, one substantive and one technical. First, we require that the mean (or an

additive function of the mean) of the distribution be the unobserved true cell value x∗i , and that

the parameters of the distribution are distinct from the complete-data parameters, θ, and are known

or separately estimated. Second, the class of allowable data generation processes in our approach

involves any probability density that possesses the property of statistical duality. This is a simple

property (related to self-conjugacy in Bayesian analysis) possessed by a variety of distributions,

such as normal, Laplace, Gamma, Inverse Gamma, Pareto, and others (Bityukov et al., 2006).3

(We use this property to ease implemention in Section 2.3.)

A simple special case of this data generation process is random normal measurement error,

wi ∼ N (x∗i , σ
2
u), with σ2

u set to a chosen or estimated value (we discuss interpretation and estimation

of σ2
u in Section 3). Other special cases allow for heteroskedastic measurement error, such as might

occur with gdp from a country where a government’s statistical office is professionalizing over time;

mortality statistics from countries with and without death registration systems; or survey responses

from a self-report vs elicited about that person from someone else in the same household. This

approach can handle biased measurement error, where E[wi|x∗i ] = ai + x∗i , so long as the bias, ai,

is known or estimable. For instance, if validation data is available, a researcher could estimate the

bias of the measure or use a model to estimate how the offset changes with observed variables.

From our perspective, a cell value (or variable) that doesn’t possess at least this minimally known

set of relationships to its true value could more easily be considered a new observation of a different
3If a function f(a, b) can be expressed as a family of probability densities for variable a given parameter b, p(a|b),

and a family of densities for variable b given parameter a, p(b|a), so that f(a, b) = p(a|b) = p(b|a), then p(a|b) and
p(b|a) are said to be statistically dual.
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variable rather than a proxy for an unobserved one.4 When the bias is not known and cannot

be estimated, we are left with a class of data generation processes (rather than a single one) for

the proxy; this results under our procedure in a “robust Bayesian” class of posteriors (rather than

a single Bayesian posterior), from which overimputations may be drawn (Berger, 1994; King and

Zeng, 2002).

To incorporate these ideas, we begin with a “complete-data” likelihood (that is imagining that

all variables are observed):

L(θ, σ2
u|y, w, x∗) ∝

∏
i

p(yi, wi, x
∗
i |θ, σ2

u) (7)

=
∏

i

p(wi|x∗i , yi, θ, σ
2
u)p(x∗i |yi, θ)p(yi|θ) (8)

=
∏

i

p(wi|x∗i , yi, σ
2
u)p(x∗i |yi, θ)p(yi|θ). (9)

The first equality uses the rules of conditional probability; the key assumption (needed for the

second equality) is expressed here by the density for wi not depending on the parameters of the

overall likelihood, θ = (µ,Σ): p(wi|x∗i , yi, θ, σ
2
u) = p(wi|x∗i , yi, σ

2
u). Note that (9) is identical to

the complete-data likelihood in mi model (4), with the additional factor, p(wi|x∗i , yi, σ
2
u), for the

proxy’s data generation process. (To generate the observed-data likelihood in this case would of

course require the analogous integration as in (5), which we omit here to save space. See Appendix

A for a full description.)

We may sometimes wish to further simplify and assume normal error, p(wi|x∗i , yi, θ, σ
2
u) =

N (x∗i , σ
2
u), with a chosen or estimated value of the variance of the measurement error σ2

u. When

σ2
u is small we have a reasonable precision in our estimate of the location of x∗i . As the size of

the measurement error grows, wi reveals less information about the true value of x∗i . Heuristically,

as σ2
u becomes infinite, wi tells us nothing, and we may as well discard it from the data set and

treat it as missing. In this limiting case, where no information is directly observed about x∗i , then

p(wi|xi, σ
2
u) approaches a constant and the complete-data likelihood (9) becomes proportional to

the model for missing data alone (4). This proves that the most commonly used model for missing

data is a limiting special case of our approach.
4If the relationship between the underlying variable and its mismeasurement is completely unknown, a different

approach may be required. For instance, structural equation modeling or factor analysis is sometimes appropriate if
a large set of measures all capture some aspect of an unobserved concept.
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2.3 Implementation

In a project designed for an unrelated purpose, Honaker and King (2010) propose a fast and com-

putationally robust mi algorithm that allows for informative Bayesian priors on missing individual

cell values. The algorithm is known as emb, or em with bootstrapping. They use this algorithm

to incorporate qualitative case-specific information about missing cells to improve imputations. To

make it easy to implement our approach, we prove in Appendix A that the same algorithm can

be used to estimate our model. The statistical duality property assumed there enables us to turn

the data generation process for wi into a prior on the unobserved value x∗i , without changing the

mathematical form of the density. For example, in the simple random normal error case, the data

generation process for wi is N (wi|x∗i , σ2
u) but, using the property of statistical duality of the normal,

this is equivalent to a prior density for the unobserved x∗i , N (x∗i |wi, σ
2
u). This result shows that we

can use the existing emb algorithm.

This strategy also offers important intuitions: our approach can be interpreted as treating

the proxy variables as informative, observation-level means (or functions of the means) in pri-

ors on the unobserved missing cell values. Our imputations of the missing values, then, will be

precision-weighted combinations of the proxy variable and the predicted value from the conditional

expectation (the regression of each variable on all others) using the missing data model. In addi-

tion, the parameters of this conditional expectation (computed from µ and Σ) are informed and

updated by the priors on the individual cell values.

Under our approach, then, all cells in the data matrix with measurement error are replaced —

overwritten in the data set, or overimputed in our terminology — with multiple overimputations

that reflect our best guess and uncertainty in the location of the latent values of interest x∗i . These

overimputations include the information from our measurement error model, or equivalently the

prior with mean set to the observed proxy variable measured with error, as well as all predictive

information available in the observed variables in the data matrix. As part of the process, all missing

values are imputed as usual with mi. The same procedure is used to fill in multiple completed data

sets; usually about five data sets is sufficient, but more may be necessary with large fractions of

missing cells or high degrees of measurement error. Imputations and overimputations vary across

the multiple completed data sets — with more variation when the predictive ability of the model is

11



smaller and measurement error is greater — while correctly observed cell values remain constant.

Researchers create a collection of completed data sets once and then run as many analyses

of these as desired. The same analysis model is applied to each of the completed (imputed and

overimputed) data sets as if it were fully observed. A key point is that the analysis model need not

be linear-normal even though the model for missing values and measurement error overimputation

is (Meng, 1994). The researcher then applies the usual mi rules for combining these results (see

Appendix A).

2.4 Monte Carlo Evidence

We now offer Monte Carlo evidence for mo, using a data generation process that would be difficult

or impossible for most prior approaches to measurement error. We use two mismeasured variables,

a non-normal dependent variable, scattered (but not completely random) missing data, and a

nonlinear analysis model. The measurement error is independent random normal with variances

that each account for 25% of the total variance for each proxy, meaning these are reasonably noisy

measures. In doing so, we attempt to recreate a difficult but realistic political science data situation,

with the addition of the true values so we can use them to validate the procedure.

In a real application, a researcher may only have a rough sense of the measurement error

variances. We thus run our simulations assuming a range of levels for these variances, holding their

true value fixed, to see how these differing assumptions affect estimation. (In the next section, we

discuss how to interpret or estimate this variance.)

We generated proxies x and z for the true variables x∗ and z∗, respectively, using a normal data

generation process with the true variables as the mean and a variance equal to σ2
u = σ2

v = 0.5.5 At

each combination of σ2
u and σ2

v , we calculate the mean square error (mse) for the logit coefficients

of the overimputed latent variables. We took the average mse across these coefficients and present

the results in Figure 2. On the left is the mse surface with the error variances on the axes along

the floor and mse on vertical axis; the right graph shows the same information viewed from the

top as a contour plot.
5We let yi, the dependent variable of the analysis model, follow a Bernoulli distribution with probability πi =

1/(1 + exp(−Xiβ)), where Xi = (x∗i , z∗i , si)
′ and β = (−7, 1, 1,−1). We allow scattered missingness of a random 10%

of the all cell values of y, x, and z when (the fully observed) s is greater than its mean. We created the true, latent
data (x∗, z∗, s) by drawing from a multivariate normal with mean vector (5, 3, 1) and covariance matrix (1.5 0.5 −0.2,
0.5 1.5 −0.2, −0.2 −0.2 0.5).
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Figure 2: On the left is a perspective plot of the mean square error of a logit analysis model estimates
after multiple overimputation with various assumptions about the measurement error variance. The
right shows the same information as a contour plot. Note that the axes here are the share of the
observed variance due to measurement error which has a true value of 0.25, which is where the mse
reaches a minimum.

The figure shows that when we assume the absence of measurement error (i.e., σ2
u = σ2

v = 0),

as most researchers do, we are left with high mse values. As the assumed amount of measurement

error grows, we see that the mo lowers the mse smoothly. The mse reaches a minimum at the true

value of the measurement error variance (the gray dotted lines in the contour plot).6 Assuming

values that are much too high also leads to larger mses, but the figure reveals one of the types of

robustness of the mo procedure in that a large region exists where mse is reduced relative to the

naive model assuming no error, and so one need not know the measurement error variance except

very generally. We discuss this issue further below.

2.5 Comparison to Other Measurement Error Correction Techniques

As measurement error is a core threat to many, and perhaps even most, statistical analyses, many

approaches have been proposed. These solutions broadly fall into two camps: general-purpose

methods and application-specific methods. General-purpose methods are easily implemented across
6In this simulation, the variance of the estimates is swamped by the squared bias of the estimates, so that any

difference in the mse is almost entirely due to bias, rather than efficiency. More succinctly, these plots are substantively
similar if we replace mse with bias.
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a wide variety of models, while application-specific methods are closely tailored to a particular

context. See Fuller (1987) and Carroll, Ruppert and Stefanski (1995).

The first general-purpose method, regression calibration (Carroll and Stefanski, 1990), is similar

in spirit to mo in that it replaces the observed, mismeasured variable with an estimate of the

underlying unobserved variable and then performs the desired analysis on this “calibrated data.”

In fact, one can think of mo as an combination of regression calibration and multiple imputation,

two methods previously thought as distinct and in competition with one another (Cole, Chu and

Greenland, 2006). As White (2006) points out, multiple imputation relies on validation data and

ignores any replicate measures and regression calibration ignores any validation data completely.

mo combines the best parts of each of these approaches by utilizing all information when it is

available.

The easiest technique to implement is a simple method-of-moments estimator, which exploits

the exact relationship between the biased estimates and the amount of measurement error present

in the data. This estimator simply corrects a biased estimate of a linear regression coefficient by

dividing it by the reliability ratio, σ2
x∗/σ2

w. This technique depends heavily on the estimate of

the measurement error variance and, in our simulations, has poor properties when this estimate is

incorrect. Further, the method-of-moment technique requires the analysis model to be linear.

Other general approaches to measurement error include simulation-extrapolation, or SIMEX,

(Cook and Stefanski, 1994; Hopkins and King, 2010), and minimal-assumption bounds (Leamer,

1978; Klepper and Leamer, 1984; Black, Berger and Scott, 2000). These are both excellent ap-

proaches to measurement error, but they both have features that limit their general applicability.

SIMEX is designed to simulate the effect of adding additional measurement error to a single mis-

measured variable, then use these simulations to extrapolate back to the case with no measurement

error. In situations with multiple mismeasured variables, SIMEX becomes harder to compute and

more dependent on the extrapolation model. The minimal-assumption bounds are useful for spec-

ifying a range of parameter values consistent with a certain set of assumptions on the error model.

Bounds typically require fewer assumptions than our multiple overimputation model, but obviously

eliminate the possibility of point estimation. A comprehensive approach to measurement error could

utilize minimal-assumption bounds with the overimputation bounds and point estimates below.
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Structural equation modeling (SEM) attempts to solve the problem of measurement error in a

different way.7 The goal of SEM is to find latent dimensions that could have generated a host of

observed measures, while our goal is to rid a particular variable (or variables) of its measurement

error. While discovering and measuring latent concepts is a useful and common task in political

science, there are many cases in which we want to measure the effect of a specific variable and

measurement error stands in the way. SEM would sweep that variable up into a larger construct

and perhaps muddle the question at hand. Thus, mo is not so much a replacement for SEM, but

rather an approach to a different set of substantive questions. Furthermore, mo is better equipped

to handle gold-standard and validation data since it is unclear how to incorporate these into a

structural equation modeling framework.

3 Specifying or Estimating the Measurement Error Variance

Under mi, researchers must indicate somehow which observations are missing. Under mo, instead

must indicate how much missingness (or measurement error) exists in each data set cell value. In

this sense, mi is a restricted version of mo where the only acceptable answers to the “how much”

question is all or none. Under both, we can parameterize the information we need in terms of a

measurement error variance. This variance is typically not identified from the given data (under

our approach and others) (Stefanski, 2000).

We show how to add the necessary information or assumptions in four different contexts. First,

when little or no extra information is available about the measurement error variance, we show

how to reparametrize σ2
u to a scale that is easier to understand and how we can provide uncertainty

bounds on the quantity of interest (Section 3.1). Second, we show how to analyze categorical

variables with measurement error. Third, when replicated correlated proxies are available, we show

how to estimate σ2
u directly (Section 3.3). And finally we show how to proceed when σ2

u varies over

the data set or when gold standard observations are available (Section 3.4).

3.1 Interpretation through Reparametrization and Bounding

Section 2.4 shows that using the true measurement error variance σ2
u with mo will greatly reduce

the bias and mse relative to the usual procedure of making believe measurement error does not
7Lee (2007) covers a number of Bayesian approaches to structural equation modeling, including some that take

into consideration missing data.

15



exist (which we refer to as the “denial” estimator). Moreover, in the simulation presented there

(and in others we have run), the researcher needs only have a general sense of the value of these

variances to greatly decrease the bias of the esimates. Of course, knowing the value of σ2
u (or σu)

is not always obvious, especially on its given scale. In this section, we deal with this problem by

reparameterizing it into a more intuitive quantity and then putting bounds on the ultimate quantity

of interest.

The alternative parametrization we have found useful is the proportion of the proxy variable’s

observed variance due to measurement error, which we denote ρ = σ2
u

σ2
x+σ2

u
= σ2

u
σ2

w
, where σ2

w, the

variance of our proxy. This is easy to calculate directly if the proxy is observed for an entire

variable (or at least more than one cell value). Thus, if we know the extent of the measurement

error, we can create an estimated version of σ̂2
u = ρσ̂2

w and substitute it for σ2
u in the complete-data

likelihood (9).

In Figure 3, we present Monte Carlo simulations of how our method works when we alter our

assumptions on the scale of ρ rather than σ2
u.8 More importantly, it shows how providing little or

no information about the measurement error can bound the quantities of interest. Leamer (1978,

pp. 238–243) showed that we can use a series of reverse regressions in order to bound the true

coefficient without making any assumptions about the amount of measurement error. We compare

these “minimal-assumption” bounds to the more model-based multiple overimputation bounds.

The vertical axis in the left panel is the value of the coefficient of a regression of the overimputed

w on y. The orange points and vertical lines are the estimates and 95% confidence intervals from

overimputation as we change our assumption about ρ on the horizontal axis.

We can see that the denial estimator, which treats w as if it were perfectly measured (in red),

severely underestimates the effect calculated from the complete data (solid blue horizontal line), as

we might expect from the standard attenuation result. As we assume higher levels of ρ with mo,

our estimates move smoothly toward the correct inference, hitting it right when ρ reaches its true

value (denoted by the vertical dashed line). Increasing ρ after this point leads to overcorrections,

but one needs to have a very bad estimate of ρ to make things worse than the denial estimator.

The root mean square error leads to a similar conclusion and is thus also minimized at the correct
8For these simulations, we have yi = βxi + εi with β = 1, εi ∼ N (0, 1.52), x∗i ∼ N (5, 1), and σ2

u = 1. Thus, we
have ρ = 0.5. We used sample sizes of 1,000 and 10,000 simulations
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Figure 3: Simulation results using the denial estimator (that assumes no measurement error, in
red), the complete-data, infeasible estimator (in blue), and the mo estimator (in orange), with
varying assumptions about the degree of mismeasurement. The mo estimator at the correct value of
ρ is in dark red. The left panel shows estimates of the coefficients of interest along with confidence
bands. In the background, the light tan area shows the minimal-assumption bounds and the dark
tan region gives bounds assuming ρ ∈ [0.05, 0.6]. The right panel shows mse for the same range of
estimates.

value of ρ.

A crucial feature of mo is that it can be informative even if one has highly limited knowledge

of the degree of measurement error. To illustrate this, the left panel of Figure 3 offers two sets

of bounds on the quantity of interest, each based on different assumptions about ρ. We use the

reverse regression technique of Leamer (1978) to generate minimal-assumption bounds, which make

no assumptions about ρ (the mean of these bounds are in light tan). In practice, it would be hard

to justify using a variable with more than half of the variance due to measurement error, but even

in the extreme situation of 80% error, the bounds on the quantity of interest still convey a great

deal of information. They indicate, for example, that the denial estimator is an underestimate of

the quantity of interest and almost surely within approximately the range [0.5,1.75]. Note that all

of our mo estimates are within these bounds. In simulations in which we lowered the true ρ, we
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found that even dramatic overestimates of ρ still lead to mo estimates that obey these bounds.9

Alternatively, we might consider making a more informative (and reasonable) assumption about

ρ. Suppose that we know that there is some positive measurement error, but that less than 70%

of the observed variance is due to measurement error. These are informative assumptions about ρ

and allow mo to estimate bounds on the estimated coefficient. The result is that the bounds shrink

(in dark tan, marked “mo-based”) closer around the truth. mo thus tells us about how various

assumptions about measurement error affect our estimates.10 The mo-based bounding approach

to measurement error shifts the burden from choosing the correct share of measurement error to

choosing a range of plausible shares. Researchers may feel comfortable assuming away higher values

of ρ since we may legitimately consider a variable with, say, 80% measurement error as a different

variable entirely. The lower bound on ρ can often be close to 0 in order to allow for small amounts

of measurement error. 11

This figure also highlights the dangers of incorrectly specifying ρ. As we assume that more

of the proxy is measurement error, we eventually overshoot the true coefficient and begin to see

increased mse. Note, though, that there is again considerable robustness to incorrectly specifying

the prior in this case. Any positive value ρ does better than the naive estimator until we assume

that almost 70% of the proxy variance is due to error. This result will vary, of course, with the

true degree of measurement error and the model under study.

3.2 Categorical variables measured with error

While our imputation model assumes the data is drawn from a multivariate normal distribution,

non-normal variables, such as categorical variables, can be included in the imputation and can even

be overimputed for measurement error. It is well known in the mi literature that imputation via a

normal model works well for categorical variables, and indeed as well as models designed especially

for categorical variables and even when the analysis model is nonlinear (Schafer, 1997; Schafer and
9More generally, simulations run at various values of the true ρ lead to the same qualitative results as presented

here. Underestimates of ρ lead to underestimates of the true slope and overestimate of ρ lead to overestimates of the
true slope.

10If we use mo at all levels of ρ to generate the most assumption-free mo-based bounds possible, the bounds largely
agree with the minimal-assumptions bounds.

11These simulations also point to a use of mo as tool for sensitivity analysis. mo not only provides bounds on the
quantities of interest, but can provide what the estimated quantity of interest would be under various assumptions
about the amount of measurement error.
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Olsen, 1998).

To illustrate how these findings extend to the mo context, we construct a simulation study with

measurement error on a binary variable. To do so, we used the exact setup as above, except that

both the underlying latent variable (x∗) and the mismeasured proxy (w) are each a five-category

ordinal variable. That is, x∗ is drawn from a Binomial distribution with five trials and a 0.2

probability of success. Note that this forces x∗ to exhibit skew. To create measurement error, we

add ui ∼ N (0, 0.2) to the categorical variable and then use cutoffs at 0.5, 1.5, 2.5, 3.5, and 4.5 to

force the noisy variable. This leads to roughly 20% of the observations to be miscoded and leads

to a ρ of 0.2. The goal, as before, is to correctly recover the effect of x∗ on y, where we have

yi = β0 + β1x
∗
i + β2zi + εi.12
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Figure 4: Simulation results with categorical latent and observed variables.

We follow the same procedure as above and run mo with a range of assumptions about ρ,

where ρ is the proportion of variance due to measurement error. Figure 4 shows the results of

these simulations, with a vertical dashed line that represents the amount of variance due to the

continuous measurement error, ui. Note that when we discretize the mismeasured variable, it
12In this simulation, β = (0, 1, 0.5) and ε ∼ N (0, 1.5). The additional covariate, zi, is distributed i.i.d. zi ∼ N (1, 1).
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reduces the variance slightly, the true ρ will be slightly less than the one denoted on the plot. The

results from this more challenging test are largely similar to our earlier simulations. Even in the

face of skewed, categorical latent and observed variables, mo is able to recover good estimates of

the slope, β1, around the true amount of measurement error. Further, mo minimizes the RMSE at

the point as well. While this is a promising approach for categorical variables, tailored methods for

misclassification, such as Katz and Katz (2010), may outperform mo in applications that primarily

focus on measurement errors on binary variables.

3.3 Estimation with Multiple Proxies

When multiple proxies (or “repeated measures”) of the same true variable are available, we can

use relationships among them to provide point estimates of the required variances, and to set the

priors in mo. For example, suppose for the same true variable x∗ we have two unbiased proxies

with normal errors that are independent after conditioning on x∗:

w1 = x∗ + u : u ∼ N
(
0, σ2

u

)
, w2 = ax∗ + b + v : v ∼ N

(
0, (c σu)2

)
(10)

where a, b, c are unknown parameters, that rescale the additional proxy measure to a different

range, mean, and different degree of measurement error. The covariances and correlations between

these proxies can be solved as E
[
cov(w1, w2)

]
= a var(x∗) and E

[
cor(w1, w2)

]
= γ var(x∗)/var(w1),

where a is one of the scale parameters above, and γ is a ratio:

γ2 = a2 var(w1)
var(w2)

=
var(x∗) + var(u)

var(x∗) + (c2/a2)var(u)
(11)

If the measurement error is uncorrelated with x∗ the variances decompose as σ2
u = σ2

w1
− σ2

x∗ . This

leads to two feasible estimates of the error variances for setting priors. First:

s2(u) = var(w1)− cov(w1, w2) = var(w1)− var(x∗) a (12)

which is exactly correct when a=1, that is, when w2 is on the same scale (with possibly differing

intercept) as w1. Similarly,

s2(u) = var(w1)
(
1− cor(w1, w2)

)
= var(w1)− var(x∗) γ (13)

which is exactly correct when c = a ⇔ γ = 1, that is, the second proxy has the same relative

proportion of error as the original proxy.
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3.4 Estimation with Heteroskedastic Measurement Error

In some applications, the amount of measurement error may vary across observations. Although

most corrections in the literature ignore this possibility, it is easy to include in the mo framework,

and doing so often makes estimation easier. To include this information, we add a subscript i to the

variance of the measurement error: p(wi|x∗i , σ2
ui) = N (wi|x∗i , σ2

ui). We then consider two examples.

First, suppose the data include some observations measured with error and some without error.

That is, for fully observed data points, let wi = x∗i , or equivalently σ2
ui = 0. This implies that

p(wi|x∗i ) drops out of the complete-data likelihood and x∗i becomes an observed cell. Then the

imputation model would only overimpute cell values measured with error and leave the “gold-

standard” observations as is. If the other observations have a common error variance, σ2
u, then we

can easily estimate this quantity, since the variance of the gold-standard observations is σ2
x and the

mismeasured observations have variance σ2
x + σ2

u. This leads to the feasible estimator,

σ̂2
u = σ̂2

mm − σ̂2
gs, (14)

where σ̂2
mm is the estimated variance of the mismeasured observations and σ̂2

gs is the estimated

variance of the gold-standard observations.13

As a second special case of heteroskedastic measurement error, mo can handle situations where

the variance is a linear function of another variable. That is, when σ2
ui = rZi, where Zi is variable

and r is the proportional constant relating the variable to the error variance. If we know r (or we

can estimate it through variance function approaches), then we can easily incorporate this into the

prior above using p(wi|x∗i , r, Zi) ∼ N (wi|x∗i , rZi).

4 Empirical Applications of Overimputation

We offer three separate illustrations of the use of multiple overimputation. In the first we show a

natural setting where the true value is known but recovered using variables with increasing naturally

observed measurement errror. In the second we show a replication where the level of measurement

error, caused by aggregating small samples, can be analytically determined. In the last we show

an example of calculating measurement error through multiple proxies.
13This logic assumes that the gold-standard observations are a random sample of the observations. When this

assumption is implausible, we can use the reparameterization approach of Section 3.1.
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4.1 Unemployment and Presidential Approval

To first show a practical example of our mo solution we construct a measurement error process

from a natural source of existing data.

It is often the case, particularly in yearly-aggregated cross-national data, that key independent

variables are not measured or available at the correct point in time the model requires. Some

economic and demographic statistics are only collected at intervals, sometimes as rarely as once

every five or ten years. The available data, measured at the wrong period in time, is often used

as a reasonable proxy for the variable’s value in the desired point in time, with the understanding

that there is measurement error which increases the more distant the available data is from the

analyst’s desired time period.

We mimic this process in actual data by intentionally selecting a covariate at increasing distance

in time from the correct location, as a natural demonstration of our method in real data. In our

example, we are interested in the relationship between the level of unemployment and the level of

Presidential approval in the US, for which there is rich data of both series over time.14

We assume that the correct relationship is approximately contemporaneous. That is, the current

level of unemployment is directly related to the President’s approval rating. Unemployment moves

over time, so the further in time our measure of unemployment is from the present moment, the

weaker the proxy for the present level of unemployment, and the more the measurement error in the

available data. We iteratively consider repeated models where the measurement of unemployment

we use grows one additional month further from the present time.

We compare this to the most common measurement error model employed in political science,

the errors-in-variables model, eiv. The eiv approach, reviewed in appendix B, relies on the ex-

istence of multiple proxies. To naturally create two proxies with increasing levels of measurement

error, we use a measure of unemployment k-months before the dependent variable, and k-months

after. That is, if we are attempting to explain current approval, we assume that the unemployment

k months in the past (the k-lag) and k months in the future (the k-lead) are proxies for the current
14Monthly national unemployment is taken from the Bureau of Labor Statistics, labor force series. Presidential

approval is from the Gallup historical series, aggregated to the monthly level. We use data from 1971 to 2011. We
use the last three years of each four-year Presidential term of office, to avoid approval levels within the “honeymoon”
period, without adding controls into the model. We added a monthly indicator for cumulative time in office, but this
only slightly strengthened these results, and so we leave the presentation as the simplest, bivariate relationship.
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level of unemployment, which we assume is unavailable to our analyst. As k increases, the measures

of unemployment may have drifted increasingly far from the present unemployment level, so both

proxies employed have increased measurement error. We use these same two proxies in each of our

mo models (as previously described in sections 2.4 and 3.3).

We estimate the relationship between unemployment and Presidential approval using our mo

framework, and the common eiv approach, while using pairs of proxies that are from 1 to 12 months

away from the present. We also estimate the relationship between approval and all individual lags

and leads of unemployment; these give us all the possible denial estimators, with all the available

proxies. In figure 5, these coefficients from the denial estimators, are shown in red, where the

red bar represents the 95 percent confidence interval for the coefficient and the center point the

estimated value. The x-axis measures how many months in time the covariate used in the model

is from the month of the dependent variable. Positive values of x use proxies that are measured

later than desired, negative values are measured too far in the past. The correct, contemporaneous

relationship between unemployment and approval is in the center of this series (when x is 0) marked

in black.

The eiv estimates are shown in blue. We see that with increased measurement error in the

available proxies, the eiv estimates rapidly deteriorate. When the proxies for current unemployment

are four months from the value of the dependent variable, the eiv estimates of the relationship are

1.40 times the true value, that is, they are biased by 40 percent. At six months the confidence

interval no longer contains the true value and the bias is 98 percent. With unemployment measured

at a one year gap, eiv returns an estimate 6.5 times the correct value. The mo estimates, however,

are comparatively robust across these proxies. The confidence intervals expand gradually as the

proxies contain less information and more measurement error. The bias is always moderate, between

+16% and −12% and always clearly superior to the denial estimator, until the proxies are fully

twelve months distant from the dependent variable. Finally, at one year’s distance, the mo estimates

are biased by 46 percent, while the denial estimator is biased at −48 percent.

A partial explanation can be understood from robustness results we show in appendix B. In

periods where unemployment trends upwards (or downwards) the k-month lag and the k-month

lead of unemployment will generally have opposite signed measurement error. So the measurement
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Figure 5: An experiment in measurement error, in the estimation of the relationship between un-
employment and Presidential approval, whose true, contemporaneous value is shown in black. The
blue confidence intervals represent eiv estimates of this relationship using proxies of unemployment
measured increasingly distant in time. The eiv estimates fail quickly as the proxies move away from
month zero. The green estimates show the robust mo estimates of the relationship. These are con-
sistently superior to the red estimates which show the denial estimators using the unemployment
rates mismeasured in time, ignoring the measurement error.

errors in the proxies will be negatively correlated. In figure 13 we demonstrate that this is a problem

for both models, but that mo is much more robust to this violation than the eiv model.

We could do better than shown; we do not propose that this is the best possible model for

covariates that are mismeasured in time. Adding other covariates into the imputation model

could increase the efficiency of the overimputations. Averaging the two proxies would give an

interpolation that might be a superior proxy to those used, and we demonstrate an application of
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averaging across proxies in mo in section 4.3. Moreover, in many applications, if there is periodic

missingness over time in a variable, the best approach might be to impute all the missing values

in the series with an imputation model built for time-series cross-sectional data, such as developed

in Honaker and King (2010); this reinforces the main thesis of our argument, that measurement

error and missing data are fundamentally the same problem. Rather, what we have shown in this

example, is that in naturally occurring data, in a simple research question, where we can witness

and control a measurement error process, the most commonly used model for measurement error

fails catastrophically, and our framework is highly robust to even a difficult situation with proxies

with negatively correlated errors.

4.2 Social Ties and Opinion Formation

Having looked at an example where other measurement error methodologies are available, we turn

to a conceptually simple example that poses a number of difficult methodological hazards. We

examine here the small area estimation challenges faced in the work of Huckfeldt, Plutzer and

Sprague (1993). The authors are interested in the social ties that shape attitudes on abortion.

In particular they are interested in contrasting how differing networks and contexts, such as the

neighborhood one lives in, and the church you participate in, shape political attitudes.

Seventeen neighbourhoods were chosen in South Bend, Indiana, and 1500 individuals randomly

sampled across these neighborhoods. This particular analysis is restricted to the set of people who

stated they belonged to a church and could name it. The question of interest is what shapes abortion

opinions, the individual level variables common in random survey designs (income, education, party

identification), or the social experiences and opinions of the groups and contexts the respondent

participates in. Abortion attitudes are measured by a six point scale summing how many times

you respond that abortion should be legal in a set of six scenarios.

The key variable explaining abortion opinion is how liberal or conservative are the attitudes

toward abortion at the church or parish to which you belong. This is measured by averaging over

the abortion attitudes of all the other people in the survey who state they go to the same named

church or parish as you mention. Obviously, in a random sample, even geographically localized,

this is going to be an average over a small number of respondents. The median number is 6.15

15The mean is 10.2 with an interquartile range of 3 to 20.
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The number tends to be smaller among Protestants who have typically smaller congregations than

Catholics who participate in generally larger parishes. In either case, the church positions are

measured with a high degree of measurement error because the sample size within any church is

small. This is a classic “small area estimation” problem. Here we know the sample size, mean and

standard deviation of the sampled opinions from within any parish that lead to the construction of

each observation of this variable.

This is an example of a variable with measurement error, where there are no other proxies

available, but we can analytically calculate the observation level priors. For any individual, i, if ci

is the set of ni respondents who belong to i’s church (not including i), the priors are given by:

p(wi|x∗i ) = N (c̄i, sd(ci)/
√

ni) (15)

where the sd(ci) can be calculated directly as the standard deviation within a group if ni is

generally large, or we can estimate this with the within-group variance, across all groups, as

1/n
√∑

i(wij − w̄j)2.

This is clearly a case where the measurement error is heteroskedastic; different respondents

will have different numbers of fellow parishioners included in the survey. Moreover this degree of

measurement error is not itself random as Catholics–who tend to have more conservative attitudes

towards abortion–are from generally larger parishes, thus their church attitude will be measured

with less error than Protestants who will have greater measurement error in their church attitude

while being more liberal. The direction of the measurement error is still random, but the variance

in the measurement error is correlated with the dependent variable. Furthermore while we have

focused on the measurement error in the church attitude variable, the authors are interested in

distinguishing the socializing forces of church and community, and the same small area estimation

problem applies to measuring the average abortion position of the community a respondent lives

in. Obviously though, the sample size within any of the 17 neighborhoods is much larger than for

the parishes and thus the degree of measurement error is smaller in this variable. 16 Finally, as it

is survey data, there is a variety of missing data across the variables due to nonresponse. Despite
16Within parishes, the median sample size is 6, and only 6 percent of observations have at least thirty observed

responses to the abortion scale among fellow congregants in their parish. Thus we use the small sample, within-group
estimate for the standard deviations, pooling variance across parishes. Within neighborhoods, however, the median
sample size is 47, fully 95 percent of observations have thirty or more respondents in their neighborhood, and so we
estimate the standard deviation in each neighborhood directly from only the observations in that neighborhood.
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all these complicating factors this is a set up well suited to our method. The priors are analytically

tractable, the heterogeneous nature of the measurement error poses no problems because we set

priors individually for every cell, and measurement error across different variables poses no problems

because the strength of the mi framework is handling different patterns of missingness.17

Naive MO MO
Regression Measurement Measurement

Model Only and Missingness
Constant 3.38∗∗ -0.39 -1.68

(1.12) (2.09) (1.89)
Education 0.17∗∗ 0.15∗∗ 0.14∗∗

(0.04) (0.04) (0.04)
Income -0.05 -0.04 -0.00

(0.05) (0.05) (0.05)
Party ID -0.10∗ -0.11∗ -0.08∗

(0.04) (0.04) (0.04)
Church Attendance -0.57** -0.56∗∗ -0.51∗∗

(0.07) (0.07) (0.06)
Mean Neighborhood 0.11 0.84 0.99∗

Attitude (0.21) (0.55) (0.48)
Mean Parish 0.13◦ 0.43∗ 0.48∗∗

Attitude (0.07) (0.19) (0.18)
Catholic -0.48∗ -0.23 -0.02

(0.27) (0.23) (0.21)
n 357 521 772
∗∗ : p < 0.01, ∗ : p < 0.05, ◦ : p < 0.10

Table 1: Mean Parish Attitudes are estimated by the average of across those other respondents
in the survey who attend the same church. These “small area estimates” with small sample size
and large standard errors have an analytically calculable measurement error. Without accounting
for measurement error there is no discernable effect (column 1) but after applying mo (column 2)
to correct for measurement error, we see that the average opinion in a respondent’s congregation
predicts their own attitude towards abortion.

We replicate the final model in table 2 of Huckfeldt, Plutzer and Sprague (1993). Our table 1

shows the results of the naive regression subject to measurement error in the first column. Parish

attitudes have no effect on the abortion opinions of churchgoers, but individual-level variables, such

as education and party identification and the frequency with which the respondent attends church
17For additional work on small area estimation from an multiple overimputation framework, see Honaker and

Plutzer (2011). In particular, there are additional possibly efficiency gains from treating the errors within individuals
in the same church or community as correlated, as well as bringing in auxiliary Census data, and this work shows to
approach this with two levels of imputations at both the individual and aggregated level.
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predict abortion attitudes. The act of going to church seems to decrease the degree of support for

legalized abortion, but the beliefs of the fellow congregants in that church have no social effect or

pressure. Interestingly, Catholics appear to be different from non-Catholics, with around a half

point less support for abortion on a six point scale.

The second column applies our model for measurement error, determining the observation-level

priors for neighborhood and parish attitudes analytically as a function of the sample of respondents

in that neighborhood and parish. Only the complete observations are used in column two, so

differences with the original model are due to corrections of the measurement error in the small

area estimates. We see now the effect of social ties. Respondents that go to churches where the

support for legal abortion is higher, themselves have greater support for legal abortion. This may

be because abortion is a moral issue that can be shaped in the church context and influenced by

coreligionists, or this maybe a form of self selection of church attendance to churches that agree on

the abortion issue. With either interpretation, this tie between the attitudes in the network of the

respondent’s church and the respondent’s own personal attitude disappears due to measurement

error caused by the inevitable small samples of parishioners in any individual church.

Of course our mo approach can simultaneously correct for missing data also, and multiple

imputation of non-response increases by one half the number of observations available in this

regression.18 Most of the same results remain, while the standard errors shrink due to the increase

in sample size. Similar to the parish variable, local neighborhood attitudes are now statistically

significant at the ninety-five percent level. The one variable that changes noticeably is the dummy

variable for Catholics which is halved in effect and no longer statistically significant once we correct

for measurement error, and the rest of the effect disappears when we impute missing data.19 In

all, mo strengthens the author’s findings, finds support for their theories in this particular model

where previously there was no result, and aligns this regression with the other models presented in

their work.
18Forty-seven percent of this missingness is due to respondents who answer some, but not all, of the abortion

scenarios that constitute the abortion scale. Knowing the pattern of answers to the other completed abortion
questions, as well as the other control variables in the model, help predict these missing responses.

19Catholics are still less likely to support abortion (a mean support of 3.1 compared to 3.7 for non-Catholics), but
this difference is explained by variables controlled for in the model such as individual demographics and the social
ties of Catholic churches which have lower mean parish attitudes than non-Catholic churches.
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4.3 The Effect of Political Preferences on Vote Choice

Ansolabehere, Rodden and Snyder (2008) show that the causal effect of opinions about economic

policy on vote choice is much stronger than previously estimated (but consistent with what one

would expect) via a simple alternative method of removing measurement error: averaging many

multiple measures of the same concept. Although the data requirements make approach only

occasionally applicable, it is powerful, when possible, and instructive. They consider K = 34

survey items {w1, w2, . . . , wK}, all taken to be imperfect indicators of an unobserved variable, x,

and assume common measurement error variance σ2
x. That is, wik = xi + uik for each i, where

E[uik] = 0 and E[u2
ik] = σ2

k. While any individual measure has variance σ2
x + σ2

k, the average of

the measures, w̄i = 1
K

∑K
k=1 wik has variance σ2

x + σ̄2/K, where σ̄2 = 1
K

∑K
k=1 σ2

k is the average

measurement error variance among the items. If all of the measures have similar amounts of

measurement error, then the average of the items will have far lower levels of measurement error

than any single item. Furthermore, the effect of measurement error will decrease as K increases.

We now show that in the more usual situation where researchers have access to one or only

a few measures of their key concepts, mo can still recover reliable estimates because it makes

more efficient use of the data and available assumptions. It also provides more information by

enabling one to avoid the assumption that all available measures are indicators of exactly the same

underlying concept.

To illustrate these features, we reanalyze Ansolabehere, Rodden and Snyder (2008) with their

data from the American National Election Study. Using their general approach, we find that a one

standard deviation increase in economic conservatism leads to an 0.24 increase in the probability

of voting for Bob Dole.

We then perform mo using only two of the thirty-four variables. To avoid cherry picking results,

we reran the analysis using all possible subsets of two variables chosen from the available 34. For

each of these pairs, we overimputed the first variable, using the second as a proxy (see Section 3.3).

We then estimate the effect of that overimputed variable on voting for Bob Dole using a probit

model. We compare this method with simply taking the pairwise averages and using them as the

measure of economic policy preferences. These approaches mimic a common situaton in political

science when researchers have access to relatively few variables.
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Figure 6: The lines connect estimates from averaging across all pairwise estimates containing
the specified variable (left) and estimates from multiple overimputation (right). mo estimates a
higher average effect, and one that is closer to the “gold-standard” 34-item scale in each case.
Furthermore, mo finds higher estimated effects for classic economic ideology questions and lower
effects for questions on welfare and economic opportunity.

Figure 6 shows the relationship between the two estimates. Each column represents the average

of the estimated effects for one measure, averaged across all its pairs. Note that for every variable,
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mo estimates a larger effect than does averaging, as can be seen by the positive slope of every

line. The “gold-standard” estimate suggested by Ansolabehere, Rodden and Snyder (2008) is well

above the any of the pairwise averaging estimates, but it lies firmly in the middle of the pairwise

mo estimates. This striking result shows that mo makes more efficient use of the available data to

correct for measurement error.

While the average results of the pairwise mo align with the thirty-four measure gold-standard,

there is considerable variance among the individual measures. This is in part due to a fundamental

difference between mo and averaging (or more general scale construction techniques like factor

analysis). mo corrects measurement error on a given variable instead of constructing an new

measure of an underlying concept. This often valuable result allows us to investigate how the

estimated effect of economic preferences varies across the choice of measure. With pairwise mo,

we find that classic economic ideology items regarding the size of government and its role in the

economy have a much larger estimated effect on vote choice than questions on welfare policy, equal

opportunity, and poor people — all of which were treated the same under averaging. It is interesting

to note that correcting the classic questions on economic policy lead to even higher estimates than

implied by the gold-standard. Furthermore, the lowest estimated effects come from variables that

relate to views of the poor and their benefits from the government, which in part may proxy for

other issues such as racial politics.

As Ansolabehere, Rodden and Snyder (2008) point out, averaging is a “tried and true” method

for alleviating measurement error and it works very well when a battery of questions exists for

a given concept. When, as usual, less information is available, mo may be able to extract more

information from the available data.

5 What Can Go Wrong?

mo’s 2-step estimation procedure makes it, like mi, highly robust to misspecification, especially

compared to structural equation-like approaches. However, like any statistical procedure, using it

inappropriately can lead to incorrect inferences. Inappropriate uses include the following. First,

using mo, or any measurement error correction procedure, to deal with very small degrees of

measurement error may reduce bias at the expense of a larger increase in variability. Given the

likely high levels of measurement error in political science variables, this is a concern, but will not
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normally be much of an issue. Second, overestimating the amount of measurement error in an mo

application can lead to incorrect inferences, but these inferences will typically remain within the

minimal-assumption bounds, and so users should be sure to consult the bounds as a check. Further,

mo handles these situations better than, say, method-of-moments estimators (Fuller, 1987) even in

simple cases.20 Third, violations of the key assumptions about measurement error, especially mar

assumptions, can lead to bias and, like assumptions about omitted variable bias or ignorability,

are not normally testable without additional data. Sensitivity tests could be conducted however.

Finally with these qualifications, there are conditions under which simple techniques like listwise

deletion or ignoring the problem altogether will be preferred over mo, but these conditions normally

make it highly unlikely that one would continue to trust the data for subsequent analyses (King

et al., 2001).

6 Conclusion

Measurement error is a common, and commonly ignored, problem in the social sciences. Few of the

methods proposed for it have been widely used, largely because of implausible assumptions, high

levels of model dependence, difficult computation, and inapplicability with multiple mismeasured

variables.

Here, we generalize the multiple imputation framework to handle observed data measured with

error. Our multiple overimputation (mo) generalization overwrites observed but mismeasured ob-

servations with a distribution of values reflecting the best guess and uncertainty in the latent vari-

able. Our conceptualization of the problem is that missing values are merely an extreme form of

measurement error, and in fact an easy case to address with standard imputation methods because

there is so little to condition on in the model. However, correctly implementing the multiple impu-

tation framework to also handle “partially missing” data, via informative observation-level priors

derived from the mismeasured data, allows us to unify the treatment of all levels of measurement

error including the case of completely missing values.

This approach makes feasible rigorous treatment of measurement error across multiple covari-

ates, with heteroskedastic errors, and in the presence of violations of assumptions necessary for
20In the simulations of Section 3.1, we find that a method-of-moments estimator can have up to 188 times higher

squared bias without any offsetting increase in efficiency.
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common measurement treatments, such as the errors-in-variables model. The model works in sur-

vey data and time series, cross-sectional data, and with priors on individual missing cell values

or those measured with error. With mo, Scholars can preprocess their data to account for mea-

surement error and missing data, and then use the overimputed data sets our software produces

with whatever model they would have used without it, ignoring the measurement issues. These

advances, along with the more application-specific techniques of Imai and Yamamoto (2010) and

Katz and Katz (2010), represent important steps for the correction of measurement error in the

social sciences.

The advances described here can be implemented when the degree of measurement error can be

analytically determined from known sample properties, estimated with additional proxies, or even

when it can only be bounded by the analyst. However, looking forward, often the original creators of

new measures are in the best position to know the degree of measurement error present (for example,

through measures of intercoder reliability, comparison to gold-standard validation checks, or other

internal knowledge) and we would encourage those who create data to include their estimates of

variable or cell-level measurement error as important auxiliary information, much as sampling frame

weights are considered essential in the survey literatures. Now that easy-to-use procedures exist

for analyzing these data, we hope this information will be made more widely available and used.

A Technical Details

Here we introduce the general mo model and a specific em algorithm implementation. We also

show that it is equivalent to mi with observation-level priors as introduced by Honaker and King

(2010). We also offer more general notation than that in the text.

A.1 Model and Assumptions

Consider a data set with independent and identically distributed random vectors xi = (xi1, . . . , xip)

with i ∈ {1, . . . , N}. We are interested in the distribution of xi, yet we only observe a distorted

version of it, yi. Let θ refer to the unknown parameters of the ideal data and γ refer to those of

the error distribution. Thus, we have distributions p(xi|θ) and p(yi|xi, γ). As with mi, our goal is

to produce copies of the ideal data, xi, based on the observed data yi.

We define ei = (ei1, . . . , eip) to be a vector of error indicators. The typical element eij takes a

value of 1 to indicate that variable j on observation i is measured with error so that we observe
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a proxy, yij = wij instead of xij . Similarly, we define mi to be a vector of missingness indicators.

When mij takes the value 1, then yij is missing. If both mij = 0 and eij = 0, then the observation

is perfectly measured and yij = xij . Let mi and ei have a joint distribution p(mi, ei|yi, xi, φ), whose

parameters φ are distinct from θ and γ.

With these definitions in hand, we can decompose each observation into various subsets. Let

xobs
i be all the perfectly measured values, so that xobs

i = {xij ; eij = mij = 0}. We also have xmis
i ,

which are the variables that are missing in observation i: xmis
i = {xij ; mij = 1}. Finally, we must

define those variables that are measured with error. Let xerr
i be the unobserved, latent variables

and wi be their observed proxies: wi = {wij ; eij = 1}, xerr
i = {xij ; eij = 1}. Thus, the observed

data for any unit will be yi = (xobs
i , wi) and the ideal data would be xi = (xobs

i , xerr
i , xmis

i ). Note

that while the dimensions of xi and yi are fixed, the dimensions of both wi and xobs
i can change

from unit to unit.

We can write the observed-data probability density function for unit i as

p(yi,mi, ei|θ, γ, φ) =
∫ ∫

p(xi|θ)p(wi|xi, γ)p(mi, ei|yi, xi, φ)dxerr
i dxmis

i . (16)

We make the assumption that the data is mismeasured at random (mmar), which states that the

mismeasurement and missingness processes do not depend on the unobserved data.21 Formally, we

state mmar as p(mi, ei|yi, xi, φ) = p(mi, ei|yi, φ). With this assumption in hand, we can rewrite (16)

as p(yi,mi, ei|θ, γ, φ) = p(mi, ei|yi, φ)p(yi|θ, γ), and since we are primarily interested in inferences

on θ, the first term becomes part of the proportionality constant and we are left with the observed-

data distribution

p(yi|θ, γ) =
∫ ∫

p(xi|θ)p(wi|xi, γ)dxerr
i dxmis

i . (17)

Taking a Bayesian point of view, we can combine this with a prior on (θ, γ) giving us a posterior,

p(θ, γ|yi).

Analyzing the ideal data xi would be much easier than yi since the mismeasured and miss-

ing data contribute to likelihood in complicated ways. Thus, mo seeks to form a series of com-
21This is an augmented version of the missing at random (mar) assumption (Rubin, 1976). mmar would be violated

if the presence of measurement error depended on the value of the latent variable itself. Since we have mismeasured
proxies included in yi, the dependence would have to be after controlling for the proxies. The most likely violation
of this assumption would be if follow-up data were collected on certain observations that were different on some
unmeasured covariate.
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plete, ideal data sets: xi(1), xi(2), . . . , xi(m). Each of these overimputed data sets is of the form

xi(k) = (xobs
i , xerr

i(k), x
mis
i(k)), so that the perfectly measured data is constant across the overimputa-

tions. We refer to this as overimputation because we replace observed data wi with draws from

an imputation model for xerr
i . To form these overimputations, we take draws from the posterior

predictive distribution of the unobserved data:

(xerr
i(k), x

mis
i(k)) ∼ p(xerr

i(k), x
mis
i(k)|yi) =

∫
p(xerr

i(k), x
mis
i(k)|yi, θ, γ)p(θ, γ|yi)dθdγ. (18)

Once we have these m overimputations, we can simply run m separate analyses on each data

set and combine them using straightforward rules. Consider some quantity of interest, Q. Let

q1, . . . , qm denote the separate estimates of Q which come from applying the same analysis model

to each of the overimputed data sets. The overall point estimate q̄ of Q is simply the average

q̄ = 1
m

∑m
j=1 qj . As shown by Rubin (1978), the variance of the multiple overimputation point

estimate is the average of the estimated variances from within each completed data set, plus the

sample variance in the point estimates across the data sets (multiplied by a factor that corrects

for bias because m < ∞ ): s̄2 = 1
m

∑m
j=1 s2

j + S2
q (1 + 1/m), where sj is the standard error of the

estimate of qj from the analysis of data set j and S2
q =

∑m
j=1(qj − q̄)/(m− 1).22

A.2 Proposed Algorithm

The last formulation of (18) hints at one way to draw multiple imputations: (1) draw (θ(i), γ(i))

from its posterior p(θ, γ|yi), then (2) draw (xerr
i(k), x

mis
i(k)) from p(xerr

i(k), x
mis
i(k)|yi, θ(i), γ(i)). Usually

these procedures are implemented with either data augmentation (that is, Gibbs sampling) or the

expectation-maximization (em) algorithm combined with an additional sampling step. We focus

here on how our method works in the em algorithm, since these two approaches are closely linked

and often lead to similar inferences (Schafer, 1997; King et al., 2001; Honaker and King, 2010). em

consists of two steps: the expectation step, when we use the current guess of the parameters to fill

in the missing data, and the maximization step, when we use the observed data and our current

guess of the missing data to estimate the complete-data parameters. These two steps iterate until

the parameters estimates converge.
22A second procedure for combining estimates is useful when simulating quantities of interest, as in King, Tomz

and Wittenberg (2000) and Imai, King and Lau (2008). To draw m simulations of the quantity of interest, we merely
draw 1/m of the needed simulations from each of the overimputed data sets.
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If the mismeasured cells were in fact missing, we could easily apply a typical em algorithm for

missing data. In this case, though, the observed proxies, wi, give us observation-level information

about xerr
i . The em algorithm usually incorporates prior beliefs about the parameters in the m-

step, which is convenient when our prior beliefs are on the parameters of the data (µ,Σ). Here our

information is about the location of a missing value, not about the parameters themselves.

We therefore include this information in the expectation- or e-step of the em algorithm. This

step calculates the expected value of the complete-data sufficient statistics over the full conditional

distribution of the missing data. That is, it finds E(T (xi)|yi, θ
(t), γ), where θ(t) is the current guess of

the complete-data parameters. In our model, we adjust the e-step to incorporate the measurement

error distribution as implied by the observed-data likelihood, (17). Using this likelihood, the

modified e-step calculates

E(T (xi)|yi, θ
(t), γ) =

∫ ∫
T (xi) p(xerr

i , xmis
i |xobs

i , θ(t))︸ ︷︷ ︸
imputation

p(wi|xi, γ)︸ ︷︷ ︸
mismeasurement

dxerr
i dxmis

i , (19)

where in typical missing data applications of em, the mismeasurement term would be absent. The

imputation part of the expectation draws information from a regression of the missing data on the

observed data, while the mismeasurement part draws information from the proxy.23 Thus, both

sources of information help estimate the true sufficient statistics of the latent, ideal data. The

m-step proceeds as usual, finding the parameters that were most likely to have give rise to the

estimated sufficient statistics. Note that we could incorporate this alteration to the full conditional

posterior into an mcmc approach, though instead of averaging across the distribution, a Gibbs

sampler would take a draw from it.

A.3 An Example Implementation for Normal Data

In the above description of the model, we have left the distributions unspecified within the class

of statistically dual densities. To implement the model, we must provide additional information.

Thus, we offer here a special case that we usually use in practice, which is that the complete

(but partially unobserved) data (xi) is multivariate normal with mean µ and covariance Σ, and

θ = (µ,Σ). This implies that any conditional distribution of the ideal is also normal.
23Note that we treat γ as fixed since, in our implementation, it is known or estimable. One could extend these

methods to simultaneously estimate γ, though this would require additional information.
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The above measurement error distribution is in its most general form, a function of the entire

ideal data vector (xi) and some parameters, γ. As noted by Stefanski (2000), all approaches

to correcting measurement error must include additional information about this distribution. We

assume that wij
ind∼ N (xij , λ

2
ij) for each proxy wij ∈ wi and each unit i, where the measurement error

variance λ2
ij is known or estimable using techniques from Section 3. Our assumption corresponds to

that of classical measurement error, yet our modified em algorithm can handle more general cases

than this. If the measurement error is known to be biased or dependent upon another variable,

we can simply adjust the cell-level means above and proceed as usual. Essentially, one must have

knowledge of how the variable was mismeasured. The simulation results in Section B.2 further

indicate that mo is robust to these assumptions in certain situations.

With the measurement error model above, the normality of the data makes the calculation of

the sufficient statistics straightforward. To ease exposition, we assume that there are no missing

values, so that xmis
i = ∅. With only measurement error, the e-step becomes

E(T (xi)|yi, θ
(t)) =

∫
T (xi) p(xerr

i |xobs
i , θ(t))

∏
wij∈wi

p(wij |xij , λ
2
ij)dxerr

i , (20)

where T (xi) is the set of sufficient statistics for the multivariate normal. In a slight abuse of

notation, we can gather the independent measurement error distributions, wi, into a multivariate

normal with mean xerr
i and covariance matrix Λi = λ2

i I, where λ2
i = {λ2

ij ; eij = 1} and I is the

identity matrix with dimension equal to
∑

j eij .

In order to calculate the expectation in (20), we must know the full conditional distribution,

which is p(xerr
i |yi, θ, λ

2
i ) ∝ p(xerr

i |xobs
i , θ)p(wi|xerr

i , λ2
i ). Note that each of the distributions is (pos-

sibly multivariate) normal, with xerr
i |xobs

i , θ ∼ N (µe|o,Σe|o) and wi|xerr
i , λ2

i ∼ N (xerr
i ,Λi), where

(µe|o,Σe|o) are deterministic functions of θ and xobs
i . This distribution amounts to the regression of

xerr
i on xobs

i . If the values were simply missing, rather than measured with error, then the e-step

would simply take the expectations with respect to this conditional expectation. With measurement

error, we must combine these two sources of information. Using standard results on the normal

distribution, we can write the full conditional as

(xerr
i |yi, θ

(t), λ2
i ) ∼ N (µ∗,Σ∗), Σ∗ = (Λ−1

i + Σ−1
e|o)

−1, µ∗ = Σ∗(Λ−1
i wi + Σ−1

e|oµe|o). (21)

We simply change our e-step to calculate this expectation for each cell measured with error and
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proceed with the m-step as usual.24 Note that while we assume that the measurement errors on

different variables are independent, one could incorporate dependence into Λi. The result in (21) is

identical to the results in the appendix of Honaker and King (2010), when we set a prior distribution

for xerr
i that is normal with mean wi and variance Λi. See their paper for additional implementation

details.

B Robustness to Correlated Measurement Errors

In this section and the next, we show how mo is robust to data problems that may occur in a large

number of settings and applications. We show here how mo is robust to theoretical measurement

dilemmas that occur regularly in political science data.

Until now we have assumed that measurement error is independent of all other variables. We

now show how to relax this assumption. Many common techniques for treating measurement error

make this strong assumption and are not robust when it is violated. For example, probably the most

commonly implemented measurement error model (in the rare cases that a correction is attempted

at all) is the classic errors-in-variables (eiv) model. We thus first briefly describe the eiv model

to illustrate the strong assumptions required. The eiv model is also a natural point of comparison

to mo, since both can be thought of as replacing mismeasured observations with predictions from

auxiliary models.

B.1 The Foundation: The Errors-in-variables Model

As before, assume yi and x∗i are jointly normal with parameters as in (2). Suppose instead of x∗ we

have a set of proxy variables which are measures of x∗ with some additional normally distributed

random noise:

wi1 = x∗i + ui, ui ∼ N (0, σ2
u); (22)

wi2 = x∗i + vi, vi ∼ N (0, σ2
v); (23)

ordered such that σ2
u < σ2

v , making w1 the superior of the two proxies as it has less noise.

Suppose the true relationship is yi = αx∗i + εi1, and we instead use the best available proxy and

estimate yi = βwi1 + εi2 = β(x∗i ) + β(ui) + εi2. We then get some degree of attenuation 0 < β < α

24If there are missing values in unit i, we need to alter the definitions of Λ−1
i and wi to be 0 for the entries

corresponding to the missing variables.
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since the coefficient on ui should be zero. This attenuation is shown in one example in the right of

Figure 7 where the relationship between y and w1 shown in red is weaker than the true relationship

with x∗ estimated in the left graph and copied in black on the right.
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Figure 7: On the left we see the true relationship between y and the latent x∗. When the mismeasured
proxy w1 is used instead, the estimated relationship (shown in red) is attenuated compared to the
true relationship (shown in black in both graphs).

In this simple example we can calculate the expectation of this attenuation. The coefficient on

wi1 will be

E[β̂1] = E
[∑

i(x
∗
i + ui − (x∗ + u))(yi − ȳ)∑
i(x

∗
i + ui − (x∗ + u))2

]
=

∑
i(x

∗
i − x̄∗)(yi − ȳ)∑

i(x
∗
i − x̄∗)2 + σ2

u

, (24)

where x∗ + u and x̄∗ are the sample means of w1 and x∗, respectively. The last term in the

denominator, σ2
u, causes this attenuation. If the variance of the measurement error is zero the term

drops out and we get the correct estimate. As the measurement error increases, the ratio tends to

zero.

The coefficients in the eiv approach can be estimated either directly or in two stages. A two-

stage estimation procedure is the common framework to build intuition about the model and the

role of the additional proxy measure. In this approach, we first obtain estimates of x∗ from the

relationship between the w’s since they only share x∗ in common, ŵi1 = γ̂wi2, and then use these

predictions to estimate yi = δŵi1 + εi3, where now δ̂ is an unbiased estimate of α. The relationship

between the two proxy variables is shown in the left of Figure 8, and the relationship between the

first stage predicted values of w1 and y is shown in green in the right figure. This coincides almost

exactly with the true relationship still shown in black in this figure.

In Figure 9 we illustrate how the eiv model performs in data that meet its assumptions. The
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Figure 8: The relationship between two mismeasured proxy variables (left), and the relationship
between the predicted values from this model and y (right). The relationship here, shown in green,
recovers the true relationship, shown in black.

black distributions represent the distribution of coefficients estimated when the latent data x∗ is

available in a simulated data set of size 200.25 The naive regressions that do not account for

measurement error are shown in red in both graphs. The coefficient on w1 is attenuated to towards

zero (bottom panel). The estimated constant term is biased upwards to compensate (top panel).

In each simulated data set, we use the eiv model (in green), and see that the distribution of

estimated parameters using the proxies resembles the distribution using the latent data, although

with slightly greater variance. Thus there is some small efficiency loss, but the eiv model clearly

recovers unbiased estimates when its assumptions are met.

We also run the mo on the same simulated data sets in which we ran the eiv model. The

distribution of coefficients (which we present below) recovers the distribution that would have been

estimated if the latent data had been available. Thus, in the simple setting where the assumptions

of the eiv model are met, our approach performs equivalently.

B.2 Robustness to Violating Assumptions

If we think of the coefficient on x∗ as the ratio of cov(x∗, y) to var(x∗), then the attenuation in

equation (24) is being driven by the fact that var(w1) > var(x∗) because of the added measurement

error. Therefore var(w1) is not a good estimate of var(x∗), even though cov(w1, y) is a good measure

of cov(x∗, y). With this in mind, the numerically simpler—but equivalent—one stage approach to

the errors-in-variables model has a useful intuition. We substitute cov(w1, w2) as an estimate of
25In these simulations, n = 200, (x∗, y) ∼ N (µ, Σ), µ = (1, 1), Σ = (1 0.4, 0.4 1), σ2

u = 0.5, σ2
v = 0.5.
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Figure 9: Coefficients estimated from variables with measurement error (shown in red) attenuate
the effect of the independent variable towards zero, and also bias the constant in compensation. The
estimates recovered from the eiv model (in green) recover the true distribution, but are of course
less efficient (slightly higher variance) than the original latent data (in black).

var(x∗) because w1, w2 only covary through x∗. Thus we have as our estimate of the relationship:26

δ̂ =
∑

i(wi1 − w̄1)(yi − ȳ)∑
i(wi1 − w̄1)(wi2 − w̄2)

=
∑

i(x
∗
i−x̄∗)(yi−ȳ)+ ui(yi−ȳ)∑

i(x
∗
i−x̄∗)2+ ui(x∗i−x̄∗) + vi(x∗i−x̄∗) + uivi

. (25)

In order to recover the true relationship between x∗ and y we need the last term in the numerator

and the last three in the denominator to drop out of equation (25). To obtain a consistent estimate,

then, eiv requires: (1) E(ui · yi) = 0, (2) E(ui · x∗i ) = 0 and E(vi · x∗i ) = 0, and (3) E(ui · vi) = 0.

Indeed, when these conditions are not met the resulting bias in the eiv correction can easily be

larger than the original bias caused by measurement error. However, as we now show in the

following three subsections, mo is robust to violations of all but the last condition.

B.2.1 Measurement error correlated with y

The first of the conditions for eiv to work is that the measurement error is unrelated to the observed

dependent variable. As an example of this problem, we might think that infant mortality is related

to international aid because donors want to reduce child deaths. If countries receiving aid are
26In a multivariate setting this becomes δ̂ = (W ′

1W2)
−1W ′

1Y where Wj is the set of regressors using the j-th proxy
measure for x∗.
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intentionally underreporting infant mortality, to try to convince donors the aid is working, then

the measurement error in infant mortality is negatively correlated with the dependent variable,

foreign aid. If instead countries searching for aid are intentionally overreporting infant mortality

as a stimulus for receiving aid, then measurement error is positively correlated with the dependent

variable. Both scenarios are conceivable. This problem with the errors-in-variables approach is well

known, because the errors-in-variables model has an instrumental variables framework, and this is

equivalent to the problem of the instrument being exogenous of y in the more common usage of

instrumental variables as a treatment for endogeneity.

In Figure 10(a) we demonstrate this bias with simulated data.27 The violet densities show

the distribution of parameter estimates when there is negative correlation of 0.1 (dashed) and 0.3

(solid) between the measurement error and the dependent variable. In the latter case the bias in

the correction has exceeded the original bias from measurement error, still depicted in red. The

blue densities show that positive correlation of the errors create bias of similar magnitude in the

opposite direction. Again, the size of the bias can be greater than that originally produced by the

measurement error we were attempting to correct. Moreover, the common belief with measurement

issues is that any resulting bias attenuates the coefficients so that estimates are at least conservative,

however, here we see that the bias in the error-in-variables approach can actually exaggerate the

magnitude of the effect.

We now analyze the same simulated data sets with mo. To apply the mo model, we estimate

the measurement error variance from the correlation between the two proxies and leave the mean

set to the better proxy. As Figure 10(b) indicates, mo recovers the distribution of coefficients for

each of the data generation processes: The green line represents the distribution when there is no

correlation. The violet line represents the distribution when there is positive correlation. The blue

line (barely visible under the other two) represents the distribution with negative correlation. All

three distributions are close to each other and close to the true distribution in black using the latent

data.
27In these simulations, similar to previous, n = 200, (x∗, y, u, v) ∼ N (µ, Σ), µ = (1, 1, 0, 0), Σ =

(1 0.4 0 0, 0.4 1 0 ρ, 0 0 σ2
u 0, 0 ρ 0 σ2

v), σ2
u = 0.5, σ2

v = 0.5. Thus, the measurement errors are drawn at the same
time as x∗ and y with mean zero. While ρ allows the error, v, to covary with y, and across the simulations it is set as
one of ρ ∈ {−0.3,−0.1, 0.1, 0.3}. The observed mismeasured variables are constructed as w1 = x∗ + u, w2 = x∗ + v.
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(b) Estimates from Multiple Overimputation

Figure 10: With data generated so that proxy variables are correlated with the dependent variable,
eiv (left graphs) gives biased estimates whereas mo (right graphs) gives robust, unbiased estimates.

B.2.2 Measurement error correlated with x∗

The second requirement of the eiv model is that the measurement error is independent of the latent

variable. If, for example, we believe that income is poorly measured, and wealthier respondents

feel pressure to underreport their income while poorer respondents feel pressure to overreport, then

the measurement error can be correlated with the latent variable.

In Figure 11(a) we demonstrate the bias this produces in eiv. Here, the error in w2 is correlated

with the latent x∗.28 The biases are in the opposite directions as when the correlation is with y,

although lesser in magnitude. Errors positively correlated with x∗ lead to attenuated coefficients,

and negatively correlated errors lead to overstated coefficients, as shown by the blue and violet

distributions in Figure 11(a), respectively. Dashed lines are the result of small levels of correlations

(±0.1) and the solid lines a greater degree (±0.3).

The coefficients resulting from mo, with measurement error variance estimated from the corre-

lation between the proxies, are contrasted in Figure 11(b). All the distributions recover the same

parameters. Because they sit on top of each other, only the simulations with the greatest correla-

tion (±0.3) are shown. For both parameters, and for both positive and negative correlation, the
28Similar to the construction of the last simulations, we set n = 200, (x∗, y, u, v) ∼ N (µ, Σ), µ = (1, 1, 0, 0),

Σ = (1 0.4 0 ρ, 0.4 1 0 0, 0 0 σ2
u 0, ρ 0 0σ2

v), σ2
u = 0.5, σ2

v = 0.5 and sequencing ρ ∈ {−0.3,−0.1, 0.1, 0.3} across sets
of simulations.
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(b) Estimates from Multiple Overimputation

Figure 11: Here we show the estimates when the error in the instrument w2 is correlated with the
latent variable x∗. Positive (blue distributions) correlation leads to attentuated estimated effects in
the errors-in-variables framework, and negative (violet) correlation exagerates the effect, as shown
in the left. The mo estimates show no bias.

mo estimates reveal no bias.

B.2.3 Measurement errors that covary across proxies

The final condition requires the errors in the proxies be uncorrelated. If all the alternate measures of

the latent variable have the same error process then the additional measures provide no additional

information. For example, if we believe gdp is poorly measured, it is not enough to find two

alternate measures of gdp; we also need to know that those sources are not making the same errors

in their assumptions, propagating the same errors from the same raw sources, or contaminating each

other’s measure by each making sure their estimates are in line with other published estimates. To

the extent the errors in the alternate measures are correlated, then σuv will attenuate the estimate

in the same fashion as σ2
u did originally.

Thus, we now simulate data where the measurement errors across alternate proxies are corre-

lated.29 Figure 12(a) shows positively (negatively) correlated errors lead to bias in the eiv estimates

that are in the same (opposite) direction as the original measurement error. Intuitively, if the errors

are perfectly correlated, both the original proxy, and the alternate proxy would be the exact same

variable, and thus all of the original measurement error would return. Importantly, what we see is
29Here we set n = 200, (x∗, y, u, v) ∼ N (µ, Σ), µ = (1, 1, 0, 0), Σ = (1 0.4 0 0, 0.4 1 0 0, 0 0 σ2

u ρ, 0 0 ρ σ2
v), σ2

u = 0.5,
σ2

v = 0.5 and sequencing ρ ∈ {−0.3,−0.1, 0.1, 0.3} across sets of simulations.
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that this is a limitation of the data that mo cannot overcome when cell level priors are directly cre-

ated from the observed data. As alternate proxies contain correlated errors, identifying the amount

of the variance in the proxies by the correlation of the measures is misleading. Positive or negative

correlation in the measurement errors leads respectively to under or over estimation of the amount

of measurement error in the data, directly biasing results as in eiv. When cell priors are set by the

use of auxiliary proxies, our method continues to require the measurement errors (although not the

indicates themselves of course) be uncorrelated across alternate measures, so that it is possible to

consistently estimate the degree of measurement error present in the data.
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(b) Estimates from Multiple Overimputation

Figure 12: With data generated so that proxy variables have measurement error correlated with each
other (so that new information is not availble with measures) both eiv (left graphs) and mo (right
graphs) gives biased estimates.

Even in this most difficult of settings, mo remains robust. In another set of simulations, we

compare how various estimators perform when both proxies are correlated with y. Allowing these

simulations to vary the amount of correlation gives an indication of how various estimators per-

form in this difficult situation.30 Figure 13 shows that mo outperforms eiv at every level of this

correlation. When the dependence between the error and y is weak, mo almost matches its zero-
30These simulations follow the pattern above except they include a perfectly measured covariate, z, which de-

termines which observations are selected for mismeasurement. Thus, we have (x∗, y, z, u, v, ) ∼ N(µ, Σ), with
µ = (1, 1,−1, 0, 0) and Σ=(1 σxy − 0.4 0 0, σxy 1 − 0.2 ρσu ρσv,−0.4 − 0.2 1 0 0 0 ρσu 0 σ2

u 0, 0 ρσv 0 0 σ2
v) with

σ2
u = 0.5 and σ2

v = 0.75. We ran simulations at both σxy = 0.4 and σxy = −0.4. Each observation had probability
πi = (1+e3.5+2z)−1, which has a mean of 0.25. We used the multiple proxies approach to estimating the measurement
error. For eiv, we use applied the model as if the entire variable were mismeasured.
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correlation minimum. Thus, mo appears to be robust to even moderate violations of the these

assumptions, especially when compared with other measurement error approaches. Interestingly,

the denial estimator can perform better than all estimators under certain conditions, yet these

conditions depend heavily on the parameters of the data. If we change the effect of x∗ on y from

negative to positive, the performance of the denial estimator reverses itself. Since we obviously

have little knowledge about all of these parameters a priori, the denial estimator is of little use.
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Figure 13: Root mean squared error for various estimators with data generated so that each proxy
variable has measurement error correlated with the dependent variable. On the left, x∗ has a positive
relationship with y and on the right, it has a negative effect. Note that both eiv (green) and mo
(orange) perform worse as the correlation moves away from zero, but mo always performs better.
The denial estimator can actually perform well in certain situations, yet this depends heavily on
the direction of the relationship. Both the infeasible estimator and mi are unaffected by the amount
of correlation.

Since there are gold-standard data in these simulations, we can also investigate the performance

of simply discarding the mismeasured data and running mi. As expected, mi is unaffected by

the degree of correlation since it disregards the correlated proxies. Yet these proxies have some

information when the correlation is around zero and, due to this, mo outperforms mi in this region.

As the correlation increases, though, it becomes clear that simply imputing the mismeasured cells
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has more desirable properties. Of course, with such high correlation, we might wonder if these are

actually proxies in our data or simply new variables.

These simulations give key insights into how we should handle data measured with error. mo is

appropriate when we have a variable that we can reasonably describe as a proxy—that is, having

roughly uncorrelated, mean-zero error. Even if these assumptions fail to hold exactly, mo retains

its desirable properties. In situations where we suspect that the measurement error on all of our

proxies has moderate correlation with other variables in the data, it may be wiser to treat the

mismeasurement as missingness and use multiple imputation. Of course, this approach assumes

there exist gold-standard data, which may be scarce.
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