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Abstract

Mammalian females pay high energetic costs for reproduction, the greatest of which is imposed by lactation. The synthesis
of milk requires, in part, the mobilization of bodily reserves to nourish developing young. Numerous hypotheses have been
advanced to predict how mothers will differentially invest in sons and daughters, however few studies have addressed sex-
biased milk synthesis. Here we leverage the dairy cow model to investigate such phenomena. Using 2.39 million lactation
records from 1.49 million dairy cows, we demonstrate that the sex of the fetus influences the capacity of the mammary
gland to synthesize milk during lactation. Cows favor daughters, producing significantly more milk for daughters than for
sons across lactation. Using a sub-sample of this dataset (N = 113,750 subjects) we further demonstrate that the effects of
fetal sex interact dynamically across parities, whereby the sex of the fetus being gestated can enhance or diminish the
production of milk during an established lactation. Moreover the sex of the fetus gestated on the first parity has persistent
consequences for milk synthesis on the subsequent parity. Specifically, gestation of a daughter on the first parity increases
milk production by ,445 kg over the first two lactations. Our results identify a dramatic and sustained programming of
mammary function by offspring in utero. Nutritional and endocrine conditions in utero are known to have pronounced and
long-term effects on progeny, but the ways in which the progeny has sustained physiological effects on the dam have
received little attention to date.
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Introduction

Since the 1970s, biologists have directed substantial research

effort to understanding adaptive sex-biased allocation of maternal

resources in animals and plants. Biologists have proposed

numerous hypotheses for sex-biases, including local resource

competition [1–2], ‘‘advantaged daughters’’ [3], local resource

enhancement [4–5], the ‘‘safe bet’’/reproductive value [6–7] and

sex-differentiated sources of mortality [8]. The most well-known

and investigated, though, remains the Trivers-Willard hypothesis

[9]. Trivers and Willard hypothesized that a female, as a function

of her condition, is expected to preferentially allocate resources to

the sex that provides greater marginal return on that investment

[9]. In polygynous mating systems characterized by male-male

competition, they predicted that good condition females would

bias resource allocation in favor of sons because males profit more

form additional investment than do females [9]. Collectively, the

hypotheses proposed in the literature can be loosely grouped

according to the extent that the directionality of the sex-bias is

contingent on maternal condition; however, the predictions

deriving from these hypotheses are not always mutually exclusive,

complicating interpretation of empirical results [10]. Large-bodied

ungulates are frequently used for investigating sex-biased maternal

allocation because male body size contributes substantially to

success in competitive access to mating opportunities, but evidence

for systematic sex-biases has been equivocal [10–14].

Although sex-ratio at birth has been the primary outcome

investigated, post-natal maternal physiological transfer and

behavioral care afford females substantial flexibility in sex-biased

resource allocation [12]. Sex-biased nursing behavior has been

investigated as a possible proxy for sex-biased milk production in

numerous mammalian taxa [15–21]. Suckling behavior, however,

is not useful for estimating milk energy transfer as verified by

experimental use of radio-labeled isotopes in Equus caballus [22].

Direct evidence for sex-biased milk synthesis among non-

domesticated species has now been reported in ungulates (Cervus

elaphus hispanicus, [23]), rodents (Myodes glareolus [24]), primates

(Macaca mulatta [25–26]; Homo sapiens [27–29], but see also [30] for

exception), and marsupials (Macropus eugenii, [31]). Drawing

systematic conclusions from the studies to date, however, is

challenging in part because most have been limited by relatively

small sample sizes or report milk composition without accounting

for milk yield. The most comprehensive data derive from Iberian
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red deer (Cervus elaphus hispanicus) and rhesus macaques (Macaca

mulatta). Landete-Castillejos and colleagues showed that hinds

favored sons by producing more milk with higher protein content

for them [23]. This bias did not vary as a function of maternal

mass or age [23]. Among rhesus macaques, mothers produced

higher milk energy density [kcal/g] for sons [26] due to higher fat

content [25]. There was additionally an interaction with maternal

life-history; smaller, younger mothers produced even higher fat

and protein concentrations for sons and lower concentrations for

daughters than did multiparous mothers [25]. However, at peak

lactation, mothers of daughters, across parities, produced greater

milk volume that offset the reduced energetic density of milk for

daughters [26]. These studies failed to support sex-bias hypotheses

that predict mothers in better condition will preferentially allocate

resources to a particular sex, suggesting instead that there may be

systematic sex-biases that are independent of maternal condition.

Mother’s milk, however, is particularly difficult to evaluate

when investigating adaptive allocation of maternal resources. Milk

synthesis is unlikely to be at the maternal optimum because of

parent-offspring conflict [32–33]. Rather milk reflects a complex

physiological and behavioral negotiation between the mother and

offspring [34–35]. Functional development of the mammary gland

initially occurs during pregnancy and is orchestrated by maternal

and placental hormones, particularly placental lactogen, estrogen,

and progesterone [36–38]. Post-natally, local regulation of milk

synthesis is maintained by milk removal via offspring suckling

[36,39] but maternal rejection can prevent or limit milk intake

[18]. As a result, sex-biased milk synthesis may reflect differential

cellular capacity in the mammary gland, programmed via

hormonal signals from the fetal-placental unit, or post-natally

through sex-biased nursing behavior [26]. There has been only

one study that has investigated mechanisms underlying sex-biased

milk synthesis. Koskela and colleagues used an elegant cross-

fostering design in bank voles (Myodes glareolus) to demonstrate that

all-female litters received significantly greater milk yield than did

all-male litters, regardless of litter size or maternal condition [24].

The manipulation was conducted after females gave birth, and the

extent to which pre-natal mammary gland development may have

been sensitive to litter sex-ratio was not reported. Litter size during

gestation has been shown to influence mammary gland develop-

ment in sheep [40] and milk volume in goats [41], but the effect of

fetal sex on milk synthesis has not been investigated.

We investigated the magnitude and direction of sex-biased milk

synthesis in the Holstein breed of Bos taurus. Although intensive

artificial selection has shaped cattle during recent centuries,

domesticated cattle are derived from large-bodied, sexually-

dimorphic aurochs (Bos primigenius) [42–43]. Among beef cattle,

several small studies have revealed sex-biased milk production that

favors sons [44], favors daughters [45], or no sex-biases [46]. In

contrast, standardized husbandry practices, systematic milking

procedures, detailed record-keeping, and large samples sizes make

the dairy cow a powerful model for the exploration of maternal

milk synthesis from both functional and mechanistic perspectives

[35,47–48]. Birth sex-ratio in dairy cows is male-biased [49],

suggesting that mechanisms for sex-biases are operating in this

taxon. Moreover the basic architecture for lactation is more highly

conserved than other components of the genome, even for an

animal artificially selected for milk yield [50]. Notably, because

calves are removed from the dam within hours of parturition, this

model system allowed us to investigate pre-natal mechanisms of

sex-biased milk synthesis independent of post-natal maternal care

and infant suckling behavior. Importantly, dairy cows are

concurrently pregnant during lactation, typically 200+ days of

the 305-day lactation [51]. We therefore predicted that milk

synthesis on the first lactation could be affected not only by the sex

of the calf produced, but also by the sex of the fetus gestated

during lactation. We also predicted that mammary gland

programming in response to fetal sex would persist into the

subsequent lactation because the capacity to synthesize milk is, to

some extent, cumulative across parities [52–54]. These complex

predictions are clarified by schematic representation (Figure 1).

Methods

To investigate sex-biased milk synthesis, we acquired all

lactation records from 1995 to 1999 in the database managed

by Dairy Records Management Systems (http://www.drms.org).

Whole-lactation milk yield and composition data were derived

from monthly yield and composition data collected on commercial

dairy farms across the United States. Standardized lactation

curves, characterized over 5 decades of research, were then used to

predict production between the monthly data points. Production is

adjusted for breed, region, season and parity during the

calculation of whole-lactation milk and component production,

which was standardized to a 305-day lactation. These records are

used daily by most of the 50,000 dairy farmers in the U.S. to make

management decisions. Detailed discussions of the program and

data analysis have been published elsewhere [55–56]. Data from

the late 1990’s were used to avoid the influence of sex-selected

semen in artificial breeding programs in the commercial dairy

industry, which became common in the mid-2000’s [57–58].

Additionally, this period of time allowed for analysis of the effects

of recombinant bovine somatotropin (bST) [59], approved in 1993

for commercial use in the U.S. The DRMS database includes a

field for reporting administration of bST that was introduced into

their software (PCDart) from the start of the commercial

availability of bST.

Several steps were taken to clean the data prior to analysis. Only

records from Holstein cattle were retained, and lactations that

began with either twin births or abortions were excluded.

Lactations with missing or corrupt lactation number, year, or calf

sex designations were deleted. Duplicate records for a single

lactation within cow were eliminated, and records for lactation $6

(representing 3.02% of lactations in the database) were excluded to

enable repeated measures analysis of lactations with adequate

representation in the database. If at least 1 of the first 5 test days,

typically conducted monthly, were flagged for bST administration,

Figure 1. Hypothesis: milk production is influenced by fetal sex
across lactations. Fetal sex in pregnancy 1 may alter milk production
across multiple lactations because of the critical steps in mammary
development that occur during the first pregnancy. In the cow,
pregnancy 2 typically overlaps with lactation 1, providing opportunity
for calf sex in parity 2 to impact milk production in the first lactation.
doi:10.1371/journal.pone.0086169.g001

Fetal Sex Programs Milk Synthesis in Dairy Cows
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then the lactation was considered bST-positive (N = 100,478;

3.9% of lactations). The final database consisted of 2.39 million

lactation records, representing 1.49 million individual Holstein

cows, however due to missing data in certain fields, some analyses

included fewer lactations and final analysis sample sizes are

reported for each analysis. Mixed models were used to evaluate the

fixed effects of calf sex, parity, bST, and interactions and the

random effect of year according to the following model:

Yijkl~mzSizPjzBkzYl

zSPijzSBikzSPBijkzeijkl

where Yijkl is a dependent variable, m is the overall mean, Si is

the fixed effect of calf sex (i = 1 to 2), Pj is the fixed effect of parity

(j = 1 to 5), Bk is the fixed effect of bST (k = 1 to 2), Yl is the

random effect of year (l = 1 to 5), SPij is the interaction of calf sex

and parity, SBik is the interaction of calf sex and bST, SPBijk is the

interaction of calf sex, parity, and bST, and eijkl is the residual

error. Repeated lactations within cow were fit to a heterogeneous

autoregressive (ARH [1]) covariance structure. Analyses were

completed using the Mixed Procedure of SAS (version 9.3; SAS

Institute, Cary, NC). Significant interactions were investigated

using the SLICE option and means were separated using the

PDIFF option of SAS, with significance declared at P ,0.05.

To exclude potentially confounding effects of dystocia and bST

treatment on results and to evaluate carryover effects of calf sex on

multiple lactations, a more conservative data set was generated. All

bST-positive lactations were deleted, and only those beginning

with a calving difficulty score of 1 or 2 (no or minimal difficulty)

were retained. Finally, the data were narrowed to only those cows

with both lactations 1 and 2 represented, leaving 113,750 cows.

Data for 305-day milk yield in lactations 1 and 2 were modeled

with the fixed effects of calf sex1, calf sex2, calf sex16calf sex2, and

year. Analyses were completed using the Mixed Procedure of SAS

(SAS Institute) and means were separated using the PDIFF option

of SAS, with significance declared at P ,0.05.

Results

Sex-Biased Milk Synthesis: Full Dataset
Holsteins biased milk production in favor of daughters,

producing significantly more milk over the 305 days of standard

lactation after gestating a daughter (Fig. 2). These findings are

based on 2.39 million lactation records from approximately 1.49

million female cows. First-parity cows giving birth to a daughter

produced 14265.4 kg more milk over the 305-day lactation

period than did those giving birth to a son (7,612 vs. 7,470669 kg,

P,0.001). Similar, though marginally smaller, effects were

observed in parities 2–5 (Fig. 2A). The overall effect amounted

to a 1.3% increase in whole-lactation milk production for cows

bearing daughters (Table 1). Extrapolation from total lactation

production values revealed that milk composition was similar after

gestation of a son or daughter. Fat concentration was 3.61% after

gestation of a daughter and 3.62% after gestation of a son; protein

concentrations were the same (3.17%).

The disparity between milk produced following birth of a son vs.

a daughter was largely eliminated by the use of bST. A

recombinant, exogenous form of the growth hormone somatotro-

pin, bST promotes endocrine alterations to partition a greater

proportion of nutrient supply to the mammary gland, thereby

increasing milk production [60]. Recombinant bST is approved

for exogenous administration to dairy cows beginning at week 9 of

lactation. In our sample, bST accounted for a 12% increase in

whole-lactation milk yield (Table 1). On first parity, cows

administered bST still produced significantly higher milk yield if

they had a daughter (8,681 vs. 8,631671 kg, P,0.05), but sex-

biased milk synthesis was not observed in parities 2–5 (Fig. 2B).

Sex-Biased Milk Synthesis: Conservative Sample
Male calves are typically larger than females, and pose a greater

risk of dystocia [61–62]. Dystocia is associated with decreases in

whole-lactation milk production [62], and we hypothesized that

the milk yield advantage conferred by a daughter might have been

at least partly due to decreased incidence of dystocia compared to

delivery of sons. Indeed, in our data, the odds of a son inducing

dystocia (calving difficulty score $3 on a scale of 1 to 5) were

significantly greater than for daughters (5.6 vs. 4.2% incidence,

P,0.001, odds ratio 95% CI: 1.32–1.35). Nevertheless, sex-biased

milk synthesis remained when analysis was restricted to a subset of

the dataset (N = 113,750) that excluded cases of bST and dystocia,

and included information on individual cows across the first and

second parity. On first parity, cows producing daughters had

significantly greater 305-day milk yield, with an advantage of 1.6%

relative to cows producing sons (7,947 vs. 7,81869.6 kg, P,

0.001). The daughter advantage was also observed in parity 2,

Figure 2. Daughters result in greater lactation productivity,
and this effect is altered by exogenous somatotropin (bST)
administration. Lactation records from Holstein cows (N = 2.39 million
lactations) were analyzed to determine effects of calf sex, parity, use of
bST, and their interactions on 305-day milk production. Calf sex
influence on milk production was dependent on bST use (interaction
P,0.01). A) In the absence of bST, daughters resulted in significantly
greater milk production compared to sons across all parities (all P,
0.001). B) Lactations influenced by bST administration failed to
consistently demonstrate the daughter bias. Daughters still conferred
an advantage in first-parity cows administered bST (P,0.05), but did
not significantly influence milk yield in parity 2–5 cows. Values are
differences of LS means 6 SED.
doi:10.1371/journal.pone.0086169.g002

Fetal Sex Programs Milk Synthesis in Dairy Cows
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although the magnitude of the difference was reduced (0.83%;

8,515 vs. 8,445637 kg, P,0.001). These results indicate that the

milk production advantage associated with birth of a daughter is

not attributable to prevention of dystocia.

Inter-Parity Consequences of Fetal Sex
Milk production on first lactation was associated with the sex of

the fetus on the second pregnancy because the two overlapped

temporally (Figure 3A). Across the first two parities in the subset that

excluded cases of bST and dystocia, birth combinations could be

son1son2, son1daughter2, daughter1son2, and daughter1daughter2.

Cows that had first produced a son and were gestating a son for their

second pregnancy synthesized significantly less milk over 305 days

than did all other groups (P,0.001; son1son2 = 7,768611.4 kg,

N = 32,294). Gestation of a daughter on the second pregnancy

could partially ‘‘rescue’’ milk synthesis on the first lactation if a son

had been produced previously (P,0.001; son1daughter2 =

7,876612.2 kg, N = 27,807), but remained significantly less than

cows that had produced a daughter on their first pregnancy

(P,0.001). Fetal sex on the second pregnancy didn’t have any effect

for cows that produced a daughter on pregnancy 1 (daughter1son2

and daughter1daughter2 were 7,940612.3 kg, N = 27,834 and

7,954612.6 kg, N = 25,815, respectively; P = 0.36).

Fetal sex on the first parity had persistent effects on milk

production during the second lactation (Figure 3B). Cows that

produced a son on their first parity were handicapped in their milk

production on their second lactation (P,0.001), particularly if they

gestated a son on the second pregnancy as well (son1son2 =

8,345618.9 kg). Production of a daughter on the second parity

partially increased milk production on second lactation (P,0.001;

son1daughter2 = 8,539619.4 kg). Cows that produced a daughter

on their first parity produced significantly more milk on their

second lactation (P,0.001), regardless of the sex of the calf on the

second parity (daughter1son2 and daughter1daughter2 were

8,614619.6 kg and 8,605619.8 kg, respectively; P = 0.19).

Discussion

Holstein dairy cows demonstrate a significant biological effect of

sex-biased milk production in favor of daughters. In dairying,

calves are removed on the day of birth and standardized

mechanical procedures are used for milking, therefore post-natal

sex-bias does not explain the results presented here. Instead milk

production varied as a function of fetal sex, indicating that

functional development of the mammary gland is influenced pre-

natally. Importantly, lower milk yield for sons was not compen-

sated by higher protein and fat production; total production of

milk energy was greater in cows that gestated daughters. Among

rhesus monkeys, mothers rearing daughters produce more milk,

but of significantly lower milk energy density- the aggregated

calories derived from fat, protein, and sugar- than do mothers of

sons [26]. To our knowledge, the results reported here are the first

to document that fetal sex influences milk production. Moreover

the effects on milk production were dynamic and persistent across

parities. Importantly, gestation of a daughter on the first parity

increased milk production across the first two lactations and was

protective against the negative effects of male gestation on the

second parity. In contrast, gestating a son on the first parity

suppressed milk production on the first two lactations, but the

Table 1. Influence of calf sex, in the presence and absence of exogenous somatotropin (bST), on lactation productivity.

No bST bST P value

Cow Milk Production Daughter Son SEM Daughter Son SEM N (lactations) Sex bST Interaction

305-day milk yield (kg) 8172.8 8064.9 68.6 9123.4 9094.8 70.8 2,391,300 ,0.001 ,0.001 ,0.01

305-day fat yield (kg) 295.56 291.46 3.25 329.5 328.11 3.4 2,125,643 ,0.001 ,0.001 ,0.01

305-day protein yield (kg) 258.78 255.61 2.06 291.05 290.26 2.16 2,108,796 ,0.001 ,0.001 ,0.01

Peak milk (kg/d) 36.97 36.36 0.34 40.52 40.38 0.35 825,175 ,0.001 ,0.001 ,0.01

doi:10.1371/journal.pone.0086169.t001

Figure 3. Daughters confer milk production advantages post-
natally, during gestation, and across multiple lactations. Cows
(n = 113,750) with both first and second parity lactation records, with no
reports of dystocia or bST administration, were used to assess effects of
calf sex on milk production in the first 2 lactations. Groups are labeled
by calf sex (S = son, D = daughter), with the pregnancy denoted by
subscript. Values are LS means 6 SEM. Means labeled with different
letters differ (P,0.001), and those with common labels do not (P.0.10).
A) First-parity cows having a daughter produced significantly more milk
than those having a son, but gestating a daughter in pregnancy 2
increased milk production in cows that had a son first. B) Second-parity
milk production is greatest in cows that had a daughter in pregnancy 1.
Additionally, cows with a son in pregnancy 1 showed increased milk
production if they had a daughter in pregnancy 2.
doi:10.1371/journal.pone.0086169.g003

Fetal Sex Programs Milk Synthesis in Dairy Cows
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conception of a daughter on the second parity partially improved

milk production. Nutritional and endocrine conditions in utero are

known to have pronounced and long-term effects on progeny [63],

but the ways in which the progeny has sustained physiological

effects on the dam have been less studied.

Sex-differentiated programming of the mammary gland is

further substantiated by the greater effect of bST administration

in cows gestating sons than cows gestating daughters. Postnatal

administration of recombinant bovine somatotropin (bST) in

multiparous cows overwhelmed the prenatal effects of offspring

sex, but had a greater effect in cows gestating sons. Somatotropin,

or growth hormone (GH), is produced in the anterior pituitary,

stimulated by GH-releasing hormone. Most notably, GH influ-

ences metabolism in hepatic and adipose tissues, shunting more

maternal bodily reserves to milk synthesis [64]. Insulin-like growth

factors are believed to be the major mediators of the effect of GH

on the mammary gland [60], however GH also directly affects the

mammary gland and increases milk synthesis [65–66]. While the

mean production parameters increased with the administration of

bST for cows producing both daughters and sons, the proportional

increase in milk production was greater for multiparous cows

gestating sons. Rose and colleagues reported that cows that had

low milk yield responses to bST treatment within a herd had

greater milk yields before bST treatment compared to cows with a

high response in milk yield [67]. This is consistent with our results

that cows birthing daughters had elevated milk production and a

lower response to exogenous bST administration compared to

their counterparts bearing sons. We posit that mechanisms

underlying lower initial milk production and greater individual

response to bST administration are likely responsible for the

greater response to bST in cows with sons. Administration of bST

in many ways represents an ‘‘experimental’’ manipulation of

mammary gland programming and reveals possible mechanistic

pathways through which sex-biases are operating. Although bST

was able to overwhelm sex-biased milk synthesis among multip-

arous cows, significant sex-bias remained among primiparous cows

whose mammary glands had functionally developed for the first

time in the context of the fetal sex of the first gestation. The

magnitude of sex bias is strongest among first parity rhesus

monkeys [25–26] and possibly humans [28–29] and Tamar

wallabies [31] in which primiparous females have been dispro-

portionately represented in published studies. The effect of fetal

sex may diminish to some extent among multiparous females due

to the aggregate effects on mammary gland architecture of

sequential gestations of different fetal sexes. Alternatively, mater-

nal investment tactics may change as a function of residual

reproductive value [68] or targeted effort during critical develop-

mental windows [69].

These biological findings may have economic impact for the

modern dairy industry. With the widespread availability of sexed-

selected semen for use in artificial breeding programs, dairy

managers have the option of achieving approximately 90% female

pregnancies rather than a natural rate near 47% [49]. There are

many factors for managers to consider when evaluating the

profitability of sexed semen use, including decreased conception

rate [57] and increased semen cost. Some published analyses have

been skeptical of the economic merit of using sexed semen on

dairy operations [70], although the cost of the cell sorting

technology continues to drop, making recent analyses more

favorable [71]. Accounting for the impact of a female calf on

lactation productivity revealed by our analysis, however, further

improves the expected profitability of sexed semen use. It is

common to use sexed semen for breeding nulliparous heifers only,

and given the long-term impact of a first-parity daughter, the

production benefits of this management strategy are substantial.

The cumulative increase in milk yield over two lactations for a cow

giving birth to a daughter on the first parity rather than

consecutive bulls is ,445 kg (Fig. 3). The impact of sexed semen

on the structure of the dairy industry has been a complex question

already [72], but these results highlight a key factor that has not

previously been considered.

The precise mechanistic pathways through which fetal sex

influences mammary gland development remain unknown. Fetal-

origin hormones may translocate via maternal circulation to bind

directly to receptors in the dam’s mammary gland influencing

functional development and subsequent milk synthesis. Among

ungulates, ruminants may be especially valuable for understanding

mammary gland development during pregnancy as a function of

fetal sex because of their cotyledonary placenta. Klisch and Mess

posited that for ruminants, an evolutionary ‘‘arms race’’ between

the mother and fetus [73] for glucose transport, necessitated by the

lack of gastrointestinal glucose supply [74], resulted in selective

pressure that favored an ‘‘inefficient’’ placenta [75]. For example,

the placenta of the domestic cow has ,5 times the surface area as

the horse placenta even though the two species produce similarly

sized neonates [76]. As a byproduct of the greater placental

surface area, fetal steroidal hormones can readily diffuse into

maternal circulation [75]. Concentrations of estrogens and

androgens differ between male and female fetuses and, if in

maternal circulation, potentially enhance or inhibit mammary

gland development and consequently milk synthesis during

lactation. In dairy cows, fetal steroid hormones are present from

the first trimester and are critical for the development of fetal sex

organs [77–78]. Insulin-like peptide 3 (INSL3), another fetal-origin

bioactive, increases in maternal circulation across pregnancy in

dairy cows gestating sons and decreases in cows gestating

daughters [79] but the influences of fetal-origin INSL3 on the

mammary gland are not known. Functional development of the

mammary gland in taxa characterized by highly invasive

hemochorial placentas may also be susceptible to fetal hormones;

indeed the majority of reports of sex-biased milk synthesis in the

literature are from taxa that have greater placental invasion and/

or placental surface area [63,76,80]. Suggestively, human mothers

with higher concentrations of circulating androgens during the 2nd

trimester had a lower probability of sustaining breastfeeding to

three months post-partum [81]. The higher circulating androgens

may have originated from fetal sons, but the effect of fetal sex was

not directly analyzed in that study, nor was milk synthesis

measured. Indirectly, fetal sex may influence the production of

placental lactogen, a primary hormonal driver of mammary gland

development during pregnancy [36–38] but as of yet differences in

placental lactogen as a function of fetal sex have not been

reported.

Daughter-biased milk synthesis may reflect adaptive maternal

allocation in response to fetal sex, adaptive fetal manipulation of

maternal physiology, or may be a by-product of the maternal-fetal

interface. Importantly, uniformly biased milk production in favor

of daughters across maternal conditions does not support the

Trivers-Willard hypothesis [9], or other hypotheses positing

facultative sex-biased allocation of resources as a function of

maternal condition [10]. Dairy cows have a male-biased birth

ratio; in the absence of sex-specific artificial insemination, between

50–54% of calves born are male [49,82]. The mediating effect of

maternal condition on birth-sex ratio has been inconsistent [83] as

has been the directionality of birth sex-ratio bias. Better-condition

cows may produce more sons [84] or daughters [85]. Integrating

the results presented here, dairy cows produce more sons, but

seemingly favor daughters with more milk. Mammalian mothers
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in polygynous taxa may preferentially allocate physiological

resources to daughters so that they are able to initiate reproduction

at relatively younger ages than do sons [26,86]. For female

mammals, because of the temporal constraints of pregnancy and

lactation, lifetime reproductive success of daughters will be

contingent on the length of their reproductive careers, a function

of age at first birth and longevity [87–88]. Among sexually

dimorphic polygynous taxa, the temporal constraints are relaxed

for males, who benefit from growing bigger and stronger [89–90],

allowing males more time to compensate for deficits in early life

maternal investment before becoming reproductively active [91].

Daughter-biased milk production may involve life-history tradeoffs

for both cows and their daughters. High milk production in dairy

cows is generally associated with reduced fertility, health, and

survival depending on environmental conditions [92]. Moreover

daughters gestated during lactation have moderately reduced

survival and milk production in their own adulthood [93–94].

Although we do not know whether the magnitude of the effects

presented here is correlated with such consequences, future

research should investigate the fitness effects of daughter-biased

milk synthesis both in the short-term (i.e. inter-birth interval),

across the lifetime, and inter-generationally.

The question remains though, under natural conditions how do

bull calves grow faster during the post-natal period if their dams

are producing less milk, and therefore lower total protein and fat

production? One explanation may be that females bias nursing

behavior such that milk production is up-regulated for sons, a

tactic we could not evaluate in conventional dairying as calves are

removed after birth. Landete-Castillejos and colleagues revealed

that among captive Iberian red deer, dams rearing sons had

greater total milk production and total protein production [23],

possibly due to post-natal hind-calf behavioral dynamics. However

in the one study to date of cow maternal behavior, cows do not

show any sex biases in nursing behavior [18]. In beef cattle that

are reared by their dam, sons are born bigger and have better

post-natal growth than do daughters, but only one out of three

studies has shown any evidence of male-biased milk synthesis [44–

46]. In the absence of post-natal behavioral modifications of

prenatal mammary gland programming, the presence and

concentration of other milk bioactives such as immunofactors

and hormones that influence offspring development [35] may

differ in milk produced for sons and daughters. Notably,

investigations of sexually dimorphic developmental trajectories,

however, overwhelmingly essentialize the role of the mother and

sex-biased allocation of maternal resources. More often overlooked

are sexually differentiated mechanisms within offspring that

influence utilization and assimilation of early life nutrition and

environmental signals [26,95–96]. Consideration of progeny-

specific adaptations as well as biased maternal effort will

contribute to a better understanding of the ontogeny of sexual

dimorphism.
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