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Abstract

Background: Early identification of ambulatory persons at high short-term risk of death could benefit targeted prevention.
To identify biomarkers for all-cause mortality and enhance risk prediction, we conducted high-throughput profiling of blood
specimens in two large population-based cohorts.

Methods and Findings: 106 candidate biomarkers were quantified by nuclear magnetic resonance spectroscopy of non-
fasting plasma samples from a random subset of the Estonian Biobank (n = 9,842; age range 18–103 y; 508 deaths during a
median of 5.4 y of follow-up). Biomarkers for all-cause mortality were examined using stepwise proportional hazards
models. Significant biomarkers were validated and incremental predictive utility assessed in a population-based cohort from
Finland (n = 7,503; 176 deaths during 5 y of follow-up). Four circulating biomarkers predicted the risk of all-cause mortality
among participants from the Estonian Biobank after adjusting for conventional risk factors: alpha-1-acid glycoprotein
(hazard ratio [HR] 1.67 per 1–standard deviation increment, 95% CI 1.53–1.82, p = 5610231), albumin (HR 0.70, 95% CI 0.65–
0.76, p = 2610218), very-low-density lipoprotein particle size (HR 0.69, 95% CI 0.62–0.77, p = 3610212), and citrate (HR 1.33,
95% CI 1.21–1.45, p = 5610210). All four biomarkers were predictive of cardiovascular mortality, as well as death from cancer
and other nonvascular diseases. One in five participants in the Estonian Biobank cohort with a biomarker summary score
within the highest percentile died during the first year of follow-up, indicating prominent systemic reflections of frailty. The
biomarker associations all replicated in the Finnish validation cohort. Including the four biomarkers in a risk prediction score
improved risk assessment for 5-y mortality (increase in C-statistics 0.031, p = 0.01; continuous reclassification improvement
26.3%, p = 0.001).

Conclusions: Biomarker associations with cardiovascular, nonvascular, and cancer mortality suggest novel systemic
connectivities across seemingly disparate morbidities. The biomarker profiling improved prediction of the short-term risk of
death from all causes above established risk factors. Further investigations are needed to clarify the biological mechanisms
and the utility of these biomarkers for guiding screening and prevention.
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Introduction

Concentrations of metabolites and proteins in the circulation

can be indicative of future disease outcomes. The existing

molecular biomarkers for all-cause mortality, however, display

modest predictive power and risk discrimination [1,2]. Early and

accurate identification of ambulatory persons at high risk of death

could assist targeting of preventive therapies. High-throughput

profiling technologies for quantification of molecules from blood

specimens, such as nuclear magnetic resonance (NMR) spectros-

copy and mass spectrometry, have emerged as promising tools for

identifying biomarkers and clarifying disease etiologies [2–4]. Such

molecular profiling has primarily been applied to cardiometabolic

diseases [3–5], yet a deviated circulating biomarker profile reflects

systemic abnormalities and could possibly also be predictive of the

risk of death from other causes [6]. Biomarkers of inflammation

and hyperglycemia are associated with risk of death from cancer

and other nonvascular conditions such as respiratory disease and

infections, in addition to death from cardiovascular disease [7–9].

Novel biomarkers reflecting the risk of death from all causes hold

potential to improve risk assessment, and they may further

elucidate novel disease connectivities; however, high-throughput

profiling of circulating biomarkers for all-cause mortality has not

previously been investigated in general population settings. We

therefore performed targeted screening of candidate biomarkers

by NMR spectroscopy in a large, population-based study with the

aim of identifying systemic biomarkers predictive of short-term

risk of death from any cause. The findings were validated in an

independent cohort and examined for incremental risk discrim-

ination over and above conventional risk factors.

Methods

Study Populations
In this observational study, two population-based cohorts in

Estonia and Finland were followed for all-cause mortality via

population registries. All participants provided written informed

consent. The Ethics Committee of Human Studies, University of

Tartu, Estonia, and the ethical committee of the National Public

Health Institute, Finland, approved the studies. An overview of the

study design is illustrated in Figure 1. The Estonian Biobank

cohort (Estonian Genome Center, University of Tartu) included

50,715 individuals aged 18–103 y at recruitment (9 October

2002–16 February 2011), which is approximately 5% of the

Estonian population within this age group. Recruitment was

conducted on a voluntary basis, with no restrictions for health

condition, through general practices across Estonia, as well as

through recruitment centers in the two largest cities of the country

[10].

Biomarker profiling was conducted by NMR spectroscopy

of non-fasting plasma samples for a random subset of 9,842

individuals (pregnant women excluded). Clinical and demographic

characteristics of the subset population did not differ from those of

the entire cohort (p.0.05 for characteristics in Table 1). According

to linkage with the Estonian population registry, 508 study

participants had died during follow-up as of 1 June 2013.

The FINRISK 1997 study is a general population study

conducted to monitor the health of the Finnish population among

persons aged 24–74 y at recruitment [11]. In total, 8,444

individuals were recruited to represent the working age population

of five study areas across Finland [11]. Standard clinical laboratory

measures were collected, and participants filled out questionnaires

on physical activity and socioeconomic status. Biomarker profiling

by NMR spectroscopy of serum samples was conducted for 7,503

individuals. Median fasting time was 5 h (interquartile range 4–

6 h). All participants had registry-based follow-up for mortality

until December 31, 2010. The coverage of the follow-up was

100% for deaths that occurred in Finland. To match the follow-up

time in the discovery cohort, the analyses in the validation cohort

were confined to the first 5 y of follow-up; 176 of the study

participants died during this period.

Biomarker Quantification by NMR Spectroscopy
Proton NMR spectroscopy of native plasma (Estonian Biobank

cohort) and serum (FINRISK study) samples was used to quantify

the concentrations of 106 circulating lipids, proteins, and meta-

bolites. These candidate biomarkers include 85 lipoprotein lipid

measures, four abundant proteins, and 17 low-molecular-weight

metabolites, including amino acids, glycolysis precursors, and

other small molecules (Table S1). The candidate biomarkers

assayed constitute the full set of molecular measures quantified

from native plasma by the targeted NMR profiling employed in

this study. The high-throughput NMR platform has previously

been used in various epidemiological and genetics studies [12,13],

and details of the experimental protocols, including sample

preparation and spectroscopy, have been previously described

[14].

Statistical Analysis
All biomarker concentrations were scaled to standard deviation

(SD) units. Cox proportional hazards models were used to assess

the association of each candidate biomarker with the risk of all-

cause mortality. Age at blood sampling was used as time scale—

this effectively corresponds to adjusting for age [15]. For bio-

marker discovery in the Estonian Biobank cohort, a multivariate

model was derived in a forward stepwise fashion (Figure 2). First,

the biomarker leading to the smallest p-value in the Cox model

adjusted for age and sex only was included as a predictor.

Subsequently, the biomarker leading to the smallest p-value in the

multivariate model adjusted for age, sex, and the first biomarker

was included in the prediction model. The process was repeated

until no additional biomarkers were significant at the Bonferroni-

corrected threshold of p,0.0005, accounting for testing of 106

candidate biomarkers.

The hazard ratios (HRs) of the four identified biomarkers for

all-cause mortality were subsequently examined in a multivariate

model adjusted for age, sex, and conventional risk factors that

were significant predictors of mortality in the Estonian Biobank

cohort: high-density lipoprotein (HDL) cholesterol, current smok-

ing, prevalent diabetes, prevalent cardiovascular disease, and

prevalent cancer (Model A). The biomarker associations were

Biomarker Profiling of All-Cause Mortality
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Estonian	Biobank	Cohort
Biomarker	discovery

FINRISK	1997
Replica on	and	valida on

Voluntary	sampling	popula on-wide
Age	18-103	(2020-2010)

n=50,715

Five	representa ve	areas	across	Finland	
Working	age	popula on	24-74	in	1997

n=8,444

Plasma	samples;	Random	subset	of	n=9,842;
Excluded:	38	pregnant,	78	missing	biomarkers	
508	deaths	during	median	5.4-year	follow-up

(Table	1)

Serum	samples;	n=7,503	with	blood	available	
Excluded:	78	pregnant,	21	missing	data	
176	deaths	during	5-year	follow-up

(Table	1)

Candidate	biomarker	associa ons
with	the	all-cause	mortality
Stepwise	selec on	(Fig	2)	

Biomarker	associa ons	adjusted
for	established	risk	factors

(Fig	3A	and	3B)

Replica on	of	mul variate	associa ons	of
the	4	biomarkers	for	all-cause	mortality
adjusted	for	established	risk	factors

(Fig	3A	and	3B)

Biomarker	associa ons	separately
for	cardiovascular	death,	cancer	death,

and	other	cause	mortality	(Fig	3C)

Deriva on	of	risk	predic on	score
for	all-cause	mortality

in	the	age	range	25-74	(Table	2)

Assessment	of	incremental	predic on
by	risk	predic on	scores

derived	from	the	Estonian	Biobank
(Table	3	and	Figure	6)	

Sensi vity	analyses:
Adjustment	for	addi onal
poten al	confounders

(Figure	S5)

Cumula ve	probability	of	death
during	5-year	follow-up	stra fied	by

the	biomarker	summary	score
(Figure	5)

Large	popula on-based
cohorts	in	Northern	Europe

Biomarker	profiling	by
high-throughput	NMR	

of	non-fas ng	blood	samples
106	circula ng	biomarkers	

Discovery	of	4	biomarkers
predic ve	of	all-cause	mortality
in	general	popula on	se?ngs

Adjustment	for	established
risk	factors	and	replica on	

Biomarker	associa ons	separately
for	cardiovascular	death,	cancer	death,

and	other	cause	mortality	(Fig	3C)

Figure 1. Study flow chart. Overview of the study design and analyses performed for biomarker discovery and validation of the risk prediction
model.
doi:10.1371/journal.pmed.1001606.g001

Table 1. Baseline characteristics of the study participants.

Characteristic Estonian Biobank n = 9,842 FINRISK 1997 n = 7,503

Women—number (percent) 6,334 (64%) 3,741 (50%)

Age—years (range) 45.3 (18–103) 48.4 (24–74)

Body mass index (kg/m2) 26.565.5 26.764.5

Systolic blood pressure (mm Hg) 126617 136620

Fasting duration (hours) 4.863.8 6.064.0

Total cholesterol (mmol/l) 5.461.1 5.561.1

HDL cholesterol (mmol/l) 1.760.4 1.460.4

Triglycerides (mmol/l) 1.561.0 1.561.1

Current smokers—number (percent) 2,963 (30%) 1,770 (24%)

Smoking duration (years) 8.2613.0 10.9613.6

Cigarettes per day 5.568.4 3.767.8

Alcohol consumption (grams/week) 29662 256125

Use of antihypertensive therapy—number (percent) 2,489 (25%) 1,009 (13%)

Use of lipid lowering therapy—number (percent) 413 (4.2%) 269 (0.4%)

Prevalent diabetes—number (percent) 737 (7.5%) 437 (5.8%)

Prevalent cardiovascular disease—number (percent) 899 (9.2%) 262 (3.5%)

Prevalent cancer—number (percent) 361 (3.7%) 175 (2.3%)

Alpha-1-acid glycoprotein (standardized units) 1.5560.27 1.3760.23

Albumin (standardized units) 10167.5 9666.3

VLDL particle size (average diameter, nm) 3761.9 3661.1

Citrate (mmol/l) 98634 110619

Data are mean 6 SD unless otherwise indicated.
doi:10.1371/journal.pmed.1001606.t001
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further assessed with additional adjustment for body mass index,

systolic blood pressure, total cholesterol, triglycerides, creatinine,

cigarettes smoked per day, years smoked, and alcohol consump-

tion (Model B). Proportional hazards assumptions of the regression

models were confirmed by Schoenfeld’s test. Sub-analyses of the

four biomarkers were also conducted for cause-specific mortality.

Here, analysis of cardiovascular mortality was adjusted for age,

sex, blood pressure, antihypertensive treatment, current smoking,

total cholesterol, HDL cholesterol, prevalent diabetes, and

prevalent cardiovascular disease [16]. Analysis of cancer mortality

was adjusted for age, sex, smoking, prevalent cancer, and family

history of cancer. Analysis of death from nonvascular, non-cancer

causes was adjusted as for Model A. Spearman’s correlations

between the four biomarkers and established metabolic risk factors

were calculated. A biomarker summary score was derived by

adding the concentrations of the biomarkers weighted by the

regression coefficients (natural logarithm of HR) observed in

Model A. Scatter plots of age versus the biomarker score were

constructed for men and women, and the associations were

examined by third degree polynomial regression fits. Kaplan-

Meier plots of the 5-y cumulative mortality were calculated for

quintiles and extreme quantiles of the biomarker score.

Biomarker associations with all-cause mortality in the Estonian

Biobank were replicated in the FINRISK validation cohort. Cox

regression models were evaluated during the first 5 y of follow-up

in the FINRISK study in order to match the follow-up time in the

Estonian Biobank cohort. The same set of adjustment factors was

used as for the discovery cohort (see above). The incremental

predictive value of the four circulating biomarkers was tested in

the FINRISK validation cohort by comparing a risk prediction

score composed of conventional risk factors (Model B) to a risk

prediction score extended with the four biomarkers. The risk

prediction scores for 5-y mortality in the FINRISK study were

calculated based on the regression coefficients derived from the

Estonian Biobank cohort in the age range 25–74 y (Table 2).

Discrimination was assessed by C-statistics [17] and integrated

discrimination improvement (IDI) accounting for censoring [18].

Net reclassification improvement (NRI) was assessed as a con-

tinuous measure [18], and by assigning participants to one of four

categories (,1.25%, 1.25%–2.5%, 2.5%–5%, .5%) according to

their 5-y risk of death based on the reference model and the

biomarker model [19]. IDI denotes the average increase in risk

estimates for persons who died during follow-up plus the average

decrease in risk estimates among persons who did not die [18]. In

Figure 2. Identification of circulating biomarkers associated with the risk of all-cause mortality in the Estonian Biobank cohort.
Candidate biomarkers were included in a stepwise manner into a multivariate Cox model for all-cause mortality adjusted for sex and using age as
the time scale. Each biomarker is plotted against the negative log10 of the corresponding p-value. Numbers indicate HR [95% confidence interval] per
1-SD difference. Colors indicate candidate biomarker classes as listed in Table S1. (A) p-Values obtained when including each biomarker in turn in the
model adjusted for age and sex only. Albumin was the strongest independent predictor of all-cause mortality. (B) p-Values for each biomarker
adjusted for age, sex, and albumin. (C) p-Values for each biomarker adjusted for age, sex, albumin, and alpha-1-acid glycoprotein. (D) p-Values for
each biomarker adjusted for age, sex, albumin, alpha-1-acid glycoprotein, and VLDL particle size. LDL, low-density lipoprotein.
doi:10.1371/journal.pmed.1001606.g002
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contrast, continuous NRI indicates the percentage of individuals

who died and were shifted towards higher risk plus the percentage

of individuals who did not die and were shifted towards lower

risk estimates, irrespective of the magnitude of altered risk [18].

Model calibration within risk deciles was assessed by the Hosmer-

Lemeshow goodness-of-fit test, which compares the observed

death rate with that predicted from the model. Analyses were

performed with R software version 3.00 (R Foundation for

Statistical Computing; http://www.r-project.org/).

Results

The discovery analyses of biomarkers predictive of the risk for

all-cause mortality comprised 9,842 individuals from the Estonian

Biobank cohort with NMR-based circulating biomarker profiles.

The findings were validated in a cohort of 7,503 individuals

from the FINRISK study. Baseline characteristics of the study

populations are shown in Table 1. During the follow-up period

(median 5.4 y; range 2.4–10.7 y), there were 508 deaths among

participants from the Estonian Biobank cohort: 241 deaths from

cardiovascular disease, 151 from cancer, 74 from other disease-

related causes, 28 from external causes, and 14 from unknown

causes. In the FINRISK cohort, there were 176 deaths during 5 y

of follow-up: 51 cardiovascular deaths, 68 cancer deaths, 49 deaths

from other disease-related causes, and eight deaths from external

causes.

The associations of the 106 candidate biomarkers with all-cause

mortality are listed in Table S1. This selection of circulating

metabolites and proteins represents the set of molecular measures

quantified from native plasma by the high-throughput NMR

profiling. Using a hypothesis-free biomarker discovery approach,

four circulating biomarkers were found to be associated with all-

cause mortality in a multivariate Cox model. The stepwise

addition of the biomarkers to the model is illustrated in Figure 2.

Plasma albumin and alpha-1-acid glycoprotein displayed strong

and independent predictive associations with the risk of all-cause

mortality. Once alpha-1-acid glycoprotein was included in the

multivariate model, several measures of very-low-density lipopro-

tein (VLDL) rose in significance level, with the strongest

association observed for VLDL particle size (Figure 2C). After

VLDL particle size was added to the model, no additional

lipoprotein measures remained significant. However, a further

multivariate effect was observed for citrate: this metabolite was

more strongly associated with the risk of all-cause mortality after

inclusion of the three other biomarkers in the model (Figure 2D).

The four circulating biomarkers were associated with all-cause

mortality to a similar extent when adjusted for conventional risk

factors that were significant predictors of mortality in the Estonian

Biobank cohort (HDL cholesterol, current smoking, and prevalent

disease): alpha-1-acid glycoprotein (adjusted HR 1.67 per 1-SD

concentration increment, 95% CI 1.53–1.82), albumin (HR 0.70,

95% CI 0.65–0.76), VLDL particle size (HR 0.69, 95% CI 0.62–

0.77), and citrate (HR 1.33, 95% CI 1.21–1.45). All four

biomarkers were also associated with all-cause mortality during

5 y of follow-up in the FINRISK validation cohort, with consistent

HRs (Figure 3A). The results were essentially unaltered when

Table 2. Hazard ratios for all-cause mortality derived in the Estonian Biobank cohort in the age range 25–74 y.

Variable Prediction Model without Biomarkers Prediction Model with Biomarkers

HR 95% CI p-Value HR 95% CI p-Value

Female gender 0.67 0.50–0.90 0.009 0.60 0.44–0.81 0.0008

Body mass indexa 1.05 0.91–1.21 0.52 1.05 0.92–1.20 0.48

Systolic blood pressurea 0.96 0.85–1.09 0.51 1.04 0.92–1.18 0.55

Fasting duration (hours) 0.99 0.96–1.02 0.47 1.00 0.97–1.03 0.96

Total cholesterola 1.05 0.91–1.21 0.50 1.15 0.97–1.36 0.11

HDL-cholesterola 0.81 0.69–0.95 0.01 1.07 0.92–1.24 0.37

Triglyceridesa 0.82 0.70–0.96 0.01 0.93 0.71–1.21 0.60

Creatininea 1.10 1.03–1.18 0.005 1.04 0.96–1.12 0.31

Current smoking 1.86 1.26–2.75 0.002 1.56 1.05–2.33 0.03

Smoking duration (years)a 1.21 1.04–1.41 0.01 1.25 1.07–1.46 0.005

Cigarettes per daya 0.93 0.80–1.07 0.29 0.89 0.77–1.03 0.11

Alcohola 1.09 0.98–1.21 0.11 1.04 0.94–1.16 0.43

Prevalent diabetes 1.58 1.15–2.15 0.004 1.49 1.09–2.03 0.01

Prevalent cardiovascular
disease

1.38 1.05–1.82 0.02 1.42 1.08–1.87 0.01

Prevalent cancer 2.15 1.51–3.05 261025 2.26 1.59–3.20 561026

Alpha-1-acid glycoproteina — — — 1.76 1.57–1.97 9610223

Albumina — — — 0.66 0.59–0.73 4610215

VLDL particle sizea — — — 0.74 0.58–0.94 0.01

Citratea — — — 1.47 1.29–1.67 561029

Hazard ratios for all-cause mortality derived in the Estonian Biobank cohort in the age range matching the FINRISK cohort (25–74 y). The regression coeffients (natural
logarithm of the HRs) from the Estonian Biobank cohort were used to derive two risk scores for the prediction of all-cause mortality: a reference risk score without
biomarkers and a risk score including the four novel biomarkers. The two risk prediction scores were used to calculate the absolute risk estimates in the FINRISK cohort,
and the incremental predictive utility of adding the four biomarkers to the risk prediction score was evaluated.
aContinuous variables were scaled to risk estimate per 1-SD increment in the variable.
doi:10.1371/journal.pmed.1001606.t002
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further adjusting for additional confounders including body mass

index, blood pressure, lipids, and creatinine (Figure 3B). The four

biomarkers were further found to be predictive of the risk of death

across three major categories of deaths in the Estonian Biobank

cohort: cardiovascular deaths, cancer deaths, and deaths from

other disease-related causes (Figure 3C). For most of the bio-

marker associations, the HR estimates for cause-specific mortality

were concordant, albeit weaker, in the FINRISK cohort.

Correlations between the four biomarkers and established meta-

bolic risk factors are shown in Figure S1. Notably, elevated VLDL

particle size was associated with decreased risk of death (Figure 3),

despite the fact that the measure is strongly positively correlated

with alpha-1-acid glycoprotein (r = 0.53) and triglyceride levels

(r = 0.82). The multivariate effect observed for alpha-1-acid

glycoprotein and VLDL particle size, with the two biomarkers

being more strongly associated with the risk of death when both

measures were included in the model, is further illustrated in

Figure S2. Moreover, when the four circulating biomarkers were

included in the model, the measures of total and HDL cholesterol,

as well as triglycerides, were not significant predictors of all-cause

mortality (Table 2).

A biomarker summary score was calculated as the sum of the four

biomarker concentrations weighted by the regression coefficients.

The biomarker score was the strongest predictor of short-term risk

of death among all risk factors available in the Estonian Biobank

cohort. The association of the biomarker score with age is illustrated

in Figure 4. The biomarker score was moderately correlated with

age (r = 0.38), yet extreme biomarker score values were seen across

all age groups. Excess mortality within 5 y of follow-up was

observed for higher age, but in particular in combination with an

elevated biomarker score (Figure 4); however, the association of the

biomarker score with all-cause mortality was generally similar across

age groups (p = 0.48 for interaction with age). To illustrate the

strong association of the biomarker summary score in the Estonian
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Figure 3. Circulating biomarkers predictive of the risk of death from all causes and cause-specific categories. (A) HRs for all-cause
mortality in a multivariate Cox model adjusted for age and sex, as well as established risk factors that were significant predictors of mortality in
the Estonian Biobank cohort: HDL cholesterol, current smoking, prevalent diabetes, prevalent cardiovascular disease, and prevalent cancer. HRs are
per 1-SD increment in biomarker concentration. Error bars denote 95% confidence intervals. Numbers in parentheses indicate deaths during follow-
up (Estonian Biobank cohort/FINRISK cohort). (B) Multivariate Cox model additionally adjusted for body mass index, systolic blood pressure, fasting
time, total cholesterol, triglycerides, creatinine, smoking duration, and alcohol consumption. (C) HRs for major categories of causes of death.
{Cardiovascular mortality was adjusted for age, sex, systolic blood pressure, current smoking, total cholesterol, HDL cholesterol, antihypertensive
treatment, prevalent cardiovascular disease, and prevalent diabetes. `Cancer mortality was adjusted for age, sex, smoking status, prevalent cancer,
and family history of cancer. "Other disease-related mortality was adjusted as for (A).
doi:10.1371/journal.pmed.1001606.g003

Biomarker Profiling of All-Cause Mortality

PLOS Medicine | www.plosmedicine.org 6 February 2014 | Volume 11 | Issue 2 | e1001606



Biobank cohort, the cumulative probability of death was derived

across quintiles of the biomarker score (Figure 5A). The 5-y

mortality for persons with a biomarker score within the highest

quintile was 19 times higher than for those in the lowest quintile

(288 versus 15 deaths during 5 y, corresponding to 15.3% versus

0.8%). Individuals within the highest quintile were further

differentiated in terms of their short-term probability of dying

according to their biomarker score percentiles: 23% of the

individuals with a biomarker score within the highest percentile

had died within the first year of follow-up (23 out of 99), and the

estimated 5-y mortality was 49% (Figure 5B).

Risk Score Validation and Risk Discrimination
To illustrate the potential of the circulating biomarkers to

improve risk discrimination for all-cause mortality in an indepen-

dent cohort, risk prediction scores for all-cause mortality with and

without the biomarkers were derived in the Estonian Biobank

cohort and evaluated in the FINRISK validation cohort. The

regression coefficients used for calculating the two risk scores are

listed in Table 2. A risk prediction score for 5-y mortality

composed of conventional risk factors was compared to a risk score

extended with the four circulating biomarkers (Table 3). Risk

discrimination was significantly improved by including the

biomarkers in the risk prediction score in terms of the C-statistics

(0.031 increase, p = 0.01) and the IDI (1.9%, p = 0.02). The

discrimination curves are illustrated in Figure 6. For reclassication,

a continuous NRI of 26.3% (p = 0.001) was achieved when

incorporating the four biomarkers into the risk prediction score.

Specifically, 81 out of the 157 persons who died during the 5-y

follow-up were shifted towards higher risk estimates, while 76 were

shifted downwards in risk (net 3.1%); among the 6,953 individuals

who did not die, 4,283 persons were shifted towards lower risk

estimates and 2,670 were shifted upwards in risk (net 23.2%). The

category-based NRI was 9.2% (p = 0.08) when persons were

assigned to one of four groups (,1.25%, 1.25%–2.5%, 2.5%–5%,

.5%) according to their 5-y risk of death. The category-based

reclassification was driven by down-classification of risk among

persons who did not die during the 5-y follow-up (7.9%,

p = 2610224), as detailed in Table S2. Model calibration was

adequate for both risk scores when the numbers of deaths observed

within risk deciles were compared with the death rates predicted

from the models (p.0.01, Figure S3).

Sensitivity Analyses
The biomarker associations were consistent for both men and

women (Table S3); there was no significant modulation of hazard

when sex interaction terms with all four biomarkers were added

to the model (p.0.05). To examine the biomarker associations

with all-cause mortality among apparently healthy persons, we

conducted analyses excluding persons with prevalent diabetes,

Figure 4. Scatter plot of age versus biomarker summary score for men and women from the Estonian Biobank cohort. The lines
indicate a fit of age against the biomarker summary score, with dashed lines denoting 95% prediction intervals. Persons who died within the 5-y
follow-up period are marked by red dots, and persons who were alive after 5 y are marked by open gray circles. Persons with less than 5 y of follow-
up are marked in light gray.
doi:10.1371/journal.pmed.1001606.g004
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cardiovascular disease, and cancer in both cohorts. Here, all four

circulating biomarkers remained predictive of the risk of death

with essentially unaltered HRs (Figure S4). The better match of

the biomarker associations between the two cohorts among

persons free of apparent disease suggests that the minor

discrepancies of the HRs observed in Figure 3 can partly be

attributed to differences in prevalent disease. In the FINRISK

study, information was available on household income, leisure

time physical activity index, and C-reactive protein; all biomarker

associations were broadly similar when these potential confound-

ers were included in the model (Figure S5). Adjusting for or

excluding individuals on lipid-lowering or antihypertensive treat-

ment from analyses did not change the findings (Figure S5).

Results were also similar when individuals who died within the first

year of follow-up were excluded (Figure S5).

Discussion

Four circulating biomarkers—alpha-1-acid glycoprotein, albu-

min, VLDL particle size, and citrate—were predictive of the short-

term risk of death from any cause in two general population

cohorts. All four biomarkers were not only associated with

cardiovascular mortality, but were also indicators of the risk of

cancer death and other nonvascular causes of mortality. In

combination, the biomarkers improved risk discrimination and

reclassification over and above conventional risk factors and may

potentially aid the identification of high-risk individuals in need of

medical intervention. Although the clinical implications remain

unclear in terms of disease specificity and treatment strategies,

these findings illustrate the utility of population-level molecular

profiling for biomarker discovery, and suggest systemic reflections

of the risk for death across disparate disease causes [7,20].

The four biomarkers associated with all-cause mortality among

ambulatory people are implicated in various pathophysiological

mechanisms including inflammation, fluid imbalance, lipoprotein

metabolism, and metabolic homeostasis. The acute phase protein

alpha-1-acid glycoprotein (also known as orosomucoid) is elevated

in response to infection and inflammation [21]. Plasma levels of

alpha-1-acid glycoprotein have been associated with all-cause

mortality in elderly persons, as well as cardiovascular mortality

and prognosis of certain cancers [22–24]. Here, alpha-1-acid

glycoprotein was the strongest multivariate predictor of the risk of

death from all causes. Once added to the prediction model, alpha-

1-acid glycoprotein additionally influenced the association of

several VLDL lipid measures with all-cause mortality (Figure 2).

The association of alpha-1-acid glycoprotein with mortality was

only slightly attenuated when C-reactive protein, a widely used

marker of low-grade inflammation, was included in the prediction

model (Figure S5). The functional role of alpha-1-acid glycopro-

tein remains poorly understood; however, these findings support

the notion of acute phase proteins being reflective of the risk of

death from vascular and nonvascular disease, as well as cancer [7].

Plasma albumin, as available from a routine blood test, is a

marker of liver and kidney function, nutritional status, and inflam-

mation [25]. Low circulating albumin levels are associated with

increased mortality from vascular, nonvascular, and cancer causes,

both in apparently healthy persons and acutely ill patients

[7,25,26]. The strong inverse association of albumin with short-

term risk of death may therefore be considered as a positive

control in the biomarker discovery. Although hypoalbuminemia

has been linked with susceptibility to various diseases and can be

used as a marker of frailty in older people [27], the general

population variation in albumin levels is not routinely used for risk

assessment among asymptomatic persons.

Figure 5. Cumulative probability of death in the Estonian
Biobank cohort by percentiles of the biomarker summary
score. The 5-y cumulative mortality is shown per quintile of the
biomarker summary score (A) and with further stratification of the
highest quintile (B).
doi:10.1371/journal.pmed.1001606.g005
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Triglyceride-mediated lipoprotein metabolism is recognized as a

risk factor for cardiovascular disease, particularly in the non-fasting

state [28,29]. VLDL particles are the starting point of the hepatic

lipoprotein cascade, and the average size of VLDL particles may be

an overall indicator of triglyceride metabolism. In this study, VLDL

particle size was inversely associated with risk of death, and the

association became stronger when alpha-1-acid glycoprotein was

included in the multivariate model (Figures 2C and S2). This might

indicate a combined effect of perturbed triglyceride metabolism and

low-grade inflammation, as has been supported by genetic evidence

[30]. Although postprandial triglyceride levels have been linked

with all-cause mortality [29], measures of VLDL and triglyceride

metabolism have not previously been associated with cancer

mortality or death from other nonvascular causes.

Citrate is an intermediate in the Krebs cycle and thus central to

energy metabolism. Circulating citrate levels are tightly regulated,

since citrate acts as a chelator to modulate calcium, magnesium, and

zinc ion concentrations, and thereby exhibits anticoagulating

properties [31]. However, citrate has not been previously im-

plicated as a biomarker for mortality in general population settings.

Increased citrate was associated with increased risk of cardiovascu-

lar death as well as cancer death among participants in the Estonian

Biobank cohort; however, the most consistent associations were

observed for deaths from other causes (Figure 3C). A recent

molecular profiling study indicated citric acid cycle deviations,

including elevated citrate levels, as being predictive of death from

sepsis in hospital settings [9]. The mechanisms underlying how

citrate is associated with short-term risk of death among ambulatory

people nonetheless remain elusive.

Out of all available risk factors, the biomarker summary score was

the strongest predictor of all-cause mortality in the Estonian

Biobank cohort. The biomarker score stratified the short-term risk

of death: persons with a very high biomarker score were associated

with substantially higher mortality rates than those with average

levels of the biomarker score, indicating prominent reflections of

frailty in the systemic biomarker profile (Figure 5). Importantly, all

hazard estimates were similar in analyses limited to individuals

without prevalent diabetes, cardiovascular disease, or cancer (Figure

S4). If these findings are further validated, it might be envisioned

that NMR-based biomarker profiling of non-fasting blood speci-

mens could be helpful for identifying asymptomatic people at high

risk to be referred for more detailed screening procedures.

Additional studies are, however, still required to elucidate the

disease specificity and etiological underpinnings of the biomarker

associations, as well as inform potential treatment strategies. For

these reasons, the risk prediction model for all-cause mortality

(Tables 2 and 3) should serve only as an illustration of the potential

to enhance risk discrimination; evaluation of the predictive utility of

the biomarkers in settings closer to clinical practice are called for to

clarify implications for public health intervention.

Although the associations of the four biomarkers were largely

unaffected by potential confounders (Figures 3 and S5), it is still

plausible that subclinical or overt disease processes may underpin

the biomarker reflections of the short-term risk of death. Co-

morbidities such as respiratory, renal, and liver disease could

partly mediate the biomarker associations; additional studies are

warranted to address the effects of low-grade inflammation,

infection, and prevalent disease on the biomarker concentrations.

Importantly, the strong associations do not imply causal influences

of the biomarkers on the risk of death. Notwithstanding, the

biomarker associations across cardiovascular, nonvascular, and

cancer mortality open a host of pathophysiological questions, and

Figure 6. Discrimination curves for 5-y mortality in FINRISK
cohort. Receiver operating characteristic curves from risk prediction
scores based on conventional risk factors (black) and with the
biomarkers alpha-1-acid glycoprotein, albumin, VLDL particle size, and
citrate included in the risk prediction score (red). The risk assessment
was evaluated in the FINRISK cohort based on risk scores derived from
the Estonian Biobank cohort. Conventional risk factors are age, sex,
body mass index, systolic blood pressure, fasting time, total cholesterol,
HDL cholesterol, triglycerides, creatinine, smoking, alcohol, prevalent
diabetes, prevalent cardiovascular disease, and prevalent cancer. AUC,
area under the curve.
doi:10.1371/journal.pmed.1001606.g006

Table 3. Discrimination and reclassification for 5-y all-cause mortality in the FINRISK cohort with and without circulating
biomarkers in the risk prediction score.

Reference Risk
Score C-Statistic

Biomarker Risk
Score C-Statistic Difference in C-Statistic IDI Continuous NRI Category-Based NRI

0.799 0.830 0.03160.012 p = 0.01 1.960.8% p = 0.02 26.368.0% p = 0.001 9.265.4% p = 0.08

Risk discrimination was assessed for FINRISK study participants with the risk prediction scores derived in the Estonian Biobank cohort (Table 2). The reference risk score
included age, sex, body mass index, systolic blood pressure, fasting time, total cholesterol, HDL cholesterol, triglycerides, creatinine, smoking status, alcohol
consumption, prevalent diabetes, prevalent cardiovascular disease, and prevalent cancer. The biomarker risk prediction score was extended with alpha-1-acid
glycoprotein, albumin, VLDL particle size, and citrate. Complete data were available for 7,110 individuals, of which 157 died during the 5-y follow-up period. Category-
based reclassification was assessed for four risk categories (#1.25%, 1.25%–2.5%, 2.5%–5%, $5%) based on the reference risk score and the biomarker risk score.
Reclassification tables for these groups and model calibration of the prediction scores within risk deciles are shown in Figure S3 and Table S2.
doi:10.1371/journal.pmed.1001606.t003
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highlight latent systemic connectivities across seemingly dissimilar

causes of death.

Some limitations of our study should be considered. The mole-

cular coverage available from NMR spectroscopy is limited

compared to that afforded by mass spectrometry, which holds

further promise for risk assessment and elucidation of disease

pathways [2,32]. Both plasma and serum samples were non-

fasting, and generalization to fasting biomarker concentrations

requires further studies. Albumin and lipoprotein levels are,

however, only weakly associated with fasting duration [33]; all

results were similar when adjusting for time since last meal. The risk

of all-cause mortality is not customarily assessed in general practice,

and no established risk categories exist to guide treatment;

nonetheless, progress towards enhanced risk prediction accuracy

may enable applications for targeted prevention. This study was

conducted in two independent cohorts of northern European

individuals; further evaluation of the biomarkers in other lifestyle

environments and ethnic groups is warranted.

In summary, high-throughput molecular profiling by NMR

spectroscopy highlighted four circulating biomarkers—alpha-1-acid

glycoprotein, albumin, VLDL particle size, and citrate—predictive

of the short-term risk of death from all causes. The biomarker

associations were replicated in an independent population and were

consistent when limiting analyses to persons free of apparent

disease. All four biomarkers were predictive of death from cancer

and nonvascular causes in addition to cardiovascular mortality, and

may therefore indicate novel relationships between systemic

biomarkers and diverse morbidities. Incorporating the biomarkers

into risk prediction scores led to improved discrimination and

reclassification of 5-y mortality in the validation cohort. Further

investigations are required to clarify the utility of these circulating

biomarkers for guiding screening and targeted prevention based on

the molecular profile of an individual.
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Editors’ Summary

Background A biomarker is a biological molecule found in
blood, body fluids, or tissues that may signal an abnormal
process, a condition, or a disease. The level of a particular
biomarker may indicate a patient’s risk of disease, or likely
response to a treatment. For example, cholesterol levels are
measured to assess the risk of heart disease. Most current
biomarkers are used to test an individual’s risk of developing
a specific condition. There are none that accurately assess
whether a person is at risk of ill health generally, or likely to
die soon from a disease. Early and accurate identification of
people who appear healthy but in fact have an underlying
serious illness would provide valuable opportunities for
preventative treatment.
While most tests measure the levels of a specific biomarker,
there are some technologies that allow blood samples to be
screened for a wide range of biomarkers. These include
nuclear magnetic resonance (NMR) spectroscopy and mass
spectrometry. These tools have the potential to be used to
screen the general population for a range of different
biomarkers.

Why Was This Study Done? Identifying new biomarkers
that provide insight into the risk of death from all causes
could be an important step in linking different diseases and
assessing patient risk. The authors in this study screened
patient samples using NMR spectroscopy for biomarkers that
accurately predict the risk of death particularly amongst the
general population, rather than amongst people already
known to be ill.

What Did the Researchers Do and Find? The researchers
studied two large groups of people, one in Estonia and one
in Finland. Both countries have set up health registries that
collect and store blood samples and health records over
many years. The registries include large numbers of people
who are representative of the wider population.
The researchers first tested blood samples from a represen-
tative subset of the Estonian group, testing 9,842 samples in
total. They looked at 106 different biomarkers in each sample
using NMR spectroscopy. They also looked at the health
records of this group and found that 508 people died during
the follow-up period after the blood sample was taken, the
majority from heart disease, cancer, and other diseases.
Using statistical analysis, they looked for any links between
the levels of different biomarkers in the blood and people’s
short-term risk of dying. They found that the levels of four
biomarkers—plasma albumin, alpha-1-acid glycoprotein,
very-low-density lipoprotein (VLDL) particle size, and cit-
rate—appeared to accurately predict short-term risk of
death. They repeated this study with the Finnish group, this
time with 7,503 individuals (176 of whom died during the
five-year follow-up period after giving a blood sample) and
found similar results.
The researchers carried out further statistical analyses to take
into account other known factors that might have contrib-
uted to the risk of life-threatening illness. These included
factors such as age, weight, tobacco and alcohol use,
cholesterol levels, and pre-existing illness, such as diabetes
and cancer. The association between the four biomarkers
and short-term risk of death remained the same even when
controlling for these other factors.
The analysis also showed that combining the test results for
all four biomarkers, to produce a biomarker score, provided a

more accurate measure of risk than any of the biomarkers
individually. This biomarker score also proved to be the
strongest predictor of short-term risk of dying in the
Estonian group. Individuals with a biomarker score in the
top 20% had a risk of dying within five years that was 19
times greater than that of individuals with a score in the
bottom 20% (288 versus 15 deaths).

What Do These Findings Mean? This study suggests that
there are four biomarkers in the blood—alpha-1-acid
glycoprotein, albumin, VLDL particle size, and citrate—that
can be measured by NMR spectroscopy to assess whether
otherwise healthy people are at short-term risk of dying from
heart disease, cancer, and other illnesses. However, further
validation of these findings is still required, and additional
studies should examine the biomarker specificity and
associations in settings closer to clinical practice. The
combined biomarker score appears to be a more accurate
predictor of risk than tests for more commonly known risk
factors. Identifying individuals who are at high risk using
these biomarkers might help to target preventative medical
treatments to those with the greatest need.
However, there are several limitations to this study. As an
observational study, it provides evidence of only a correla-
tion between a biomarker score and ill health. It does not
identify any underlying causes. Other factors, not detectable
by NMR spectroscopy, might be the true cause of serious
health problems and would provide a more accurate
assessment of risk. Nor does this study identify what kinds
of treatment might prove successful in reducing the risks.
Therefore, more research is needed to determine whether
testing for these biomarkers would provide any clinical
benefit.
There were also some technical limitations to the study. NMR
spectroscopy does not detect as many biomarkers as mass
spectrometry, which might therefore identify further bio-
markers for a more accurate risk assessment. In addition,
because both study groups were northern European, it is not
yet known whether the results would be the same in other
ethnic groups or populations with different lifestyles.
In spite of these limitations, the fact that the same four
biomarkers are associated with a short-term risk of death
from a variety of diseases does suggest that similar
underlying mechanisms are taking place. This observation
points to some potentially valuable areas of research to
understand precisely what’s contributing to the increased
risk.

Additional Information. Please access these websites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1001606

N The US National Institute of Environmental Health Sciences
has information on biomarkers

N The US Food and Drug Administration has a Biomarker
Qualification Program to help researchers in identifying
and evaluating new biomarkers

N Further information on the Estonian Biobank is available

N The Computational Medicine Research Team of the
University of Oulu and the University of Bristol have a
webpage that provides further information on high-
throughput biomarker profiling by NMR spectroscopy
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