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Abstract

Expanding the modern synthesis requires elevating the role of inter-
action within and across various biological scales to the status of an evo-
lutionary principle. One way to do this is to characterize genes, gene
expression, and embedding environment as information sources linked by
crosstalk, constrained by the asymptotic limit theorems of information
theory (Wallace, 2010a). This produces an inherently interactive structure
that escapes the straightjacket of mathematical population genetics and
other replicator dynamics. Here we examine fitness from that larger per-
spective, finding it intimately intertwined with niche construction. Two
complementary models are explored: niche construction as mediating the
connection between environmental signals and gene expression, and as a
means of tuning the channel for the transmission of genetic information in
a noisy environment. These are different views of the same elephant, in a
sense, seen as simplified projections down from a larger dynamic system.

Key Words: average distortion, catalysis, evolution, information theory.

1 Introduction

Lewontin (2010), reviewing the book by Fodor and Piatelli-Palmarini (2010),
describes the modern evolutionary synthesis as having four basic metaphorical
principles:

(1) The principle of variation: Among individuals in a population there
is variation in form, physiology, and behavior.

∗Contact: Rodrick Wallace, PhD, Box 47, NYSPI, 1051 Riverside Drive, New York, NY,
10032, rodrick.wallace@gmail.com

1

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
10

.5
05

9.
1 

: P
os

te
d 

20
 O

ct
 2

01
0

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Nature Precedings

https://core.ac.uk/display/289472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


(2) The principle of heredity: Offspring resemble their parents more than
they resemble unrelated individuals.

(3) The principle of differential reproduction: In a given environment,
some forms are more likely to survive and produce more offspring than other
forms.

(4) The principle of mutation: New heritable variation is constantly
occurring.

Lewontin, however, finds this structure lacking, in that “...there is an im-
mense amount of biology that is missing”, largely involving interactions within
and across structural entities at various scales.

To address this lack, Wallace (2010a) introduces a fifth principle:
(5) The principle of environmental interaction: Individuals and groups

engage in powerful, often punctuated, dynamic mutual relations with their em-
bedding environments that may include the exchange of heritage material be-
tween markedly different organisms.

The central innovation of that work is to avoid the intellectual straightjacket
of mathematical population genetics and other replicator dynamics formalisms
by describing embedding ecosystem, genetic heritage, and (cognitive) gene ex-
pression in terms of interacting information sources whose dynamics are driven
by the homology between information source uncertainty and free energy density
in a series of regression-like relations similar to the empirical Onsager equations
of nonequilibrium thermodynamics. Taking much the perspective of Champag-
nat et al. (2006), the resulting theory is inherently coevolutionary, in the largest
sense, so that there is no single ‘natural’ scale at which ‘selection’ takes place.
There is, rather, a set of interactive quasi-equilibria subject to often highly
structured large deviations representing the punctuated equilibria of Eldredge
and Gould (1972), as well as possibly larger, hierarchical, conformations.

Here we restrict the theory to recover a closer analog to conventional se-
lection and fitness theory, inherently modified, however, by processes of niche
construction (e.g., Odling-Smee et al., 2003) such as biofilms, multicellularity,
burrows, eusocial nests, and larger social formations that mediate between in-
dividual development and environmental signals. This is a necessary test of the
larger theory, in the same logical sense that any modern theory of gravitation
must reduce to Newton’s in an appropriate approximation.

We examine two complementary perspectives, first, in terms of a channel
connecting gene expression to environmental signals, and then in terms of the
transmission of genetic information along a noisy environmental channel. These
are, in a sense, two downward projected views of the more complete elephant
described in Wallace (2010a).

2

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
10

.5
05

9.
1 

: P
os

te
d 

20
 O

ct
 2

01
0



2 Niche construction as lubricating the channel
connecting environmental signals to gene ex-
pression

The basic schema is that of figure 1.
A multifactorial environmental signal, a ‘message’, yn = {y1, y1, ..., yn}, rep-

resenting the systematic output of an embedding ecosystem information source,
is expressed by a cognitive gene expression information source – following Wal-
lace (2010a) and Wallace and Wallace (2009) – in terms of a multifactorial pat-
tern of phenotypes, the ‘message’ bn = {b1, b2, ..., bn}. We suppose it possible
to deterministically retranslate, ‘decode’, the phenotype message to produce a
new version of the original environmental message, i.e., the environment inferred
from the phenotype. We write that inferred picture as ŷn = {ŷ1, ŷ2, ..., ŷn}. We
then introduce a numerical distortion measure that compares yi with ŷi, writ-
ing it as d(yi, ŷi). As Cover and Thomas (1991) indicate, many such measures
are possible and have been used, and the essential dynamics are, remarkably,
independent of the precise measure chosen.

Suppose that with each path yn and bn-path retranslation into the y lan-
guage, ŷn, there are associated individual, joint, and conditional probability
distributions p(yn), p(ŷn), p(yn, ŷn), p(yn|p̂n).

The average distortion is defined as

D =
∑
yn

p(yn)d(yn, ŷn).

(1)

Clearly, D is an inverse fitness measure: phenotypes that match environ-
ments produce higher rates of successful reproduction, in this model.

It is possible, using the distributions above, to define the information trans-
mitted from the Y to the Ŷ process using the Shannon source uncertainty of
the strings:

I(Y, Ŷ ) = H(Y )−H(Y |Ŷ ) = H(Y ) +H(Ŷ )−H(Y, Ŷ ),

(2)

where H(..., ...) is the standard joint, and H(...|...) the conditional, Shannon
uncertainties (Cover and Thomas, 1991, Ash, 1990). If there is no uncertainty
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Figure 1: Environmental ‘message’ y = {y1, y2, ..., yn} is expressed as the phe-
notype ‘message’ b = {b1, b2, ..., bn}, that is deterministically translated into a
reconstruction of the environmental message, ŷ = {ŷ1, ŷ2, ..., ŷn}. A distortion
measure d(y, ŷ) characterizes the difference between what was sent and what
was received, allowing construction of an average distortion D, inversely mea-
suring fitness, and a rate distortion function R(D) that, as a free energy analog,
permits analysis in terms of available metabolic free energy, κM .
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in Y given the retranslation Ŷ , then no information has been lost, and the
systems are in perfect synchrony. In general, of course, this will not be true,
and information has been lost in the translation of the environmental message
into final phenotype spectrum.

The rate distortion function R(D) for a source Y with a distortion measure
d(y, ŷ) is defined as

R(D) = min
p(y,ŷ);

∑
(y,ŷ)

p(y)p(y|ŷ)d(y,ŷ)≤D
I(Y, Ŷ ).

(3)

The minimization is over all conditional distributions p(y|ŷ) for which the
joint distribution p(y, ŷ) = p(y)p(y|ŷ) satisfies the average distortion constraint
(i.e., average distortion ≤ D).

The Rate Distortion Theorem states that R(D) is the minimum necessary
rate of information transmission that ensures the communication between the
biological vesicles does not exceed average distortion D. Thus R(D) defines a
minimum necessary channel capacity. Cover and Thomas (1991) or Dembo and
Zeitouni (1998) provide details. The rate distortion function has been calculated
for a number of systems.

An absolutely central fact characterizes the rate distortion function: Cover
and Thomas (1991, Lemma 13.4.1) show that R(D) is necessarily a decreasing
convex function of D for any reasonable definition of distortion.

That is, R(D) is always a reverse J-shaped curve. This will prove crucial for
the overall argument. Indeed, convexity is an exceedingly powerful mathemati-
cal condition, and permits deep inference (e.g., Rockafellar, 1970). Ellis (1985,
Ch. VI) applies convexity theory to conventional statistical mechanics.

For a Gaussian channel having noise with zero mean and variance σ2 (Cover
and Thomas, 1991),

R(D) = 1/2 log[σ2/D], 0 < D ≤ σ2

R(D) = 0, D > σ2.

(4)

For a Poisson channel with message arrival rate λ – essentially information
transmission by an analog to photon counting in which the instantaneous output
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rate is controlled by the input modulo noise – the rate distortion function is
(Bedekar, 2001)

R(D) = log[1/λD], 0 < D ≤ 1/λ

R(D) = 0, D > 1/λ

(5)

where D is the average in-order service time of a hypothetical first come first
serve queue that would result in the output.

Recall, now, the relation between information source uncertainty and channel
capacity (e.g., Ash, 1990),H[X] ≤ C, where H is the uncertainty of the source
X and C the channel capacity, defined according to the relation (Ash, 1990)

C ≡ max
P (X)

I(X|Y ),

(6)

where P (X) is chosen so as to maximize the rate of information transmission
along a channel Y .

Finally, recall the analogous definition of the rate distortion function above,
again an extremum over a probability distribution.

Our own work (e.g., Wallace and Wallace, 2008, 2009) focuses on the ho-
mology between information source uncertainty and free energy density. More
formally, if N(n) is the number of high probability ‘meaningful’ – that is, gram-
matical and syntactical – sequences of length n emitted by an information source
X, then, according to the Shannon-McMillan Theorem, the zero-error limit of
the Rate Distortion Theorem (Ash, 1990; Cover and Thomas, 1991; Khinchin,
1957),

H[X] = lim
n→∞

log[N(n)]

n

= lim
n→∞

H(Xn|X0, ..., Xn−1)
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= lim
n→∞

H(X0, ..., Xn)

n+ 1
,

(7)

where, again, H(...|...) is the conditional and H(..., ...) is the joint Shannon
uncertainty.

In the limit of large n, H[X] becomes homologous to the free energy den-
sity of a physical system at the thermodynamic limit of infinite volume. More
explicitly, the free energy density of a physical system having volume V and
partition function Z(β) derived from the system’s Hamiltonian – the energy
function – at inverse temperature β is (e.g., Landau and Lifshitz 2007)

F [K] = lim
V→∞

− 1

β

log[Z(β, V )]

V
≡

lim
V→∞

log[Ẑ(β, V )]

V
,

(8)

with Ẑ = Z−1/β . The latter expression is formally similar to the first part
of equation (7), a circumstance having deep implications: Feynman (2000) de-
scribes in great detail how information and free energy have an inherent duality.
Feynman, in fact, defines information precisely as the free energy needed to erase
a message. The argument is surprisingly direct (e.g., Bennett, 1988), and for
very simple systems it is easy to design a small (idealized) machine that turns
the information within a message directly into usable work – free energy. In-
formation is a form of free energy and the construction and transmission of
information within living things consumes metabolic free energy, with nearly
inevitable losses via the second law of thermodynamics. If there are limits on
available metabolic free energy there will necessarily be limits on the ability
of living things to process information, and in particular to match phenotype
expression to environmental cues.

R(D) is, by this account, a free energy measure, constrained by the avail-
ability of metabolic free energy. We therefore write a classic probability density
function for the average distortion D – an inverse fitness measure – as
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P [D] =
exp[−R(D)/κM ]∫max

0
exp[−R(D)/κM ]dD

(9)

where κ represents the efficiency of use of available metabolic energy rate M .
Higher κM , in this model, permits lower average distortion, and we can

calculate the mean of the average distortion – again, an inverse index of fitness
– as a function of κM .

For the Gaussian channel, direct calculation gives

< DG >=

∫
DP [D]dD =

σ2(2κM + 1)

4κM + 1
.

(10)

For the Poisson channel,

< DP >=
κM + 1

λ(2κM + 1)
.

(11)

At the limits of high and low κM , these have, respectively, the values

< DG >=
σ2

2
, σ2,

< DP >=
1

2λ
,

1

λ
.

(12)
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According to this model, < D >, which represents an inverse fitness measure,
is – within a factor of 2 – primarily driven by internal indices of the way in which
a developing organism can represent environmental signals.

This result has significant implications for understanding niche construc-
tion: in the sense of a recent treatment of intrinsically disordered proteins in
a rough folding funnel (Wallace, 2010b), niche construction ‘self-lubricates’ or
impedance-matches the relation between gene expression and environmental de-
mands, decreasing σ2 or increasing λ, according the nature of the channel.

3 Niche construction as tuning the channel for
the transmission of genetic information in a
noisy environment

A quite different picture of niche construction emerges from application of the
‘tuning’ version of Shannon’s Coding Theorem to instantiate a Rate Distortion
Manifold (Glazebrook and Wallace, 2009a, b). The basic argument follows that
of Wallace et al., (2009, Section 2.10). The focus is now on the successful
transmission of genetic heritage within a noisy environmental channel, and the
role of niche construction in tuning that channel.

Messages from an information source, seen as symbols xj from some al-
phabet, each having probabilities Pj associated with a random variable X, are
encoded into the language of some transmission channel, a random variable Y
with symbols yk, having probabilities Pk, possibly with error. The received
symbol yk is then retranslated – decoded – (without error) into some xk, which
may or may not be the same as the xj that was sent.

More formally, the message sent along the channel is characterized by a
random variable X having the distribution P (X = xj) = Pj , j = 1, ...,M . The
channel through which the message is sent is characterized by a second random
variable Y having the distribution P (Y = yk) = Pk, k = 1, ..., L.

The joint probability distribution of X and Y is defined as P (X = xj , Y =
yk) = P (xj , yk) = Pj,k and the conditional probability of Y given X is P (Y =
yk|X = xj) = P (yk|xj).

Recall that the Shannon uncertainty of X and Y independently and the joint
uncertainty of X and Y together are defined respectively as

H(X) = −
∑M
j=1 Pj log(Pj),

H(Y ) = −
∑L
k=1 Pk log(Pk),

H(X,Y ) = −
∑M
j=1

∑L
k=1 Pj,k log(Pj,k).

The conditional uncertainty of Y given X is defined as
H(Y |X) = −

∑M
j=1

∑L
k=1 Pj,k log[P (yk|xj)].

For any two stochastic variates X and Y , H(Y ) ≥ H(Y |X), as knowledge
of X generally gives some knowledge of Y , and equality occurs only in the case
of stochastic independence.

Since P (xj , yk) = P (xj)P (yk|xj), H(X|Y ) = H(X,Y )−H(Y ).
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The information transmitted by translating the variable X into the channel
transmission variable Y – usually with error – and then decoded without error
the transmitted Y back into X is defined as I(X|Y ) ≡ H(X) − H(X|Y ) =
H(X) +H(Y )−H(X,Y ).

See, for example, Ash (1990), Khinchin (1957) or Cover and Thomas (1991)
for details. The essential point is that if there is no uncertainty in X given the
channel Y , then there is no loss of information through transmission. In general
this will not be true, and herein lies the essence of the theory.

Given a fixed vocabulary for the transmitted variable X, and a fixed vocab-
ulary and probability distribution for the channel Y , we may vary the prob-
ability distribution of X in such a way as to maximize the information sent.
Recall that the capacity of the channel is defined according to equation (6), i.e.,
C ≡ maxP (X) I(X|Y ), subject to the subsidiary condition that

∑
P (X) = 1.

The critical trick of the Shannon Coding Theorem for sending a message with
arbitrarily small error along the channel Y at any rate R < C is to encode it in
longer and longer ‘typical’ sequences of the variable X; that is, those sequences
whose distribution of symbols approximates the probability distribution P (X)
above which maximizes C.

If S(n) is the number of such ‘typical’ sequences of length n, then log[S(n)] ≈
nH(X), where H(X) is the uncertainty of the stochastic variable defined above.
Some consideration shows that S(n) is much less than the total number of
possible messages of length n. Thus, as n→∞, only a vanishingly small fraction
of all possible messages is meaningful in this sense. This observation, after some
considerable development, is what allows the Coding Theorem to work so well.
In sum, the prescription is to encode messages in typical sequences, that are sent
at very nearly the capacity of the channel. As the encoded messages become
longer and longer, their maximum possible rate of transmission without error
approaches channel capacity as a limit. Again, Ash (1990), Khinchin (1957)
and Cover and Thomas (1991) provide details.

This approach can be, in a sense, inverted to give a tuning theorem which
parsimoniously describes the essence of the Rate Distortion Manifold.

Telephone lines, optical wave, guides and the tenuous plasma through which
a planetary probe transmits data to earth may all be viewed in traditional
information-theoretic terms as a noisy channel around which we must structure
a message so as to attain an optimal error-free transmission rate.

Telephone lines, wave guides, and interplanetary plasmas are, relatively
speaking, fixed on the timescale of most messages, as are most other signal-
ing networks. Indeed, the capacity of a channel, is defined by varying the
probability distribution of the ‘message’ process X so as to maximize I(X|Y ).

Suppose there is some message X so critical that its probability distribution
must remain fixed – here, the genetic heritage. The trick is to fix the distribution
P (x) but modify the channel – that is, tune it – so as to maximize I(X|Y ). Such
a dual channel capacity C∗ can be defined as
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C∗ ≡ max
P (Y ),P (Y |X)

I(X|Y ).

(13)

But

C∗ = max
P (Y ),P (Y |X)

I(Y |X)

since

I(X|Y ) = H(X) +H(Y )−H(X,Y ) = I(Y |X).

Thus, in a purely formal mathematical sense, the message transmits the
channel, and there will indeed be, according to the Shannon Coding Theorem,
a channel distribution P (Y ) which maximizes C∗.

One may do better than this, however, by modifying the channel matrix
P (Y |X), in our case, via niche construction. Since P (yj) =

∑M
i=1 P (xi)P (yj |xi),

P (Y ) is entirely defined by the channel matrix P (Y |X) for fixed P (X) and

C∗ = max
P (Y ),P (Y |X)

I(Y |X) = max
P (Y |X)

I(Y |X).

(14)

Calculating C∗ requires maximizing the complicated expression I(X|Y ) =
H(X) +H(Y )−H(X,Y ) containing products of terms and their logs, subject
to constraints that the sums of probabilities are 1 and each probability is itself
between 0 and 1. Maximization is done by varying the channel matrix terms
P (yj |xi) within the constraints. This is a difficult problem in nonlinear opti-
mization, but for the special case M = L, C∗, the answer can be found by
inspection. If M = L, then choose P (yj |xi) = δj,i, where δi,j is 1 if i = j
and 0 otherwise. For this special case C∗ ≡ H(X), with P (yk) = P (xk) for
all k. Information is thus transmitted without error when the channel becomes
‘typical’ with respect to the fixed message distribution P (X).

If M < L, matters reduce to this case, but for L < M information must be
lost, leading to Rate Distortion limitations.

Thus modifying the channel may be a far more efficient means of ensuring
transmission of an important message than encoding that message in a ‘natural’
language that maximizes the rate of transmission of information on a fixed
channel.
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We have examined the two limits in which either the distributions of P (Y ) or
of P (X) are kept fixed. The first provides the usual Shannon Coding Theorem,
and the second a niche construction tuning theorem variant, a tunable retina-like
Rate Distortion Manifold. It seems likely, however, than for many important
systems P (X) and P (Y ) will interpenetrate, so that P (X) and P (Y ) will affect
each other in characteristic ways, so that some form of mutual tuning may be
the most effective strategy, a tuning that can perhaps be permanently recorded
via adaptive mutations or learned cultural changes.

The essential point is that, for the transmission of genetic heritage in a
noisy environment, niche construction provides a means to tune the transmitting
channel around the message.

4 Discussion and conclusions

Taking a gene expression-environment signal perspective, according to equation
(12), an organism whose developmental ability to respond to environmental
signals, to match phenotype to the demands of an embedding ecosystem, is
constrained by channel capacity – high developmental noise σ2 or low signal
rate λ – must inevitably suffer diminished fitness.

But what of an organism that can interact, in a hierarchical manner, with the
embedding environment, in the sense of principle (5)? Biofilms, multicellularity,
burrows, eusocial nests, herds, and the more structured social assemblages of
the hominids and their cultures, all provide means, in this model, to limit noise
or increase signal strength, by, essentially, impedance matching environment to
development. That is, examining the fitness of the organism in terms of its
constructed niche decreases an ‘effective’ σ2 and increases an ‘effective’ λ in
equation (12), representing increased fitness in terms of decreased distortion in
the channel between the organism and an embedding environment now primarily
represented by the constructed niche.

Another way of looking at this is to say that it is the hierarchical structure
of organism-in-constructed niche that interacts with the environment, now via
the effective parameters.

Looking at the transmission of genetic heritage in a noisy environment – a
quite different view – Section 3 suggests that niche construction can also be
viewed as a means of tuning the gene transmission channel so as to maximize
the fidelity of the genetic message.

These are, then, complementary perspectives that describe the same pro-
cess via added epicycles to the limited machinery of the first four principles.
Introduction of principle (5) collapses the argument, in the sense of Wallace
(2010a), and subsumes both models, providing a more complete picture of the
entire elephant, in a manner of speaking, at the expense of the considerable
mathematical machinery inherent to equation (4) of that paper.

Introducing animal culture, in the sense of Avital and Jablonka (2000), di-
rectly into the model of Wallace (2010a) is most simply done by invoking a
fourth information source – culture as a generalized language – into equation
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(4) of that work. The argument is direct, although the effects are likely to be
most subtle.

Clearly, then, the introduction of principle (5) permits incorporation into
formal theory of at least some of the immense amount of biology that is missing
from the modern synthesis. Most critically, fitness and niche construction must
become intimately intertwined in any such expanded formulation.
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