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Oxide compositions of equimolar YO1.5 and TaO2.5 in the Y-Ta-Zr-O system have attractive 

properties for high temperature applications including as thermal barrier coatings. The effect of 

zirconia concentration, from 0 to 20 mole percent cation, on the tetragonal to monoclinic phase 

transition has been studied using high temperature X-ray diffraction, Raman spectroscopy, and 

electron microscopy. The transformation is reversible and the temperature variation of an order 

parameter based on the spontaneous strain is consistent with the transformation being 

ferroelastic, a critical feature for toughening at high temperatures. The presence of twin domains 

further supports this conclusion. Additionally, stabilization of the tetragonal phase with 

increasing ZrO2
 is evident from the amount of partially retained tetragonal phase at room 

temperature.  
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1. Introduction 

Integral to the development of high-performance, energy-efficient next generation turbine 

engines is the quest for oxide materials that can be used as higher temperature, thermal barrier 

coatings than current yttria-stabilized zirconia (7YSZ).[1] These materials are required to have 

not only low thermal conductivity but also match the high-temperature toughening, ferroelastic 

toughening exhibited by 7YSZ. As part of this search, the zirconia-rich portion of the Y-Ta-Zr-O 

system has been investigated. The basic features of the zirconia-rich portion of the phase 

diagram were described by Kim and Tien,[2] with an emphasis on the stability of the tetragonal 

and cubic phases. More recently, in a series of papers, Levi and colleagues have elaborated on 

the phase stabilities in the zirconia–rich portion of the phase diagram, more clearly delineating 

the phase fields and relating some of the physical properties such as fracture toughness and 

thermal conductivity to the phase content.[3, 4] They have also explicitly considered the 

opportunities for phases in this system as prospective thermal barrier coatings.[5]  Much less is 

known about the phase fields in the vicinity of YTaO4 and reference to the phase diagram 

compilations of the American Ceramic Society[6] indicates that along the Y2O3-Ta2O5 join there 

are two other phases, YTa3O9 and Y3TaO7, in addition to YTaO4.  No solubility of zirconia in 

YTaO4 is indicated in the published phase diagram but preliminary work by Levi and Clarke has 

indicated that there is some limited solubility of zirconia along the YTaO4-ZrO2 line, similar to 

the line extending from pure ZrO2 with equal co-substitution of Y and Ta for Zr while 

maintaining overall charge neutrality. These preliminary studies indicate that the compound is a 

line compound, Y1-xTa1-xZr2xO4, with little solubility for either excess Ta5+ or Y3+.  Any excess is 

accommodated by a second phase, either YTa3O9 or Y3TaO7. Based on the diagram by Kim and 

file:///C:/Users/David/Documents/My%20Dropbox/Manuscripts/Phase%23_ENREF_6


3 

Tien,[2] and the more recent work of Pitek and Levi,[5] the tentative phase diagram at 1500oC that 

has guided our studies is shown in Fig. 1. 

The isothermal ternary phase diagram, however, is lacking information about the stability 

of YTaO4 and its transformation as a function of temperature. The existence of a very high-

temperature phase transformation in YTaO4 was reported in the Russian literature by Komkov [7] 

and subsequently studied by Wolten and Chase [8] as well as by Stubican.[9]  The work at the time 

identified and clarified the existence of two monoclinic phases, termed m and m’,[8, 10] and the 

space groups of both were tabulated. Unfortunately, interest in this transformation languished, 

perhaps, in part, because of the discovery of transformation toughening in zirconia partially-

stabilized with calcia in CSIRO, Australia [11] and the tremendous excitement it spurred in the 

ceramics community.   

 The purpose of this work was to study the effect of ZrO2 alloying on the t-m 

transformation in YTaO4 and microstructural evidence for ferroelasticity. Structural 

characterizations and calculation of the spontaneous strain based on crystal symmetry indicate 

that the transformation remains displacive even for substantial zirconia concentrations. We show 

that alloying with zirconia does not affect the t-m transformation other than to reduce the 

transformation temperature and that the lattice parameters evolve continuously through the 

transformation. Additionally, the transformation is accompanied by the formation of twin 

domains, a characteristic of a ferroelastic transformation.  

 

2. Experimental Details  

The materials studied in this work were in the form of both powders and pellets. Five 

compositions of equimolar of Y3+ and Ta5+ with varying contents of Zr4+, (0, 5, 10, 15, and 20 
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cation mole percentage (mol%) were prepared. The powders were synthesized by the reverse co-

precipitation method using zirconium oxynitrate hydrate (>99%), yttrium nitrate hexahydrate 

(>99.8%) and tantalum chloride (99.99%) precursor solutions (all chemicals used in this 

experiment were purchased from Sigma-Aldrich). Solutions of ZrO(NO2)2 and Y(NO3)3 in 

deionized  (DI) water and solutions of TaCl5 in ethanol were first prepared and calibrated using 

gravimetric method. Properly calculated proportions of the solutions were then mixed together 

just before the precipitation step to prevent the hydrolysis of the TaCl5 in water.  Once mixed, 

precipitation was initiated by slowly adding the solution, dropwise, into ammonium hydroxide 

solution (the pH value was controlled to be >10 during precipitation) with vigorous stirring. The 

precipitates were isolated by centrifugation and washed twice, first with DI water and then with 

ethanol, and dried over night at 70oC. The precipitates were then calcined at 700oC for 2 h to 

remove the organic constituent, producing molecularly mixed metal oxides. The resultant 

powders were ground with a mortar and pestle and passed through a <325 mesh sieve. Solid disk 

pellets were then made by cold, uniaxial pressing the sieved powder at 100 MPa and then 

sintering for 5 h at 1500oC at a ramp rate of 8C/min. Raman spectra on the pellets were 

recorded using LabRAM Aramis Raman system (Horiba Jobin Yvon, Edison, NJ) with laser 

excitation at 532 nm. Transmission electron microscopy (TEM) sample was prepared using a 

dual beam, focused ion beam (FIB) and scanning electron microscopy (FIB-SEM, Zeiss NVision 

40) utilizing the lift-out method. To remove the damages caused by Ga ion during FIB, the 

sample was cleaned using the Fischione NanoMill 1040. The microstructure was then observed 

using a JEOL 2100 TEM. 

High temperature X-ray diffraction studies were performed with a quadrupole lamp 

furnace at the National Synchrotron Light Source in Brookhaven National Laboratory.[12] 
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Whole pattern fitting and Rietveld analysis of the acquired high temperature X-ray data was 

conducted using Jade software (Materials Data Incorporated, Livermore, CA). The crystal 

structures of the m- and t-phases were based on structure No. 109190 and 37138, reported in the 

Inorganic Crystal Structure Database (ICSD v. 2011/1, National Institute of Standards and 

Technology, Gaithersburg, MD; Fachinformationszentrum (FIZ), Karlsruhe, Germany).  

 

3. Results 

As has been described elsewhere [13] for YTaO4, an initially amorphous powder first 

transformed to the m’ phase and then with further heating transformed to a tetragonal phase.  

This same sequence was observed in the zirconia-alloyed materials as well. In this study, X-ray 

diffraction measurements were conducted on powders that had already been heated to 1600oC. 

X-ray diffraction patterns were acquired while heating the powders from room temperature to 

1600oC and then cooling back to room temperature. The X-ray reflections for the starting phase 

could be indexed as a monoclinic phase, and in the case of the pure YTaO4 corresponded to those 

previously reported in Powder Diffraction File number 24-1415 [14]. The detailed 

crystallography of the transformation in pure YTaO4 will be described in a forthcoming 

publication [15]. A systematic peak broadening was observed with increasing ZrO2 

concentration, indicating a decrease in crystallite size. This is consistent with SEM observation 

showing the grain size to monotonically decrease as the ZrO2 concentration increases.  In 

addition to the systematic shifts in the peaks as a result of the thermal expansion and contraction 

of the phases during heating and cooling, respectively, there was a reversible phase 

transformation between the monoclinic and tetragonal phases. For the 10 to 20 mol% zirconia 

samples, some tetragonal phase was retained during cooling to room temperature, as shown in 
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Fig. 3(a). The composition with 5 mol% zirconia may also have retained tetragonal phase at 

room temperature, however, because of peaks overlap between the tetragonal and monoclinic 

phases, the tetragonal reflections may have been masked by the more intense monoclinic peaks.  

The unit cell parameters as a function of temperature for all the compositions were 

derived from the X-ray patterns using Rietveld analysis. The refined unit cell parameters and 

volume of two compositions, pure YTaO4 and the material containing 20 mol% ZrO2, are shown 

in Fig. 2(a)-(c). The latter includes the lattice parameters of the retained tetragonal phase on 

cooling to room temperature. The variation in the monoclinic angle, , with temperature for the 

different zirconia concentrations is shown in Fig. 2(d). All the data could be fitted with a scaling 

relation in which the reduced monoclinic angle,  =  - 90, varied as a power law of a 

normalized temperature:  

∆𝛽

∆𝛽𝑜
= (1 −

𝑇

𝑇𝑡𝑟
)
𝑛

 , for T < Ttr,   (1) 

where o = o – 90, o is the extrapolated monoclinic angle at 0 K, Ttr is the transformation 

temperature, and n is an exponent. The values of the parameters were determined by 

simultaneously fitting all the data. The monoclinic angles for all compositions were found to fit 

the above equation at n = 0.340.02, which are shown as solid lines in Fig. 2(d). The intercept of 

these extrapolated fitting lines with the temperature-axis, gave the transformation temperature, 

which is shown in Fig. 3(a). Furthermore, the monoclinic angle, measured at room temperature, 

decreased with increasing zirconia content, as shown in Fig. 3(b). 

Raman spectra were recorded from each of the pellet samples of differing zirconia 

contents after heating to a temperature of 1600oC, as shown in Fig. 4. Strikingly, the spectra are, 

apart from slight peak shifts, indistinguishable from one another despite the varying 

concentration of zirconia in the materials.  All the peaks could be indexed as monoclinic with the 
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same Raman shifts and number of peaks as reported for the monoclinic phase of pure YTaO4 by 

Nazarov [16].  With increasing zirconia contents, significant line broadening is evident, 

especially for the external lines, however individual lines were still distinct. 

 

4. Discussion 

Our results raise several intriguing and fundamental questions. For instance, does 

zirconia alloying affect the nature of the transformation ?  Why is the transformation, other than 

its temperature, unaffected by zirconia alloying despite the presence of Zr4+ in the crystal 

structures ?  And, why does zirconia exhibit such a large solubility in YTaO4 despite having a 

tetravalent charge ?  

Qualitatively, our observations are consistent with the transformation mechanism 

remaining displacive as zirconia is alloyed into the YTaO4.  For instance, the unit cell volume 

changed continuously with temperature whereas the coefficient of thermal expansion changed 

discontinuously with temperature as illustrated in Fig. 2(c). In addition, there was the appearance 

of twins in the monoclinic phase and surface relief in all the samples on cooling from above the 

m-t transformation temperature.  These can be seen in both the SEM and TEM images shown in 

Fig. 6. In particular, the HRTEM image showed twin variants [17] with twin boundaries between 

planes (2 0 -9.1) and (9.1 0 2) and a twin angle of 99.05 (Fig. 6(c)). Details of the TEM image 

analysis and ferroelastic transformation mechanism will be published elsewhere [18]. 

More exacting was the characterization of the crystallography of the transformation. The 

most notable comparison is with the studies of the structurally related rare-earth niobates [19, 

20]. These studies analyzed the evolution of the spontaneous strain as a function of temperature 

to demonstrate that the monoclinic-to-tetragonal phase transformation is second order. 
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Introduced by Aizu to quantify the extent of ferroelasticity [21], the analysis of spontaneous 

strain compares lattice strain components for all possible orientations of the transformed phase to 

those of the parent phase. The parent phase is assumed to have zero spontaneous strain over the 

whole temperature range.  For the tetragonal to monoclinic transformations in YTaO4, the 

ferroelastic operator F is a rotation matrix of 90 around z axis of tetragonal, and the strain 

components can be expressed in terms of the unit cell parameters as [22] : 

𝑒11 =
𝑐𝑚 sin𝛽𝑚

∗

𝑎𝑡
− 1      (2a) 

𝑒22 =
𝑎𝑚

𝑏𝑡
− 1       (2b) 

𝑒33 =
𝑏𝑚

𝑐𝑡
− 1       (2c) 

𝑒12 = 𝑒21 = −
1

2
[
𝑐𝑚 cos𝛽𝑚

∗

𝑎𝑡
]     (2d) 

𝑒13 = 𝑒31 = 𝑒23 = 𝑒32 = 0     (2e) 

There are two possible orientation states, S1 and S2, in monoclinic system [21] and the resulting 

strain tensors are expressed by 

𝑖𝑗
𝑠 (𝑆1) = (

−11
𝑠 12

𝑠 0

12
𝑠 11

𝒔 0
0 0 0

)     (3a) 

𝑖𝑗
𝑠 (𝑆2) = −𝑖𝑗

𝑠 (𝑆1)      (3b) 

where  11
𝑠 = 1/2(𝑒11 − 𝑒22) and 12

𝑠 = 𝑒12.   The magnitude of spontaneous strain, (s)
2,   is 

then: 

(𝑠)2 = 2[(𝑖𝑗
𝑠 (𝑆1))

2 + (𝑖𝑗
𝑠 (𝑆2))

2)]    (4) 

The spontaneous strain for each zirconia concentration, normalized by the extrapolated 

spontaneous strain at 0 K,  o
s
 , was found to have the same functional dependence on 

temperature as is characteristic of order parameter variations of mean-field phase transitions[23], 
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𝜀𝑠

𝜀𝑜
𝑠 = (1 −

𝑇

𝑇𝑡𝑟
)
𝑛

 , for T < Ttr,   (5) 

The fitting is shown in Fig. 5(b). As can be seen, all the data for the different zirconia 

contents falls on a line with n = 0.34  0.02. Note that the right hand side of equation (1) and (5) 

are identical in form. Since the fitted exponent in equation (1) and (5) are the same, plotting the 

normalized monoclinic angle as a function of reduced temperature should result in a similar 

curve. Indeed, this is so as is shown in Fig. 5(a). While we cannot provide a justification for the 

value of the exponent in the power law description of the common curve, the fact that the curve 

described the data for the entire range of compositions strongly implies that the nature of the 

transformation was not affected by alloying YTaO4 with zirconia. We also note that although the 

exponent n = 0.34  0.02 fits the data over a wide temperature range, close to the transformation 

temperatures, the mean field exponent of n=0.5 fits equally well. 

Based on our observations, there are two compelling reasons to conclude that the Zr4+ ion 

substituted equally for both the Y3+ and Ta5+ ions in the monoclinic and tetragonal structures. 

The first was that the crystal symmetries obtained from Rietveld analysis of the X-ray data for 

the tetragonal and monoclinic phases were unchanged with zirconia alloying. The second was 

that the Raman spectra of the monoclinic phase were also unchanged, other than small 

broadening of each line, with increasing zirconia content.  Since the Raman spectrum is sensitive 

to structural symmetries at a smaller length scale than X-ray diffraction and is also more 

sensitive to displacements of the lighter oxygen ions than the cations, the unchanged Raman 

spectrum confirmed that the local symmetries were also unchanged.  Furthermore, the individual 

Raman lines remained distinguishable from one another and did not merge into one another with 

increasing zirconia, unlike the case where Y and Ta are co-substituted for ZrO2,
[3] indicating that 

there was little local distortion or clustering. 
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From a crystal chemistry classification, the monoclinic form of YTaO4, is iso-structural 

with the monoclinic form of the mineral fergusonite (impure YNbO4) and has a nominal formula 

Y3+Ta5+O4
2- where various trivalent rare-earth ions can occupy the Y3+ site and Nb5+ can 

substitute in whole or part for the Ta5+.  The tetragonal form of the mineral is a distorted version 

of the scheelite structure (CaWO4). In both the tetragonal and monoclinic structures the trivalent 

rare-earth ions have an 8-fold coordination in a deformed polyhedron and the pentavalent ions, 

Nb and Ta, have tetrahedral coordination.[24] The Zr4+ ion usually prefers 8-fold coordination as 

it does in cubic and tetragonal zirconia[25] but it can also adopts a 7-fold coordination as it does 

in monoclinic zirconia,[26] for instance.  It is not reported to adopt a tetrahedral coordination so 

it is not obvious why zirconia exhibits such an extensive solubility in either the tetragonal or 

monoclinic phases that we have been studying. It is unlikely that the structure can accommodate 

vacancies unless there were an equal number of cation and anion vacancies, since there was no 

evidence for non-stoichiometry. Furthermore, it is difficult to contemplate the structure being 

stable, let alone maintaining the same space group as pure YTaO4 with 20% of the atomic sites 

occupied by vacancies. Consequently, it is likely that Zr ions substitute in pairs for both Y and 

Ta ions within a unit cell. The ionic radii of Y3+, Zr4+ and Ta5+ are reported to be 0.1019, 0.084 

and 0.074  nm, respectively.[25] Since the average of the ionic radii of Y3+ and Ta5+ is 0.087 nm 

and differs by only 3.5% from that of the Zr4+ ion, the substitution of both Y3+ and Ta5+ sites by a 

pair of Zr4+ ions was expected to slightly distort the crystal structure of the parent phase. 

Nevertheless, such distortion was evident from the broadening in Raman peaks as the Zr ions 

concentration increased, indicating a decline in local structural symmetries. Additionally, the unit 

cell volume decreased, as shown in Fig. 2, as Zr4+ ions replaced the Y3+ and Ta5+ ions, consistent 
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with the substitution of pairs of Zr4+ ions. However, the tetragonality, given by the ratio of c/a for 

the high temperature tetragonal phase, not shown, decreased with increasing Zr4+ concentration. 

The demonstration that YTaO4 alloyed with zirconia exhibits a displacive, possibly 

ferroelastic tetragonal-monoclinic transformation inevitably suggests a comparison with the 

transformation in yttria-stabilized zirconia that is the basis for transformation toughening.[27] In 

both systems, the unit cell volume of the monoclinic phase is larger than the tetragonal unit cell, 

and the two structures are related by a lattice shear. The volume change and the shear strain are 

both smaller in the zirconia alloyed YTaO4 system than that in the YSZ system, where they are ~ 

5% and 0.15, respectively. The room temperature monoclinic angle in YSZ is 98.91o. As the 

magnitude of transformation toughening is proportional to the volume change [28, 29] it might 

be expected that the toughening would be smaller.  However, in many cases the volume change 

in YSZ is too large because of the transformation also causes microcracking so the full extent of 

transformation toughening can rarely be exploited. Consequently, it is possible that 

transformation to the monoclinic phase without microcracking may be possible. More interesting 

for toughening at high-temperatures, however, is the possibility of ferroelastic toughening [30] 

since this mechanism can operate at all temperatures, even at high temperatures. Ferroelastic 

toughening of metastable 7YSZ coatings has been demonstrated and is believed to be responsible 

for the unusual toughness of the 7YSZ coatings.[31] The attainable ferroelastic toughening is 

proportional to both the tetragonality and the coercive stress [31] so while the tetragonality 

decreases with increasing zirconia content it remains to be determined how the coercive stress 

varies and hence the attainable toughness. 

The last similarity between the two material systems is that the tetragonal phase can be 

retained at temperatures down to room temperature. In the YSZ system this can occur in nano-
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sized particles [32, 33]  as well as a metastable phase by quenching as occurs in the EB-PVD or 

plasma spray processes. In the Y1-xTa1-xZr2xO4 system, although we have evidence that the 

tetragonal phase can be retained, we do not yet know the conditions for its retention. It is clear, 

however, based on comparing the lattice parameters, that it is not the same metastable tetragonal 

t’ phase found by Mather and Davies formed on heating from the amorphous phase before the 

monoclinic m’ phase forms.[13] 

 

5. Closing Remarks 

The reversible phase transformation between a low temperature monoclinic phase and a 

high temperature tetragonal phase in YTaO4 is preserved despite alloying with zirconia up to 

concentrations of at least 20 mol% ZrO2. Both the normalized spontaneous strain and normalized 

monoclinic angle of all the compositions followed the same power law with respect to the 

reduced temperature with exponent of 0.34  0.02. The principal effect of zirconia alloying was 

to decrease the transformation temperature. The decrease was, within experimental uncertainties, 

a linear function of zirconia concentration, from 1426  7 oC for pure YTaO4 decreasing to 821  

47 oC for 20 mol% zirconia.  Additionally, zirconia had the effect of partially stabilizing the 

tetragonal phase below the transformation temperature, down to room temperature, where the 

amount of retained tetragonal phase increased as the percentage of zirconia increased. 

Subsequent papers in preparation will describe the variation in thermal conductivity and fracture 

toughness with zirconia concentration. 

One of the conclusions of this work is that the transformation is displacive and is 

consistent with the crystallography of a ferroelastic transformation. However, the stress-induced 
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transformation and the domain switching, both hallmarks of a ferroelastic transformation [34]  

have still to be demonstrated. This will be a focus of future work. 
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Fig. 1. Phase diagram of Y2O3-ZrO2-Ta2O5 at 1550oC based on the work of Kim and Tien [2], and 

Pitek and Levi[5].  The dashed lines indicate tentative tie-lines based on the presumed extent of 

solid solution for the phases labeled. Compositions of interest in this work, Y1-xTa1-xZr2xO4, 

extend from YTaO4 towards ZrO2, as shown by x or mol% equal to 0, 5, 10, 15, and 20.  Note: 

C=Cubic, F=Fluorite, O=Orthorhombic, t=tetragonal, YT=YTaO4, Y3T=Y3TaO7, YT3=YTa3O9 
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Fig. 2. Unit cell parameters as a function of temperature for (a) YTaO4 and for (b) YTaO4-20 

mol% ZrO2. Variations in unit cell volumes with temperature for the two compositions are 

shown in (c).  (d) Variation in the monoclinic included angle, , as a function of temperature for 

the different zirconia concentrations indicated. The lines shown correspond to the best fit to the 

data. The error bars are smaller than the symbol size. 
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Fig. 3. (a) The transformation temperature of tetragonal to monoclinic in YTaO4 as a function of 

zirconia concentration. Also shown is an estimate of the percentage of tetragonal retained at 

room temperature. (b) The variation in the room temperature value of the monoclinic angle with 

zirconia concentration. Also shown is the calculated spontaneous strain with zirconia 

concentration at room temperature. The error bars are smaller than the symbol size unless they 

are specifically indicated. 

 

 

Fig. 4. Raman spectra of the zirconia-stabilized YTaO4.  The spectra from the materials with 

different zirconia contents are shown for comparison.  No substantive changes in the spectra with 

zirconia concentration are evident indicating that the crystal structure did not change with 

zirconia alloying. 
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Fig. 5. (a) Normalized monoclinic angles (/o) and (b) Normalized spontaneous strains 

(/o), both plotted as a function of normalized transformation temperature, (T/Ttr).  Note that 

both sets of data closely fit to a mean field model for the transformation and suggest that it is a 

continuous, displacive transformation. The error bars are smaller than the symbol size. 
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Fig. 6. (a) SEM image of YTaO4, showing twin domains on the surface of the grains. (b) TEM 

image of the twin domains showing the intersection of perpendicular domains within one grain. 

This intersection is magnified in HRTEM image (c), which also clearly indicates the presence of 

horizontal twin domain boundary.  

 

 


