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Background: Epidemiological studies have demonstrated associations between short-term 
 exposure to PM2.5 and hospital admissions. The chemical composition of particles varies across 
locations and time periods. Identifying the most harmful constituents and sources is an important 
health and regulatory concern.

oBjectives: We examined pollutant sources for associations with risk of hospital admissions for 
cardiovascular and respiratory causes.

Methods: We obtained PM2.5 filter samples for four counties in Connecticut and Massachusetts 
and analyzed them for PM2.5 elements. Source apportionment was used to estimate daily PM2.5 
contributions from sources (traffic, road dust, oil combustion, and sea salt as well as a regional 
source representing coal combustion and other sources). Associations between daily PM2.5 con-
stituents and sources and risk of cardio vascular and respiratory hospitalizations for the Medicare 
population (> 333,000 persons ≥ 65 years of age) were estimated with time-series analyses (August 
2000–February 2004).

results: PM2.5 total mass and PM2.5 road dust contribution were associated with cardio vascular 
hospitalizations, as were the PM2.5 constituents calcium, black carbon, vanadium, and zinc. For 
respiratory hospitalizations, associations were observed with PM2.5 road dust, and sea salt as well 
as aluminum, calcium, chlorine, black carbon, nickel, silicon, titanium, and vanadium. Effect esti-
mates were generally robust to adjustment by co-pollutants of other constituents. An interquartile 
range increase in same-day PM2.5 road dust (1.71 μg/m3) was associated with a 2.11% (95% CI: 
1.09, 3.15%) and 3.47% (95% CI: 2.03, 4.94%) increase in cardio vascular and respiratory 
admissions, respectively.

conclusions: Our results suggest some particle sources and constituents are more harmful than 
others and that in this Connecticut/Massachusetts region the most harmful particles include black 
carbon, calcium, and road dust PM2.5.

citation: Bell ML, Ebisu K, Leaderer BP, Gent JF, Lee HJ, Koutrakis P, Wang Y, Dominici F, 
Peng RD. 2014. Associations of PM2.5 constituents and sources with hospital admissions: analysis 
of four counties in Connecticut and Massachusetts (USA) for persons ≥ 65 years of age. Environ 
Health Perspect 122:138–144; http://dx.doi.org/10.1289/ehp.1306656

Introduction
Associations between airborne particulate 
matter (PM) and health are well established 
(Pope and Dockery 2006), including evidence 
of higher risk associated with smaller particles 
with an aerodynamic diameter of ≤ 2.5 μm 
(PM2.5). Several countries regulate PM2.5 
(e.g., the United States, the United Kingdom, 
Taiwan), and the World Health Organization 
(WHO) has established health-based guide-
lines. Increasing scientific evidence suggests 
that particles differ in toxicity. This hypothe-
sis is consistent with known hetero geneity in 
particles’ chemical composition (Bell et al. 
2007). For example, sulfate constitutes a 
higher fraction of PM2.5 in the eastern United 
States than in the western United States. 
Composition of PM2.5 in Seoul, Korea, is 
more similar to PM2.5 in the western United 
States than PM2.5 in the eastern United States 
(Son et al. 2012). Variations in composition 
may affect health risks and explain why effect 

estimates for PM2.5, measured by total mass, 
differ by location.

The Health Effects Institute (HEI), a 
National Academies of Sciences committee, 
and the WHO identified the study of health 
effects of the particle mixture as a critical 
research need (HEI 2002; National Research 
Council 2004; WHO 2007). Evidence on 
which particles are most harmful would 
inform effective policies by allowing stricter 
control of the most harmful agents and could 
aid understanding of biological pathways, 
which may differ by constituents or health 
outcomes. Multiple biologically plausi-
ble mechanisms have been demonstrated 
or hypothesized [e.g., systematic inflamma-
tion, vascular function (Brook et al. 2010)] 
although physiological responses to differ-
ent PM2.5 constituents and sources are not 
fully understood.

Many epidemiological studies use 
 existing ambient monitoring data from 

regulatory agencies to estimate air pollu-
tion exposure. This approach is cost effec-
tive and can cover large populations and time 
periods. Limited availability of PM2.5 con-
stituent data, compared with data for total 
PM2.5, limits research on particulate com-
position and health. National U.S. monitor-
ing networks for PM2.5 constituents began 
operation in 1999, with many monitors 
beginning in 2000. The U.S. Environmental 
Protection Agency (EPA) has monitored 
PM2.5 since 1997, with many monitors 
starting in 1999. The PM2.5 monitoring net-
work is more extensive, with 1,387 active 
monitors in the continental United States, 
whereas the PM2.5 Chemical Speciation 
Network has 192 monitors (U.S. EPA 2012). 
Additional monitors with chemical specia-
tion are available for rural sites through the 
Interagency Monitoring of Protected Visual 
Environments (IMPROVE) network (U.S. 
EPA 2013). Although data from the U.S. 
EPA’s constituent network are useful, data are 
unavailable for all time periods and locations 
of interest.

Several methods have been introduced 
to estimate pollution for times and locations 
without monitors, such as regional air qual-
ity modeling; however, methods to estimate 
complex PM2.5 chemical composition remain 
limited. Understanding the health impacts is 
hindered by the lack of daily measurements of 
constituents in national monitoring networks. 
To date, we are aware of only one study that 
has applied source apportionment methods to 
examine associations between PM2.5 sources 
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and hospitalizations (Lall et al. 2011). In 
the present study, we applied an alternative 
approach, compared with approaches used 
in previous studies, to obtain additional 
PM2.5 constituent measurements. We then 
used these data to estimate the exposure 
from PM2.5 sources and their associated risk 
estimates, which are particularly relevant for 
policy makers because PM2.5 is currently regu-
lated only on the basis of mass  concentration, 
without regard to composition.

We used data from X-ray fluorescence 
elemental analysis of PM2.5 filters collected at 
five U.S. EPA monitoring sites in three coun-
ties in Connecticut and one in Massachusetts. 
We thus generated a new data set of PM2.5 
chemical constituents by analyzing PM2.5 
total mass filters for elemental composition. 
This new data set had almost 10 times more 
data (days of observation) than the U.S. 
EPA’s Chemical Speciation Network for the 
four counties. Constituent data were used 
in source apportionment analysis to identify 
particle sources. We then estimated the rela-
tive risks of cardio vascular and respiratory 
hospitalizations associated with short-term 
exposure to PM2.5 constituents and sources.

Methods
Exposure for PM2.5, constituents, and sources. 
To estimate exposures we a) obtained filters 
used by regulatory agencies to measure PM2.5 
total mass, b) analyzed those filters for PM2.5 
elements, and c) used these data as inputs to 
source apportionment analysis. This approach 
generated estimates of PM2.5 mass, constit-
uents, and sources for each location, for a 
given 24-hr day.

We acquired PM2.5 Teflon filter samples 
from the Connecticut and Massachusetts 
Departments of Environmental Protection 
for August 2000–February 2004. We con-
sidered five primary monitoring locations in 
four counties (see Supplemental Material, 
Figure S1): New Haven (in New Haven 
County, CT), Hartford (in Hartford County, 
CT), Bridgeport and Danbury (in Fairfield 
County, CT), and Springfield (in Hampden 
County, MA). Sampling occurred daily, 
with some missing periods, for Hartford, 
New Haven, and Springfield, and every third 
day for Bridgeport and Danbury. Because 
the sample days for Bridgeport and Danbury 
were unbiased, measurements of every third 
day were assumed to have no effect on cen-
tral risk estimates, although it reduces sample 
size. Days with missing data were omitted 
from analysis.

The daily (midnight to midnight) PM2.5 
filter samples were analyzed for levels of 
PM2.5 elements, using optical reflectance 
for black carbon (BC) (Cyrys et al. 2003; 
Gent et al. 2009) and X-ray fluorescence 
for several elements (Watson et al. 1999). 

Optical reflectance was performed at Harvard 
University and X-ray fluorescence at the 
Desert Research Institute in Reno, Nevada. 
These PM2.5 and constituent data were used 
in earlier research for other health outcomes, 
and more information is provided elsewhere 
(Bell et al. 2010; Gent et al. 2009; Lee 
et al. 2011).

Elemental analysis of PM2.5 filters pro-
duced a more extensive data set than would 
be available using the U.S. EPA’s constitu-
ent data. For example, the U.S. EPA’s Air 
Explorer (U.S. EPA 2011) PM2.5 constituent 
data from this study area and time period 
included data from three monitors: one each 
in Fairfield, New Haven, and Hampden 
Counties, with measurements beginning 
April 2002, June 2003, and December 2000, 
respectively. No U.S. EPA monitors assessed 
constituents in Hampden County. PM2.5 
constituent data generated from PM2.5 filters 
had 9.9 times more data than the U.S. EPA’s 
constituent monitoring network considering 
all four counties, and 6.4 times more data 
considering the three counties with measure-
ments in both data sets. However, the U.S. 
EPA’s network provides information on some 
constituents (e.g., nitrate, ammonium) that 
were unavailable for the present study.

Daily contributions of PM2.5 sources were 
estimated for each monitoring location using 
positive matrix factorization (PMF) (Bell 
et al. 2010; Norris et al. 2008; Paatero and 
Tapper 1994). This method identifies major 
PM2.5 sources and quantifies their daily con-
tribution to PM2.5 mass and constituents. 
The approach estimates daily PM2.5 levels 
from each source for each site. PMF identi-
fied five sources: motor vehicles, road dust/
crustal materials, oil combustion, sea salt, and 
regional sources related to emissions from 
power plants and other urban areas. We also 
applied PMF results in previous work, which 
provides more details on our methods (Bell 
et al. 2010).

For each county, we estimated daily levels 
of PM2.5 sources, BC, and selected constitu-
ents. We choose to analyze constituents that 
had been identified as potentially harmful in 
previous epidemiological studies (Dominici 
et al. 2007; Franklin et al. 2008; Lippmann 
et al. 2006; Ostro et al. 2007, 2008): alumi-
num (Al), BC, bromine (Br), calcium (Ca), 
chlorine (Cl), nickel (Ni), potassium (K), 
sulfur (S), silicon (Si), titanium (Ti), vana-
dium (V), and zinc (Zn). These elements were 
among those used in PMF analysis.

For Fairfield County, we estimated expo-
sures using population- weighted averaging 
of values for the two monitoring locations in 
that county (Bridgeport and Danbury). Each 
of 209 census tracts in Fairfield County was 
assigned the exposure of the nearest monitor, 
and those exposures were averaged, weighted 

by each tract’s 2000 U.S. Census population. 
Seventy-four percent of the county’s popula-
tion resided closest to the Bridgeport moni-
tor. For other counties, we used values from 
the single monitor within the county. PM2.5 
filter samples were not collected daily, so not 
all days had source–exposure estimates for all 
monitoring sites.

Weather data. Hourly ambient and dew 
point temperature data for each county were 
obtained from the National Atmospheric 
and Oceanic Administration’s (NOAA) 
National Climatic Data Center. These values 
were converted to daily levels (midnight to 
midnight). Daily weather values have been 
used extensively in previous relevant research 
(Samet et al. 2000a, 2000b). For each county, 
weather variables were estimated using data 
from a monitor or monitors in each county or 
a nearby county. For counties with multiple 
monitors, values from those monitors were 
averaged to generate county-level averages.

Health data. We used the Medicare bene-
ficiary denominator file from the Centers for 
Medicare and Medicaid Services (CMS) to 
identify the at-risk population of Medicare 
beneficiaries ≥ 65 years of age who resided 
in the four counties and were enrolled in 
the Medicare fee-for-service plan during 
August 2000–February 2004. We calculated 
the monthly number of beneficiaries in each 
county to account for new enrollment and 
disenrollment, and extended monthly data to 
daily data by accounting for deaths, hospital 
admissions, and discharges occurring 1 day 
prior to an index date. We linked this time-
series data with CMS Medicare inpatient 
claims data to identify patients discharged 
from acute-care hospitals. We included only 
emergency hospitalizations and used date 
of admission to calculate daily numbers of 
admissions. Cause of admission was deter-
mined by principal discharge diagnosis code 
according to International Classification of 
Diseases, Ninth Revision, Clinical Modification 
(ICD-9-CM; National Center for Health 
Statistics 2006). Analysis was conducted 
separately for respiratory disease (chronic 
obstructive pulmonary disease [ICD-9-CM 
codes 490–492] and respiratory tract infec-
tion [codes 464–466, 480–487]) and cardio-
vascular disease (heart failure [code 428], 
heart rhythm disturbances [codes 426–427], 
cerebrovascular events [codes 430–438], isch-
emic heart disease [codes 410–414, 429], and 
peripheral vascular disease [codes 440–448]). 
On average across the study and summed 
across counties, > 333,900 beneficiaries were 
at risk in our population.

Data analysis. We performed time-series 
analysis to estimate associations between 
PM2.5 sources or constituents and cardio-
vascular or respiratory hospitali zations by 
applying a log-linear Poisson regression model:
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ln(E[Yt
c ] = ln(Nt

c) + βxc
t–l + αcDOW t  

 + ns(Tt
c,dfT) + ns(Dt

c,dfD)  
 + ns(Tat

c,dfTa) + ns(Dat
c,dfDa)  

 + ns(t,dft ) + I(r), [1]

where
Yt

c = hospitalizations in county c on day t,
Nt

c = at risk population in county c on day t,
β = coefficient relating pollution to hospitali-

zation rate,
x c

t–l = pollution level in county c on day t at 
lag of l days,

DOWt = day of week on day t,
αc = coefficient relating day of week to hospi-

talizations in county c,
ns(Tt

c,dfT) = natural cubic spline of tempera-
ture in county c on day t with dfT [degrees 
of freedom (df) for temperature] = 6,

ns(Dt
c,dfD) = spline of dew point temperature 
in county c day t with dfD (df = 3),

ns(Tat
c,dfTa) = spline of average of 3 previous 

days’ temperature in county c day t with 
dfTa (df = 6),

ns(Dat
c,dfDa) = spline of average of 3 previous 

days’ dew point temperature in county c 
day t with dfDa (df = 3),

ns(t,dft) = spline of time (t) with dft = 8/year 
(i.e., 8 × 3.5 years = 28), and

I(r) = indicator of region (coastal for Fairfield 
or New Haven Counties, inland for 
Hartford or Hampden Counties).

We considered single-day lags of exposure 
on the same day as hospitalization (L0), previ-
ous day (L1), and 2 days previous (L2). For 
constituents demonstrating statistically signifi-
cant associations in single-pollutant models, 
sensitivity analysis was performed adjusting one 
at a time for other constituents when the cor-
relation between the second pollutant and the 
first was < 0.60 in order to avoid collinearity. 
Results from all analyses represent estimated 
effects across all four counties. Statistical signifi-
cance was considered p-value < 0.05.

Results
Table 1 summarizes hospitalizations across all 
counties (see Supplemental Material, Table S1 
for county-level summaries). On average, 
73.2 cardio vascular and 26.1 respiratory 
hospitalizations occurred per day, with the 
most admissions in New Haven County and 
the least in Hampden County. The data set 
contained 95,831 cardio vascular and 34,169 
respiratory hospital admissions. Analysis of 
PM2.5 filters for constituents generated 3,273 
observation days, whereas the U.S. EPA 
monitoring network for constituents had 329 
observation days for the present study period 
and time frame. Our data set included con-
stituent data for Hartford County, which had 
no constituent U.S. EPA monitor during the 
study period.

Table 2 summarizes estimated PM2.5 
sources and constituent levels. Daily PM2.5 

levels averaged 14.0 μg/m3 and were highest in 
New Haven County (average 17.0 μg/m3). The 
regional source, which relates to coal combus-
tion and other factors, on average contributed 
the largest fraction (40.8%) of PM2.5 compared 
with other sources. Contributions of motor 
vehicles to PM2.5 were similar across coun-
ties (26.0–29.7% for any county). Hartford 
County had a higher percentage of PM2.5 from 
oil combustion (18.2%) than other counties. 
Correlations between PM2.5 sources were 
low (range, –0.08 to 0.24) (see Supplemental 
Material, Table S2). Correlations ≥ 0.60 were 
observed for several pairs of PM2.5 constituents, 
with the highest for Al and Si (0.96).

Figure 1 shows effect estimates for PM2.5, 
sources, and constituents for cardio vascular or 
respiratory hospitalizations according to expo-
sure lag. Central estimates for PM2.5 indicate 
positive associations for both outcomes and 
all lags, but only the lag 0 association with 
cardio vascular admissions was statistically 
significant [1.88%; 95% CI: 0.47, 3.31% 
for an interquartile range (IQR) increase of 
10.7 μg/m3]. For PM2.5 sources, road dust 
was significantly associated with respiratory 
hospitalizations (all lags), with the strongest 
association estimated for an IQR increase 
(1.71 μg/m3) at lag 1 (4.51% increase; 
95% CI: 3.30, 6.01%). Significant associa-
tions also were estimated for road dust and 
cardio vascular admissions (2.11%; 95% CI: 

1.09, 3.15% at lag 0) and for sea salt and 
respiratory admissions (0.27%; 95% CI: 0.08, 
0.47% for a 0.13 μg/m3 increase at lag 0).

Cardiovascular hospitalizations were 
significantly associated with BC (all lags), 
Ca (lag 0, 1.65%; 95% CI: 0.50, 2.82%), 
V (lags 0 and 1), and Zn (lag 0, 0.95%; 
95% CI: 0.05, 1.86%) based on single-
pollutant models (Figure 1 and Table 3). For 
BC and V, associations were strongest for 
lag 0 (4.83%; 95% CI: 3.08, 6.62% for BC, 
and 1.16%; 95% CI: 0.43, 1.89% for V).

Respiratory admissions were significantly 
associated with Al, Ca, Cl, BC, Ni, Si, Ti, and 
V for all lags (Figure 1 and Table 3). Central 
effect estimates were highest for lag 1 for most 
constituents (Al, Ca, Si, Ti, and V), but were 
largest on the same day (lag 0) for Cl and Ni, 
and lag 2 had the strongest association for BC.

We performed sensitivity analyses of 
co-pollutant adjustment for associations 
with cardio vascular admissions (Table 3 and 
Figure 2), and respiratory admissions (Table 3, 
Figure 3; see also Supplemental Material, 
Figure S2 where associations between Cl and 
respiratory hospitalization shown on a nar-
rower y-axis scale). In all cases, central effect 
estimates were in the same direction (i.e., 
positive associations), and most associations 
remained statistically significant, with some 
exceptions (e.g., V adjusted by BC). In particu-
lar, the association between same-day Zn and 

Table 1. Summary of hospital admissions data.

Admission

Admissions/day Total admissions 
across study periodMean + SD Median IQR

Cardiovascular 73.2 ± 14.0 73 20 95,831
Respiratory 26.1 ± 9.3 24 10 34,169

Table 2. Summary of exposure estimates for PM2.5 chemical constituents and sources, across all  counties.

Constituent/source/ 
temperature Mean ± SD Median IQR

PM2.5 total mass 
(%)

PM2.5 (μg/m3) 14.0 ± 9.37 11.7 10.7 NA
Al 0.041 ± 0.048 0.0285 0.0353 0.29
BC 1.08 ± 1.000 0.7788 1.32 7.71
Br 0.0018 ± 0.002 0.0014 0.0023 0.01
Ca 0.033 ± 0.027 0.0257 0.0275 0.24
Cl 0.016 ± 0.076 0.0031 0.0079 0.12
Ni 0.0033 ± 0.004 0.0020 0.0033 0.02
K 0.049 ± 0.035 0.0403 0.0333 0.35
S 1.27 ± 1.045 0.9710 0.975 9.07
Si 0.072 ± 0.092 0.0479 0.0625 0.52
Ti 0.0051 ± 0.005 0.0040 0.0043 0.04
V 0.0052 ± 0.008 0.0029 0.0052 0.04
Zn 0.018 ± 0.018 0.0126 0.0150 0.13

Source (μg/m3)
Motor vehicle 3.91 ± 4.31 2.53 3.79 28.0
Oil combustion 1.82 ± 2.50 1.07 2.09 13.1
Road dust 1.67 ± 1.93 1.05 1.71 12.0
Regional source 5.69 ± 6.41 3.62 5.34 40.8
Sea salt 0.244 ± 0.92 0.05 0.13 1.75

Temperature
Ambient (oC) 49.4 ± 18.2 49.7 30.46 NA
Dew point (oC) 40.2 ± 19.1 40.6 30.80 NA

NA, not applicable.
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cardio vascular hospitalizations lost statistical 
significance for most co-pollutant adjustments 
(central estimate range, 0.44–0.99%).

Discussion
Same-day PM2.5 was significantly associated 
with cardio vascular, but not respiratory, hos-
pital admissions. Central estimates for PM2.5 
at lags 1 or 2 for cardio vascular admissions, 
and all lags for respiratory admissions, were 

positive but not significant. Previous studies 
explored PM2.5 and hospitalizations for 
the Medicare population (Bell et al. 2008; 
Dominici et al. 2006). An earlier study of 202 
U.S. counties estimated a 0.86% [95% pos-
terior interval (PI): 0.63, 1.08%] increase in 
Medicare cardio vascular hospitalizations per 
IQR increase (for the IQR used in the pres-
ent study) in same-day PM2.5, and a 0.44% 
(95% PI: 0.09, 0.79%) increase in respiratory 

hospitalizations for lag 2 PM2.5 (Bell et al. 
2008). In our four-county study, we esti-
mated a stronger association with cardio-
vascular admissions (1.88%; 95% CI: 0.47, 
3.31% at lag 0) and a higher central estimate 
for respiratory admissions (0.59%; 95% CI: 
–1.35, 2.57% at lag 2). However, for counties 
in the Northeast U.S. region (i.e., the region 
in which the present study was conducted), 
the previous study reported associations with 

Figure 1. Percent change in risk of cardio vascular (A) or respiratory (B) hospital admissions per IQR increase in exposure to PM2.5 sources, PM2.5 total mass, or 
PM2.5 chemical constituents. Data points represent the central estimates, and the horizontal lines represent 95% CIs. IQR values correspond to those in Table 1.
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Table 3. Summary of results for co-pollutant adjustment for PM2.5 chemical constituents and associations with cardio vascular or respiratory hospital admis-
sions, for constituents with significant associations in single-pollutant models.

Pollutant Admission Lag
Single-pollutant effecta 

[% (95% CI)]

Co-pollutant adjustment

Robustb 
to adjustment by

Not robustb 
to adjustment by

Range of central 
effect estimates (%)

Ca Cardiovascular 0 1.65 (0.50, 2.82) Br, Cl, K, Ni, S, Zn V 1.18–2.01
BC Cardiovascular 0 4.83 (3.08, 6.62) Al, Br, Cl, K, Ni, S, Si, Ti, V NA 4.48–6.00
V Cardiovascular 0 1.16 (0.43, 1.89) Al, Br, Ca, Cl, K, S, Si, Ti, Zn BC 0.39–1.17
Zn Cardiovascular 0 0.95 (0.05, 1.86) Cl Al, Br, Ca, Ni, S, Si, Ti, V 0.44–0.99
Al Respiratory 1 2.74 (1.62, 3.88) Br, Cl, BC, Ni, K, S, V, Zn NA 1.99–4.34
Ca Respiratory 1 4.31 (2.61, 6.03) Br, Cl, Ni, K, S, V, Zn NA 3.13–6.82
Cl Respiratory 0 0.24 (0.09, 0.39) Al, Br, Ca, BC, Ni, K, S, Si, Ti, V, Zn NA 0.19–0.24
BC Respiratory 2 7.20 (4.64, 9.82) Al, Br, Cl, Ni, K, S, Si, Ti, V NA 5.71–9.54
Ni Respiratory 0 2.92 (1.66, 4.19) Al, Br, Ca, Cl, K, S, Si, Ti, Zn BC 1.34–3.21
Si Respiratory 1 2.41 (1.41, 3.42) Br, Cl, BC, Ni, K, S, V, Zn NA 1.70–3.75
Ti Respiratory 1 3.47 (2.30, 4.65) Br, Cl, BC, Ni, K, S, V, Zn NA 2.77–4.19
V Respiratory 1 2.75 (1.76, 3.75) Al, Br, Ca, Cl, BC, K, S, Si, Ti, Zn NA 1.92–2.98

NA, not available. 
aSingle-pollutant effect is the increase in risk per IQR increase in pollutant. bIn this table, associations are considered robust to co-pollutant adjustment if they remained statistically 
significant; associations are not considered robust to co-pollutant adjustment if they lost statistical significance.
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PM2.5 that were similar to our estimates here 
(1.16% increase in cardio vascular admissions; 
95% PI: 0.85, 1.47% and a non significant 
0.30% increase in respiratory admissions; 
95% PI: –0.18, 0.78%). Therefore, although 
the previous study involved a larger study 
area and somewhat different methods, PM2.5 
findings were broadly consistent between the 
two studies.

Recent studies examined PM2.5 constitu-
ents or sources and hospitalizations or other 
health outcomes (Bell et al. 2010; Ebisu and 
Bell 2012; Ostro et al. 2007; Valdés et al. 
2012; Zhou et al. 2011). Whereas we esti-
mated positive associations of BC with cardio-
vascular and respiratory admissions at all lags, 
in a study of 119 U.S. counties, Peng et al. 
(2009) reported an association between EC 
and cardio vascular Medicare admissions only 

at lag 0, and no association with respiratory 
admissions. Similarly, we estimated associa-
tions between Si and respiratory admissions 
at lags that were not identified in the national 
study. In a study of cardio vascular admissions 
among residents of New York City who were 
≥ 40 years of age, Ito et al. (2011) estimated 
associations with 11 PM constituents, includ-
ing 6 examined in the present study, and 
reported statistically significant associations for 
EC and Zn, but not Ni or Si, consistent with 
our findings in the present study. However, 
cardio vascular hospital admissions were signifi-
cantly associated with Br in the New York City 
study, in contrast with the present study, and 
we identified significant associations with V 
that were not observed in the New York City 
study. In a previous study of children (≤ 5 or 
≤ 19 years of age) in six California counties, 

Ostro et al. (2009) reported that EC and Si, 
but not Zn or K, were associated with respi-
ratory hospitalizations. In the present study, 
we also estimated associations of respiratory 
admissions with BC and Si, but not Zn or 
K, in our Medicare population (≥ 65 years of 
age). Kim et al. (2012) recently reported a sig-
nificant association between EC and cardio-
vascular hospitalizations, and a non significant 
positive association with respiratory hospi-
talizations, based on constituent data from a 
single monitoring station in Denver, Colorado.

We estimated significant positive asso-
ciations between cardio vascular admissions 
and PM2.5 road dust (lag 0 and lag 1) as well 
as between respiratory admissions and road 
dust (all lags) and sea salt (lag 0 and lag 2). 
In contrast, a previous source-apportionment 
study of PM2.5 sources and hospitalizations 
in New York City (Lall et al. 2011) reported 
that soil PM2.5, which is related to our road 
dust category, was not associated with respira-
tory or cardio vascular hospital admissions, 
except for a significant negative association 
with cardio vascular admissions at lag 2. In 
addition, they reported a positive association 
between traffic PM2.5 and cardio vascular 
admissions, in contrast with null findings 
for motor vehicle sources and cardio vascular 
admissions in the present study. However, as 
in the present study, Lall et al. (2011) did not 
identify associations between traffic sources 
PM2.5 and respiratory admissions, or asso-
ciations of residual oil or S with respiratory or 
cardio vascular admissions.

Zanobetti et al. (2009) examined whether 
associations between PM2.5 mass and hospi-
talization rates for 26 U.S. communities were 
modified by the chemical composition of the 
particles instead of estimating associations 
between hospitalization and PM2.5 constituents 
or sources directly. The authors reported that 

Figure 2. Percent change in risk of cardio vascular hospital admissions per IQR increase in exposure to 
PM2.5 constituent, with adjustment by other PM2.5 constituents Ca, BC, V, and Zn. Data points represent 
the central estimates, and the vertical lines represent 95% CIs. IQR values correspond to those in Table 1.
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higher contributions of Ni and Br strengthened 
associations between PM2.5 mass and cardio-
vascular hospitalization rates. Our findings were 
partly consistent, with a significant association 
between Ni and respiratory admissions but no 
association of Br with respiratory or cardio-
vascular admissions. Our results indicated a 
higher risk of respiratory admissions with 
higher levels of Ni and no associations for Br.

Our results on chemical constituents add 
to the body of evidence indicating that some 
PM2.5 constituents and sources are more 
harmful than others. However, the specific 
constituents and sources that are associated 
with adverse health outcomes differ by study. 
This could relate to differences in populations 
or study designs, with some studies investigat-
ing the health risk of a specific constituent 
and others investigating how a constituent’s 
contribution to PM2.5 affects PM2.5 relative 
risk estimates or other research questions. The 
apparent lack of consistency among findings 
may also relate to heterogeneity of the particle 
mixture. For example, a given constituent 
may reflect a different relative contribution 
of sources in one community than another 
(e.g., emissions from industry vs. traffic). In 
addition, the chemical composition of PM2.5 
from a speci fic source may differ across cities 
(e.g., traffic source affected by distribution of 
vehicle and fuel types and traffic patterns).

Although all of the PM2.5 constitu-
ents that we studied have multiple sources, 
several were dominated by specific sources, 
and were therefore used as source indica-
tors. In the study area, motor vehicles are a 
main contributor to Zn and BC, road dust 
to Si and Al, oil combustion to V and Ni, 
sea salt to Cl, and regional sources to S (Bell 
et al. 2010). However, in some instances we 
observed associations with sources but not 
with their marker constituents. This could 
relate to uncertainties in source apportion-
ment approaches or measures of constituents, 
the range of sources for each constituent, and 
variation in measurement quality. For exam-
ple, while Al is produced from resuspended 
soil, other sources of Al include steel process-
ing, cooking, and prescribed burning (Kim 
et al. 2005; Lee et al. 2011; Ozkaynak et al. 
1996; Wang et al. 2005). V is produced from 
oil combustion but also from the manufacture 
of electronic products and from coke plant 
emissions (Wang et al. 2005; Weitkamp et al. 
2005). Analysis with PMF may detect associa-
tions for sources when marker  constituents do 
not, or vice versa (Ito et al. 2004).

Additional research is needed to further 
investigate health consequences of PM2.5 con-
stituents and sources, including how features 
of the concentration–response relationship 
may differ by particle type (e.g., lag structure, 
seasonal patterns). Other studies have reported 
seasonal patterns in PM2.5 and its associations 

with hospitalizations (Bell et al. 2008; Ito 
et al. 2011), but the limited time frame of 
our data set, and the larger proportion of data 
collected during the winter than in the sum-
mer, prohibited extensive analysis by season. 
Results may not be generalizable to other loca-
tions or time periods. Even in a given loca-
tion, the chemical composition of PM2.5 may 
change over time due to changes in sources.

Special consideration should be given to 
exposure methods because spatial heterogeneity 
differs by constituent or source (Peng and Bell 
2010). Use of a smaller spatial unit (e.g., ZIP 
code) could lessen exposure misclassification. 
An additional challenge is that key data for par-
ticle sources and constituents may be unavail-
able. For example, our data set did not include 
organic composition or ammonium sulfate, and 
the sources identified using our factorization 
approach might have differed if additional data 
had been available. Minimum detection limits 
hindered our ability to estimate exposure for all 
constituents and to incorporate them in source- 
apportionment methods. As constituent moni-
toring networks continue, data will expand 
with more days of observations being available; 
however, such data are still substantially less 
numerous than that for many other pollutants, 
and not all counties have such monitors.

Particle sources are of key interest to policy 
makers, but source concentrations cannot 
be directly measured and must be estimated 
using methods such as source apportionment, 
land-use regression, or air quality modeling. 
Our approach utilized PM2.5 filters to provide 
an expansive data set of constituents for use 
in source apportionment. This method could 
be expanded to generate data beyond that of 
existing monitoring networks, but it requires 
substantial resources.

Researchers have applied a variety of 
approaches to estimate how PM2.5 constitu-
ents or sources affect health outcomes. One of 
the most commonly applied methods is use 
of constituent levels (or sources) for exposure, 
as applied here and elsewhere (e.g., Ebisu and 
Bell 2012; Gent et al. 2009; Li et al. 2011). 
Other methods use the constituent’s contribu-
tion (e.g., fraction) to PM2.5 to estimate asso-
ciations or as an effect modifier of PM2.5 risk 
estimates (e.g., Franklin et al. 2008), residuals 
from a model of constituent on PM2.5 (e.g., 
Cavallari et al. 2008), or interaction terms such 
as between PM2.5 and monthly averages of the 
constituent’s fraction of PM2.5 (e.g., Valdés 
et al. 2012).

Mostofsky et al. (2012) summarized several 
such modeling approaches, noting that each 
method has distinct benefits and limitations, 
and answers different scientific questions. Our 
approach (constituent levels) has the advantage 
of results that are readily interpretable, which 
can aid use of findings in other scientific disci-
plines and decision making. However, potential 

limitations include confounding by covarying 
constituents and PM2.5 in situations where 
PM2.5 is associated with the health outcome. 
Including a variable for PM2.5 in the model 
with the constituent addresses confounding 
by PM2.5 but does not address potential con-
founding by covarying constituents, and inclu-
sion of such a variable could overadjust if the 
constituent and PM2.5 are correlated (which is 
likely for constituents representing a large pro-
portion of PM2.5 total mass). Methods based 
on residuals of models of constituents on PM2.5 
address confounding by PM2.5 but produce 
results that are difficult to interpret and do 
not estimate relative risk based on the absolute 
magnitude of a change in constituent level.

The results of various approaches should 
be interpreted in the context of the scien-
tific question they address and the method’s 
limitations. Mostofsky et al. (2012) applied 
six approaches to the analysis of constituents 
and risk of ischemic stroke onset, and found 
fairly similar results across methods with the 
same constituents identified as those with the 
largest risk estimates. Mostofsky et al. (2012) 
noted that although effect estimates were 
not directly comparable across methods, the 
relative ranking of constituents’ estimates was 
similar across methods. We applied one of the 
methods discussed in Mostofsky et al. (2012) 
to adjust key constituent results by PM2.5. 
Findings were similar to the main results, with 
identical rankings of central estimates for key 
results in Table 3 (results not shown).

Conclusions
Our results contribute to the growing evidence 
that some particle types are more harmful 
than others, suggesting that policies aimed at 
restricting some sources more than others may 
be more effective for protecting health than 
is regulating particle mass. As research on air 
pollution and health moves toward a multi-
pollutant approach (Dominici et al. 2010; Li 
et al. 2011), policy makers will have better 
information to develop multi pollutant regula-
tions to protect public health. PM2.5 levels that 
meet current regulations may still be harmful 
if there is no threshold below which PM2.5 
is not associated with adverse health effects 
(Anenberg et al. 2010; Brauer et al. 2002) but 
also if the composition of PM2.5 that is below 
regulatory standards has higher than normal 
contributions from harmful constituents.
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