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Abstract

We present a method for direct non-optical quantification of dry mass, dry density and water mass of single living cells in
suspension. Dry mass and dry density are obtained simultaneously by measuring a cell’s buoyant mass sequentially in an
H2O-based fluid and a D2O-based fluid. Rapid exchange of intracellular H2O for D2O renders the cell’s water content
neutrally buoyant in both measurements, and thus the paired measurements yield the mass and density of the cell’s dry
material alone. Utilizing this same property of rapid water exchange, we also demonstrate the quantification of intracellular
water mass. In a population of E. coli, we paired these measurements to estimate the percent dry weight by mass and
volume. We then focused on cellular dry density – the average density of all cellular biomolecules, weighted by their relative
abundances. Given that densities vary across biomolecule types (RNA, DNA, protein), we investigated whether we could
detect changes in biomolecular composition in bacteria, fungi, and mammalian cells. In E. coli, and S. cerevisiae, dry density
increases from stationary to exponential phase, consistent with previously known increases in the RNA/protein ratio from
up-regulated ribosome production. For mammalian cells, changes in growth conditions cause substantial shifts in dry
density, suggesting concurrent changes in the protein, nucleic acid and lipid content of the cell.
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Introduction

The dry and wet content of the cell as well as its overall

chemical composition are tightly regulated in a wide range of

cellular processes. Bacteria and yeast increase their ribosomal

RNA content to achieve faster growth rates [1–4], the wet and dry

content of yeast can change disproportionately during the cell

cycle [5–7] and the water content of mammalian cells is reduced

following apoptosis [8]. Despite the fundamental significance of

these physical parameters, the techniques for measuring them

directly, particularly in living cells, are limited. Dry and wet mass

are typically obtained by weighing a population before and after

baking to remove the intracellular water [9]. Although dry mass

can be measured in living cells by quantitative phase microscopy

[10], the conversion factor between refractive index and dry mass

concentration must be known. While this factor is similar for most

globular proteins (typically varying by less than 5%), it can vary by

almost 20% for carbohydrates or lipids [10]. Approaches based on

vibrational spectroscopy can provide chemical composition of

living cells [11], but do not reveal the dry and wet mass.

To address these limitations, we developed an approach that

exploits the high water permeability of cellular membranes for

obtaining the water mass, dry mass, and an index of chemical

composition for living cells (Fig. 1). When a cell is weighed in

fluids of distinct densities - an H2O-based and a deuterium oxide-

based (D2O) fluid - the aqueous portion of the cell is neutrally

buoyant in both measurements since intracellular H2O is rapidly
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replaced by D2O upon immersion in D2O. The paired weighings

(Fig. 1a,b, blue and red) therefore offer direct quantification of

the cell’s dry mass and its non-aqueous volume, which allows us to

determine a parameter termed dry density [12,13] – the density of

the cell’s dry material (Fig. 1b). If we instead make the first

measurement in an impermeable fluid as dense as D2O, the

intracellular H2O buoys up the cell. Upon immersing the cell in

D2O, the intracellular H2O is replaced by D2O, and the aqueous

portion of the cell no longer contributes to its buoyancy. The

differential between these two measurements (Fig. 1a,b, green

and red) yields the intracellular water mass, as it excludes the dry

material whose buoyant mass is identical in both cases.

Here we validate this approach and use it to measure the dry

mass and dry density of various cell types, from microbes to

mammalian cells. Dry density is related to the chemical

composition of cells: it is an average of the densities of the

different components of the cell’s biomass (RNA, proteins, lipids,

etc.) (Table 1) weighted by their relative amounts (Table 2). It is

different from dry mass density, which refers to the concentration

of cellular dry mass, i.e. dry mass per unit cell volume. In contrast

to total cell density or dry mass density, dry density is independent

of the cell’s water content, making the measurement invariant to

water uptake or expulsion due to osmotic pressures. Dry density is

also size independent, whenever the relative chemical composition

remains unchanged.

We show that dry density increases between stationary and

exponential phases in E. coli and S. cerevisiae, as might have been

expected due to known changes in RNA/protein ratio, since RNA

is denser than most cellular components. We further observe

changes in dry density of mammalian cells that are manifestations

of their different states: healthy proliferating mouse embryonic

fibroblasts, FL5.12 cells and L1210 lymphocytic leukemia cells all

show higher dry density values than confluent fibroblasts, nutrient-

starved FL5.12 cells and cycloheximide-treated L1210 cells,

respectively, even though in some cases their dry mass distribu-

tions do not undergo noticeable alterations. These examples

suggest that dry density may be used to determine the bulk cellular

composition that is necessary for proliferation.

Measurement Principle
This work builds upon a previously published method for

measuring a particle’s total density, mass and volume. Like Grover

et al. [14] we use a suspended microchannel resonator (SMR) to

determine a single particle’s buoyant mass, defined as.

mb~V r{rfluid
� �

~m 1{
rfluid
r

� �
ð1Þ

where V is the volume, m is the mass and r is the density of the

particle immersed in a fluid of density rfluid (Fig. S1). One

buoyant mass measurement does not uniquely determine either

the volume or the mass of a particle, but with two sequential

buoyant mass measurements in fluids of differing densities, it is

possible to solve for the particle’s mass and volume (Fig. 1b).

We alter this method by rendering the intracellular water

content of a cell neutrally buoyant in both buoyant mass

measurements, allowing the paired measurements to isolate the

physical properties of the dry content alone. We formalize this by

decomposing a cell’s buoyant mass into two parts – the buoyant

mass of the dry material and the buoyant mass of the intracellular

water:

mbfluid
~mdry 1{

rfluid

rdry

 !
zViw riw{rfluid

� �
ð2Þ

where mdry and rdry are the mass and density of the cell’s dry

content, or biomass, and Viw, riw are the volume and the density

of the exchangeable water content. Assuming that the cell is

measured first in pure H2O and secondly in pure D2O, and that

the intracellular H2O molecules are all replaced by D2O

molecules, in each measurement the buoyant mass of the

exchanged volume (the latter term in equation 2) is zero. The

two cases yield.

mbH2O
~mdry 1{

rH2O

rdry

� �

mbD2O
~mdry 1{

rD2O

rdry

� �
8>>><
>>>:

ð3Þ

and we can solve for the dry mass, dry volume, and dry density

(Fig. 1b).

Additionally, the method can be easily modified to determine

the cell’s water content, owing to the rapid exchange of H2O by

D2O. A cell is first weighed in a dense, non-cell permeable fluid

such as OptiPrep (iodixanol in H2O) and then weighed in D2O. If

the fluids’ densities are adjusted to match, the contribution to the

cell’s buoyant mass of the dry content (first term in equation 2) is

identical in both fluids. Therefore the differential measurement

allows for the determination of the mass and volume of the cell’s

water content, since the value is simply the buoyant mass of the

intracellular water when weighed in the non-cell permeable fluid.

Further analysis of the method and assumptions is in the

Supporting Information.

Results

Aqueous, Non-aqueous and Total Cellular Content
As an initial test of our method, we separately determined the

water content, dry content and total content of individual cells

from a sample of early stationary E. coli. Since the measurement

time typically exceeded several doublings of the culture, cells were

fixed to ensure all cells were representative of the culture at a single

timepoint. We measured the single-cell water mass distribution by

sequentially measuring the cells in OptiPrep:PBS (r= 1.101 g?cm–

3) followed by D2O:PBS (r= 1.101 g?cm23). The median water

content in these cells was 516612 fg. We then measured cells

sequentially in H2O:PBS (r= 1.005 g?cm23) and D2O:PBS to

obtain the dry mass distribution, yielding a median value of

20365 fg. Finally, we measured the total mass distribution by the

method of Grover et al. [14] and the median value was

727615 fg. To ensure that the osmotic pressure experienced by

the cells was equal in both fluids of each measurement, phosphate

buffered saline (PBS) was added to the all the solutions in order to

match their osmolarity.

The results presented above demonstrate that the method is self-

consistent, as the water content of the cells plus the dry mass (sum

of median values equals 719613 fg) accounts for the total mass

value (Fig. 1c). This suggests the median early stationary fixed E.

coli cell is roughly 28% dry material by mass and 20% by volume,

though these numbers may be different in living cells.

Cellular Dry Mass, Dry Density and Water Content
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Figure 1. Buoyancy of a cell in fluids of different densities and membrane permeabilities. a) In an H2O or D2O based fluid (1 or 3), the cell
sinks as a result of the dry content’s density being higher than the surrounding fluid. In a dense impermeable fluid (2), the buoyancy of the cell’s
water content dominates and the cell floats. b) The pairing of the different buoyant mass measurements allows the determination of different
biophysical parameters of the cell as shown in the plot (not to scale). c) Kernel density estimates of probability densities for dry mass, water mass and
total mass of a sample of fixed stationary-phase E. coli. Functions were rescaled so that their maxima were one. Solid bars represent sample medians.
doi:10.1371/journal.pone.0067590.g001

Cellular Dry Mass, Dry Density and Water Content
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Dry Density
Bacteria. We investigated whether and how bacterial dry

density and dry mass change with culture growth phases by

growing E. coli cells and analyzing fixed samples of the culture at

four time points - stationary, early exponential (after dilution into

new culture), late exponential, and a second stationary point

(Fig. 2). Each fixed sample was analyzed two to three times over

several days to verify the results were consistent. We found that dry

mass increased in early exponential phase, then rapidly decreased

upon entry into stationary phase, which has been reported

previously [5,15]. Dry density exhibited a similar trend, initially

increasing when stationary E. coli were diluted into fresh medium

and entered exponential growth. As the culture progressed

towards late exponential phase, the dry density decreased and

by stationary phase had returned to the same value as the previous

stationary culture. We also noted a subpopulation of cells in the

early exponential sample that had masses and dry densities

characteristic of stationary cells (left shoulder on blue distributions

in Fig. 2b, see also Fig. S2).

Compared to the variation in total density reported previously

for E. coli [16] and other microorganisms such as yeast [17], our

single-cell dry density measurements were much more variable. To

investigate the source of this variation, we looked at how errors in

buoyant mass measurement would propagate to dry density

estimates (Fig. S3) and simulated error distributions for our

experimental conditions (see Methods and Supporting Infor-
mation). For E. coli measurements, the simulated and observed

distributions match quite well (Fig. S4), suggesting that the

majority of the observed heterogeneity arises from buoyant mass

measurement error. Thus, it is likely that the true dry density

variation is lower than what we observe. We also note that the dry

density may be affected by the fixatives needed for technical

replicates.

Yeast. We were interested in whether these patterns of

changes were unique to bacteria, or if they might also be found in

eukaryotic cells. As with E. coli, we grew a culture of yeast for a 24

h growth cycle, taking samples throughout the culture’s growth

phases for fixation and quantification of their dry mass and dry

density (Fig. 3). The measurements were repeated both with

technical and biological replicates showing consistency amongst

the measurements and trends (summarized in Fig. 3e).

Single-cell distributions are shown for dry density (Fig. 3b) and

dry mass (Fig. 3c). The first time point during growth, 3h after the

dilution, shows a concurrent increase in cell dry mass and dry

density, when cells are growing at their fastest growth rate and

actively dividing. The gradual decrease in dry density accompanies

the slowing speed of culture growth as the culture approaches

saturation. In contrast to the E. coli results, the computed error

distributions are less variable than what we observe (Fig. 3b),

showing true density heterogeneity and possibly distinct subpop-

ulations. Additionally, we concurrently annotated cells as budded

or unbudded by brightfield microscopy. In early stationary phase

cultures, the dry density distribution of budded cells showed higher

median values than of unbudded cells, but in exponential phase,

the dry densities were not significantly different. (Fig. S5).

Mammalian cells. Finally, we measured the changes in dry

density that occur when varying mammalian cells are subjected to

similar changes in growth conditions. We chose four cell types –

mouse embryonic fibroblasts, (MEFs), L1210 mouse lymphocytic

leukemia cells, FL5.12 mouse prolymphocytic cells, and CD8 T

cells from an OT-1 transgenic mouse – and manipulated the

proliferative state of each. For MEFs, cells were grown either to

70% or 100% confluency. L1210 cells were treated with

cycloheximide and measured before and 24 hours after treatment.

FL5.12 cells were measured before and 20 hours after being

placed in media lacking interleukin 3 (IL-3). Finally, naı̈ve OT-1

CD8 T cells were activated with an ovalbumin peptide and

measured before and 96 hours after activation. All measurements

were performed without cell fixation.

With the exception of the activated OT-1 cells, proliferating

cells appeared to have higher dry densities than their non-

proliferating counterparts (Fig. 4). Moreover, both MEF cells

grown to confluency (Fig. 4a) and L1210 cells treated with

cycloheximide (Fig. 4b) did not show a substantial decrease in dry

mass relative to steady state populations. FL5.12 cells, however,

decreased both in dry density and dry mass when starved of IL-3

(Fig. 4c). Interestingly, primary OT-1 T CD8 cells, which are

quiescent and non-proliferating (naı̈ve), had higher dry density

prior to activation than following activation (Fig. 4d). Of these

four mammalian cell lines, only for the naı̈ve OT-1 T cells is the

variation nearly completely accounted for by measurement error,

suggesting non-negligible biological variation in the other popu-

lations. Additionally, for all the cells except the OT-1 cells, the

observed variation in dry density increased upon interfering with

proliferation.

Red blood cells. Human erythrocytes are a unique sample

for our method because they are deformable enough that we can

flow them through sensitive 365 mm channel devices designed for

bacteria. No cell lysis was observed, consistent with reports of

unimpeded flow of red blood cells through 3 mm diameter pores

[18]. As a result, there is essentially no error caused by variability

in cell transit flow paths, and because they are 40 to 160 times

larger than bacteria, the signal-to-noise ratio is higher than for any

other sample. From four different human samples, we find that

erythrocytes have extremely narrow dry density distributions

(median sample standard deviation of 0.0024 g?cm–3, maximum

0.0051 g?cm–3) and the measurements are highly reproducible

(Fig. 5a). The narrowness of the dry density distributions allow us

to distinguish differences in dry density amongst different

populations that may or may not have distinct dry mass

distributions. We also compared the dry mass of the red blood

Table 1. Density of chemical components of cells.

Density (g?cm–3) References

DNA 1.4–2.0 [31,32]

RNA 2.0 [31]

Protein 1.22–1.43 [31,33]

doi:10.1371/journal.pone.0067590.t001

Table 2. Approximate chemical composition of a bacterium,
yeast and mammalian cell.

E. coli S. cerevisiae Mammalian Cell

% total weight Water 70 80 70

% dry weight DNA 3 0.1–0.6 1

RNA 20 6–12 4

Proteins 50–55 35–60 60

Lipids 7–9 4–10 13

References [15,34,35] [36–40] [35]

doi:10.1371/journal.pone.0067590.t002

Cellular Dry Mass, Dry Density and Water Content
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cells, with the mean hemoglobin content quantified by the FDA-

approved Siemens ADVIA instrument (Fig. 5b).

Discussion

We have introduced a non-optical technique for quantifying the

dry mass, water content and dry density of either living or fixed

cells that does not require any assumptions about the cell’s

composition. However, it does rely on two key assumptions. First,

to avoid osmotic perturbations that might damage or lyse a cell,

the measurements are not made in pure H2O and D2O, but in

isotonic solutions. Therefore the assumption that the intracellular

water volume is exactly neutrally buoyant in the immersion fluid is

an approximation, as there will be a difference between the

densities of the intracellular water (or deuterium oxide) and of the

fluids in which the cell is immersed. However, assuming the cell

volume is 80% water, this error will be small (,0.04 g?cm–3 - see

Supporting Information and Fig. S6). Knowing the exact

fraction of water content would allow us to correct for this effect.

Second, we assume that complete exchange of intracellular water

occurs. This is justified, as we observe at most very weak (and

typically statistically insignificant) correlations between dry density

and the time a cell spends immersed in D2O (Supporting
Information and Figs. S7 and S8). Indeed, previous measure-

ments of water permeation and diffusion across the membrane

have demonstrated the almost instantaneous nature of the event

[1].

Our dry mass results are consistent with previous reported

measurements of the described single-cell or bulk methods. For

instance, two TEM-based studies found median E. coli dry masses

of 489 fg and 710 fg for exponentially growing cells and 179 fg

and 180 fg for stationary ones [5,7]. We report median masses of

725 fg and 179 fg, respectively, pooling technical replicates shown

in Figure 2. Budding yeast dry mass content per cell is not widely

reported and growth conditions vary can vary widely, but our

results are in line with the values reported by Mitchison [6].

Further, the results for the human erythrocytes agree well with the

hemoglobin content concurrently quantified by the FDA-

approved ADVIA instrument (Fig. 5b), or by QPM [19]. It

should be noted that, even though the ADVIA measures only

hemoglobin content, this protein has been shown to account for

more than 95% of the cell’s dry mass [20,21]. By comparison to

our results, the mean hemoglobin content determined by the

ADVIA accounts for 97.761.3% of the total dry mass content.

A unique aspect of our measurement is the concurrent

determination of dry density. The few mentions of this parameter

in the literature are seemingly limited to measurements of wet and

dry spores [12,13,22] or an application in an H2O/D2O density

gradient [23]. However, none of these reports connect dry density

to chemical composition of the dry content. Our results suggest

that dry density is a direct manifestation of the changes in

chemical composition of a cell’s biomass and we demonstrate that

the parameter can be measured for single cells. While related to

total cell density, dry density is independent of the intracellular

water content and should not be perturbed by uptake or expulsion

of water. In contrast, since the majority of a cell’s volume is

composed of water, total density is likely to be much more

indicative of changes in cell water content.

Figure 2. Dry density and dry mass of a bacterial culture. a) Growth curves of E. coli cultures. A culture was grown for 24 hours, diluted 1000-
fold, and allowed to grow again for 24 hours. Samples from the cultures were fixed for analysis at the colored time-points. Solid line is the fit to
logistic growth model. b) The dry density of the culture by sampling time point. Technical replicates of these fixed samples show that the changes in
density are reproducible and not attributable to instrument error. c) Probability distributions of dry mass, rescaled so that the modal mass had a
density of one. Lines of the same color are technical replicates, measured several days apart.
doi:10.1371/journal.pone.0067590.g002

Cellular Dry Mass, Dry Density and Water Content
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For E. coli [2,15,24] and yeast [3,4], the RNA/protein ratio has

been extensively correlated with growth rate: faster growing cells

have an increased proportion of RNA relative to protein. We

observe these growth-rate-dependent changes in chemical com-

position directly as changes in dry density, since the average

density of proteins is lower than of RNA (Table 2). Faster growing

cells – in early exponential phase – have a higher dry density,

consistent with higher RNA/protein ratio, and as growth rate

diminishes, so does dry density. Furthermore, the annotation of

budded and unbudded yeast populations also reveals that at early

saturation time points, budded cells tend to have higher dry

densities than unbudded cells. However, as the culture enters

exponential phase, the unbudded cells no longer possess a

distinctive dry density profile. We speculate that the dry density

variation results from heterogeneous proliferative states within a

well-mixed culture - cells with higher dry densities are those that

are currently or were more recently proliferating.

Our results with mammalian cells demonstrate that dry density

changes when growth is perturbed. Both MEF and FL5.12 cells

decrease their dry density as they transition into unfavorable

growth conditions characterized by culture crowding or nutrient

deprivation from IL-3 depletion. The decrease in MEF dry density

can be compared to the results reported by Short et al. [25] for

fibroblast derived M1 cells, in which the relative amounts of RNA

and protein content decrease and lipid content increases for

overcrowded non-proliferating cells when compared to proliferat-

ing ones. Changes in dry density are not necessarily correlated

with dry mass. L1210 cells treated with a lethal dose of

cycloheximide – which blocks protein synthesis – show a decrease

in dry density even though the overall dry mass distribution does

not show a substantial decrease. This suggests that during this

period the cell has no notable net mass exchange with its

environment, but the inner constituents of the cell are undergoing

substantial biochemical alterations. As fewer proteins are synthe-

sized during this time, degradation is likely the primary force

Figure 3. Dry density and dry mass of a yeast culture. a) Growth curve of a culture started from a 1000-fold dilution of a recently-saturated
culture (time 0h). b) Distributions of dry densities for the time points indicated in a). Distributions expected due purely to measurement error (see
text) are shown as black dashed lines. c) Dry mass distributions for the same time points. d) Single-cell data for time point 8h. Solid lines is median
dry density and dashed lines are 99% bounds on the expected dry densities if all cells actually had the median dry density, given known
measurement error (see Methods). e) Dry density distribution medians for several replicates: curves 1 and 2 are technical replicates and 2–4 are
biological replicates; curve 3 is for data show in b).
doi:10.1371/journal.pone.0067590.g003

Cellular Dry Mass, Dry Density and Water Content
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lowering the relative protein content [26]. This increases the

relative contribution of lower density components, such as lipids,

thereby decreasing the overall dry density. The alteration of dry

density in these situations suggests that this parameter can be

indicative of cell proliferative state. If proliferating cells amongst a

steady state population have different dry densities, dry density

could be complementary to proliferation detection assays such as

Ki-67 labeling.

We also wished to see if changing mammalian cell growth rate

by activating growth from a natural quiescent state would result in

a change in dry density. In their naı̈ve state, CD8 T cells are

quiescent and only begin proliferating following antigen stimula-

tion. Comparison of naı̈ve and activated OT-1 CD8 T cells show

that T cell activation is accompanied by dramatic changes in both

dry density and dry mass, suggesting, as in previous results, that as

cells alter their proliferative state, changes in their chemical

composition occur. It is notable that naı̈ve CD8 T cells freshly

isolated from mice show high dry density but very low dry mass.

Stimulation of these cells into proliferation is associated with an

expected increase in dry mass as well as a change in dry density to

similar values of cultured L1210 cells. The increase in dry mass is

consistent with the growth of the cells as they undergo

proliferation. However, the high dry density of naı̈ve CD8 T cells

was unexpected, in light of the observation that the dry density

Figure 4. Dry density and mass of proliferating and non-proliferating mammalian cells. Solid lines are median dry densities and dashed
lines are 99% bounds on the expected dry densities if all cells actually had the median dry density, given known measurement error. a) Confluent and
proliferating (75% confluency) mouse embryonic fibroblasts. b) Cycloheximide-treated and proliferating L1210 cells. c) IL-3-depleted and
proliferating FL5.12 cells. d) Naı̈ve and activated OT-1 T cells.
doi:10.1371/journal.pone.0067590.g004

Cellular Dry Mass, Dry Density and Water Content
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decreases when mammalian cells undergo growth arrest due to

stress or depletion of nutrition. Naı̈ve CD8 T cells are compact

with little cytoplasm –consistent with their low dry mass value –

and their high dry density may reflect the lack of cytoplasm and

organelles, which are rich in lipids. As a result, the proportion of

nucleic acids and proteins is higher for naı̈ve T cells than actively

dividing T cells.

Finally, we demonstrate that the concept of rapid exchange of

intracellular water can be used to quantify a cell’s water content.

Although we can currently measure only an average or modal

intracellular water fraction, the ability to weigh single cells in three

different fluids will allow all of the described quantities to be

determined simultaneously.

Materials and Methods

Ethics Statement
Human erythrocytes samples were collected from subjects under

a discarded specimen protocol approved by the Partner Human

Research Committee, Partners Human Research Office, 116

Huntington Avenue, Suite 1002 Boston, MA 02116. Blood

specimens were de-identified, and the ethics committee waived

the requirement for informed consent after determining that the

risk to subjects was minimal. The research protocol and research

progress were reviewed and approved upon initial submission and

every two years thereafter by the ethics committee.

All experiments with mice were performed in accordance with

the institutional guidelines approved by the Massachusetts Institute

of Technology Committee on Animal Care (CAC), which

specifically approved the animal part of this study.

SMR Operation
Three types of SMRs were used to perform the measurements.

For bacteria and red blood cells, the procedure is identical to that

of Grover et al. [14] but smaller 3636100 mm and 3656120 mm

(channel height 6width 6 length, for bacteria and red blood cells

respectively) cantilevers were used. In some experiments OptiPrep

(iodixanol) was used instead of Percoll. Budding yeast cells were

measured as previously described for single-cell density by Weng

et al. [17], with an 868 mm, 210 mm-long three-channel device.

Finally, the larger mammalian cells were measured with a

15620 mm, 450 mm-long channel SMR with the Grover et al.

method, however the device was being operated in the second

vibrational mode [27].

To measure dry mass and dry density, the cells are weighed

twice, first in a water-based solution (1X PBS in H2O), secondly in

a deuterium oxide-based solution (1X PBS in 9:1 D2O:H2O) (Fig.
S1). The actuation of the cantilever in the second vibrational

mode increases sensitivity and decreases error by eliminating the

flow path dependency of the buoyant mass measurement. The

three-channel devices also eliminate this error, as described

elsewhere [27]. However, technical constraints prevent us from

using either of these methods with the smaller bacterial-sized

devices.

After the first weighing, the cell is immersed in the second fluid

and the two measurements can be done several seconds apart. The

fluidic exchange occurs on a faster time-scale. While it is difficult

to make the two measurements faster in less than several seconds

using regular cantilevers, with the three-channel devices the fluid

environment can be switched from H2O to D2O very rapidly

(250 ms). During this time, depending on the device, the cell is

either outside of the sensor (all samples but yeast), or in trapped

inside it (yeast). However, even in the case of yeast, we cannot

directly observe the time dynamics of intracellular water exchange

because it is obscured by the large transient signal resulting from

changing the fluid in the cantilever.

To measure water content in single E. coli, cells were initially

immersed in a solution of roughly 18% OptiPrep (w/v), 0.9X PBS

in H2O. Because it is essential that the fluid densities match

precisely, this solution density was manually adjusted with a few

drops of water or 60% OptiPrep to match the density of 1X PBS

in 9:1 D2O:H2O. Cell buoyant masses were then sequentially

measured in the OptiPrep:PBS:H2O solution, followed by the

PBS:D2O solution.

SMR buoyant mass measurements were calibrated using

polystyrene particles of varying sizes (depending on SMR type)

from Duke Scientific and from Bangs Labs. Fluid density

measurements were calibrated with NaCl standard solutions. All

measurements were done at 22–23uC.

Cell Culture and Fixation
Escherichia coli. Cells (ATCC 23725) were grown on Luria

Broth (LB) agar plates from frozen stock, and single colonies were

transferred into 35 mL liquid cultures (LB) and grown for 24 hours

at 37uC with vigorous shaking. Two cultures were grown to verify

similar growth behavior by optical density at 600nm. After 24

hours, several milliliters from one culture were fixed in 2%

paraformaldehyde and 2.5% glutaraldehyde for 1 hour at 4 C.

Figure 5. Dry density and mass of red blood cells. a) Single-cell dry density and dry mass distributions of two different human erythrocyte
samples. Solid and dashed lines of same color indicate technical replicates. Dashed black line is a 99% bound on the expected dry density of a
representative sample if all cells had the median dry density, given known measurement error. inset Population mean values from four patient
samples. Error bars are standard deviation of the population. b) Comparison to hemoglobin mass per cell determined with an Advia instrument.
Dashed line indicates y = x and solid line is a total least squares fit.
doi:10.1371/journal.pone.0067590.g005
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Some of the same culture was also used to inoculate a 35 mL

culture at a 1000-fold dilution. Cells were then taken at OD600

0.17 and 1.17 and fixed (220 minutes and 340 minutes,

respectively), and then a final sample was fixed at 24 hours

(OD600 ,3.3).

Saccharomyces cerevisiae. Haploid cells (702 W303, strain

A2587 [28]) were grown in YEPD medium at 30uC, well-shaken.

For suspended culture growth experiments cells were started from

a plated culture and grown for 24 h. At that point an aliquot was

sampled and a new culture was started with a 1000-fold dilution.

Subsequent aliquots were sampled at the times described in the

text. Each sample was spun down, suspended in PBS, sonicated

and fixed in 4% paraformaldehyde overnight.

Red blood cells. Four human erythrocytes samples were

collected in EDTA from subjects under a research protocol

approved by the Partners Healthcare Institutional Review Board.

Samples were diluted in PBS prior to each dry measurement.

‘‘Advia’’ hemoglobin mass measurements were performed on a

Siemens Advia 2120 instrument.

L1210. L1210 murine lymphoblasts (ATCC CCL-219) cells

were grown at 37uC in L-15 media supplemented with 0.4% (w/v)

glucose, 10% (v/v) fetal bovine serum (FBS), 100 IU penicillin and

100 mg/mL streptomycin. For cycloheximide treatment, 5 mL of a

10 mg/mL cycloheximide in DMSO stock solution were added to

a 5 mL culture (7.5 6 105 cells/mL) of L1210 cells. Treated cells

were maintained in an incubator at 37uC for 24 hours prior to

measurement. Before loading the sample into the SMR, cells were

washed twice in PBS by spinning down for 5 minutes each time at

100 RCF. The concentration of the cell sample was adjusted to 5

6 105/mL.

FL5.12. Cells were grown at 37uC in RPMI media supple-

mented with 10% (v/v) FBS, 100 IU penicillin, 100 mg/mL

streptomycin and 0.02 mg/mL IL-3. For FL-5.12 starvation, a

confluent culture of FL5.12 cells (106/mL) was washed three times

before culturing for 20 h in RPMI media lacking IL-3. Before

measurement in the SMR, cells were washed twice with PBS as

with the L1210 cells. FL5.12 are a murine pro-B-cell lymphoid cell

line and were a gift from gift from Matt Vander Heiden (MIT) and

cultured as previously described [29].

Mouse endothelial fibroblasts. Cells were grown at 37uC
in DMEM media supplemented with 10% (v/v) FBS, 100 IU

penicillin and 100 mg/mL streptomycin. Cells were trypsinized

and measured at 70% confluency (106 cells on a 25 cm2 flask) or

overconfluency (2 6 106/mL). Cells were washed twice with PBS

before loading into the SMR. MEFs were a gift from Denis Wirtz

(Johns Hopkins University) [30].

OT1 CD8 T cells. Lymph nodes were harvested from OT1-

rag12/2 mice, ground and filtered using a 70 mm nylon cell

strainer. To activate T cells, OT-1 cells were stimulated with

2 mg/mL OVA2572264 peptide (SIINFEKL) at 37uC for 24 hours

in RPMI media supplemented with 10% (v/v) FBS, 100 IU

penicillin, 100 mg/mL streptomycin, 2 mM L-glutamine, 1 mM

sodium pyruvate, 55 mM 2-mercaptoethanol and 100 mM nones-

sential amino acids, followed with culture for another 4 days in the

presence of 50 IU IL-2. Cells were washed twice with PBS before

measurements. Measurements of naı̈ve CD8 T cells were carried

out immediately after harvesting from mice. All experiments with

mice were performed in accordance with the institutional

guidelines.

Statistical Analysis
To estimate uncertainty in dry density and dry mass measure-

ments, we first estimate the uncertainty in buoyant mass

measurements, and then simulate how this measurement error

propagates through the density and mass calculations. Buoyant

mass uncertainty is estimated from the discrepancy between two

sequential measurements of a cell in the same fluid, as the two

measurements are expected to be identical. Two sequential

measurements are made from approximately 100 cells, and for

each cell, the difference between the two measurements is

calculated. As the difference in each pair of measurements is the

difference of two presumed independent errors, rescaling the

distribution of differences by
ffiffiffi
2

p
yields approximately the

distribution of errors that might occur on a single buoyant mass

measurement.

For dry mass, the standard error in an estimate is approximately

15 times greater than the error in a single buoyant mass

measurement (see File S1 for calculations). However, dry density

is a non-linear function of the two buoyant mass measurements

and so we simulate the effect of buoyant mass errors on a

population with no dry density variability. We begin by assuming

all particles have a density equal to the median observed dry

density and a mass distribution equal to our observed dry mass

distribution. We sample 10000+ hypothetical particle masses from

our observed dry mass distribution and calculate buoyant masses

for those particles in the two fluids used for the experiment. We

then sample errors from our measured error distribution, add this

random noise to each buoyant mass measurement, and calculate

the dry density for each ‘noisy’ pair of buoyant mass measure-

ments. Although no dry density heterogeneity went into this

calculation, the resulting dry density measurements have a non-

zero variation due to buoyant mass errors, and we qualitatively

compare these distributions to our observed dry density distribu-

tions.

Supporting Information

Figure S1 Using the SMR to measure the buoyant mass of a cell

in H2O and D2O. The measurement starts with the cantilever

filled with H2O (blue, box 1). The density of the red fluid is

determined from the baseline resonance frequency of the

cantilever. When a cell passes through the cantilever (box 2), the

buoyant mass of the cell in water is measured as a transient change

in resonant frequency. The direction of fluid flow is then reversed,

and the resonance frequency of the cantilever changes as the

cantilever fills with D2O, a fluid of greater density (red, box 3). The

buoyant mass of the cell in D2O is measured as the cell transits the

cantilever a second time (box 4). From these four measurements of

fluid density and cell buoyant mass, the absolute mass, volume,

and density of the cell’s dry content are calculated. (Adapted from

Grover et al. [14]).

(TIF)

Figure S2 Dry mass versus dry density of single E. coli cells. Same

data as shown in Figure 2, but plotted to show single cells rather

than just marginal distributions.

(TIF)

Figure S3 a) Contour map of density as a function of two

buoyant mass measurements. b) In polar coordinates, the angle

can be shown to map directly to density. c) Contour map showing

cell mass as a function of two buoyant masses. This function is

linear, with a gradient oriented to the lower right (higher buoyant

mass in H2O, lower buoyant mass in D2O).

(TIF)

Figure S4 Comparison of measured data (solid lines) to

simulations of buoyant mass measurement errors propagating

through the density calculation for E. coli samples. Dashed lines

show expected dry density distributions assuming all cells have the
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same density and that density is the median observed dry density

(vertical line).

(TIF)

Figure S5 Dry density distributions for budded and unbudded

yeast cells, by timepoint. P-values are for two-sided Mann-

Whitney U tests.

(TIF)

Figure S6 Contour plots of dry density estimates when the

buoyant mass measurements aren’t made in pure H2O or pure

D2O. Intracellular water fractions are in fraction of total volume.

Dashed line shows equal departure (in density) from pure fluids.

Pure H2O and 9:1 (v/v) D2O:H2O densities are the red dot in the

lower left corner of each figure, at which point the dry density is

calculated correctly. As salts (or other impermeable components)

are added to the fluid, it becomes more dense and the intracellular

water is no longer neutrally buoyant. This introduces systematic

error into the dry density measurement, which depends on how

much of the cell is water. The measurements we’ve made using 16
PBS in both fluids are shown as black dots.

(TIF)

Figure S7 Time between measurements (exposure time) versus

calculated dry density for single cells in each of nine analyses of E.

coli samples (2–3 technical replicates for each of 4 samples).

Assuming the cell was nearly immediately immersed in D2O after

the first measurement, this should be a good approximation of

time spent in D2O. Line shows ordinary least squares fits, which

agreed well with robust fits (Huber weights). Correlations are all

statistically insignificant at a= 0.05 (a= 0.006 for each test, using

Bonferroni correction). P-values are given for slope being non-zero

using one-sided t-test.

(TIF)

Figure S8 Time between measurements (exposure time) versus

calculated dry density for single S. cerevisiae cells in four

experiments. Line shows ordinary least squares fits, which never

account for more than 5% of the total variance. Because these

experiments were done three-channel devices, much more precise

control over exposure time could be achieved, and this parameter

was deliberately varied, yielding the discrete times seen above.

Only one experiment showed a statistically significant correlation

(a= 0.05/4 = 0.0125 using Bonferroni correction). P-values are

given for slope being non-zero using one-sided t-test.

(TIF)

File S1 Supplemental discussion: error sources, evidence for

complete fluid exchange, description of water-content measure-

ment method and remarks on the necessity of single-cell

measurements.

(PDF)
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5. Loferer-Krößsbacher M, Klima J, Psenner R (1998) Determination of bacterial

cell dry mass by transmission electron microscopy and densitometric image

analysis. Appl Environ Microbiol 64: 688–694.

6. Mitchison JM (1958) The growth of single cells. II. Saccharomyces cerevisiae.

Exp Cell Res 15: 214–221.

7. Fagerbakke KM, Heldal M, Norland S (1996) Content of carbon, nitrogen,

oxygen, sulfur and phosphorus in native aquatic and cultured bacteria. Aquat

Microb Ecol 10: 15–27. doi:10.3354/ame010015.

8. Maeno E, Ishizaki Y, Kanaseki T, Hazama A, Okada Y (2000) Normotonic cell

shrinkage because of disordered volume regulation is an early prerequisite to

apoptosis. Proc Natl Acad Sci USA 97: 9487–9492. doi:10.1073/

pnas.140216197.

9. Bratbak G, Dundas I (1984) Bacterial dry matter content and biomass

estimations. Appl Environ Microbiol 48: 755–757.

10. Barer R, Ross KFA, Tkaczyk S (1953) Refractometry of living cells. Nature 171:

720–724. doi:10.1038/171720a0.
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