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As the fraction of electricity generation from intermittent renewable sources—such as solar 
or wind—grows, the ability to store large amounts of electrical energy is of increasing 
importance. Solid-electrode batteries maintain discharge at peak power for far too short a 
time to fully regulate wind or solar power output1,2. In contrast, flow batteries can 
independently scale the power (electrode area) and energy (arbitrarily large storage 
volume) components of the system by maintaining all of the electro-active species in fluid 
form3–5. Wide-scale utilization of flow batteries is, however, limited by the abundance and 
cost of these materials, particularly those using redox-active metals and precious metal 
electrocatalysts6,7. Here we describe a class of energy storage materials that exploits the 
favourable chemical and electrochemical properties of a family of molecules known as 
quinones. The example we demonstrate is a metal-free flow battery based on the redox 
chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely 
rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in 
sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the 
quinone/hydroquinone couple with the Br2/Br  redox couple, yields a peak galvanic power 
density exceeding 0.6 W cm2 at 1.3 A cm 2. Cycling of this quinone–bromide flow battery 
showed >99 per cent storage capacity retention per cycle. The organic anthraquinone 
species can be synthesized from inexpensive commodity chemicals8. This organic approach 
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permits tuning of important properties such as the reduction potential and solubility by 
adding functional groups: for example, we demonstrate that the addition of two hydroxy 
groups to AQDS increases the open circuit potential of the cell by 11% and we describe a 
pathway for further increases in cell voltage. The use of -aromatic redox-active organic 
molecules instead of redox-active metals represents a new and promising direction for 
realizing massive electrical energy storage at greatly reduced cost. 
 

Solutions of AQDS in sulphuric acid (negative side) and Br2 in HBr (positive side) were 

pumped through a flow cell as shown schematically in Fig. 1a. The quinone–bromide flow 

battery (QBFB) was constructed using a Nafion 212 membrane sandwiched between Toray 

carbon paper electrodes (six stacked on each side) with no catalysts; it is similar to a cell 

described elsewhere (see figure 2 in ref. 7). We report the potential–current response (Fig. 1b) 

and the potential–power relationship (Fig. 1c and d) for various states of charge (SOCs; 

measured with respect to the quinone side of the cell). As the SOC increased from 10% to 90%, 

the open-circuit potential increased linearly from 0.69 V to 0.92 V. In the galvanic direction, 

peak power densities were 0.246 W cm2 and 0.600 W cm2 at these same SOCs, respectively 

(Fig. 1c). In order to avoid significant water splitting in the electrolytic direction, we used a cut-

off voltage of 1.5 V, at which point the current densities observed at 10% and 90% SOCs were 

−2.25 A cm−2 and −0.95 A cm−2, respectively, with corresponding power densities of 

−3.342 W cm−2 and −1.414 W cm−2. 

In Fig. 2 we report the results of initial cycling studies for this battery, to test for 

consistent performance over longer timescales. Fig. 2a shows cycling data at ±0.2 A cm−2 using 

50% of the total capacity of the battery. The cycles are highly reproducible and indicate that 

current efficiencies for the battery are around 95%. Fig. 2b shows constant-current cycling data, 

collected at ±0.5 A cm−2, using voltage cut-offs of 0 V and 1.5 V. These tests were done using 

the identical solutions used in the battery for Fig. 1b–d. The galvanic discharge capacity 

retention (that is, the number of coulombs extracted in one cycle divided by the number of 

coulombs extracted in the previous cycle) is above 99%, indicating the battery is capable of 

operating with minimal capacity fade and suggesting that current efficiencies are actually closer 

to 99%. Full characterization of the current efficiency will require slower cycling experiments 

and chemical characterization of the electrolyte solutions after extended cycling. 
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In order to gain a better understanding of the quinone half-reaction on carbon, AQDS was 

subjected to half-cell electrochemical measurements. Cyclic voltammetry of a 1 mM solution of 

AQDS in 1 M sulphuric acid on a glassy carbon disk working electrode shows current peaks 

corresponding to reduction and oxidation of the anthraquinone species9–11 (Fig. 3d, solid trace). 

The peak separation of 34 mV is close to the value of 59 mV/n, where n is the number of 

electrons involved, expected for a two-electron process. Rotation of this disk at a variety of rates 

yields mass-transport limited currents (Fig. 3a) from which the AQDS diffusion coefficient 

(D = 3.8(1) × 10−6 cm2 s−1) can be determined; throughout this paper, the numbers reported in 

parentheses indicate the standard deviation in the last reported digit. Koutecký-Levich analysis at 

low overpotentials (Fig. 3b) can be extrapolated to infinite rotation rate and fitted to the Butler-

Volmer equation (Extended Data Fig. 3a) to give the kinetic reduction rate constant 

k0 = 7.2(5) × 10−3 cm s−1. This rate constant is faster than that found for other species used in 

flow batteries such as V3+/V2+, Br2/Br− and S4
2−/S2

2− (see table 2 in ref. 3). It implies that the 

voltage loss due to the rate of surface electrochemical reactions is negligible. The fast rate is 

apparently due to an outer-sphere two-electron reduction into the aromatic  system requiring 

little reorganizational energy. The electrochemical reversibility of the two-electron redox 

reaction was confirmed by fitting the slope to the Butler-Volmer equation (Extended Data Fig. 

3a), giving the transfer coefficient  = 0.474(2), which is close to the value of 0.5 expected for 

an ideally reversible reaction. The Pourbaix diagram (Extended Data Fig. 4) confirms that a two-

electron, two-proton reduction occurs in acidic solution, and yields approximate pKa values of 7 

and 11 for the reduced AQDS species11. 

Functionalization of the anthraquinone backbone with electron-donating groups such as 

hydroxy can be expected lower the reduction potential of AQDS (E0), thereby raising the cell 

voltage12. Hydroxy-substituted anthraquinones are synthesized through oxidation reactions that 

may be performed at minimal cost. They are also natural products that have been extracted for 

millennia from common sources such as rhubarb and could even provide a renewable source for 

future anthraquinone-based electrolyte solutions. 

Quantum chemical calculations of un-substituted and hydroxy-substituted AQDS were 

performed to predict how substitution patterns would change both E0 of the 

quinone/hydroquinone couples (Fig. 3c) and the solvation free energy ( 0
solvG ) in aqueous solution 
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(Extended Data Table 1). The addition of −OH groups is calculated to lower the E0 by an average 

of −50 mV per −OH and provide a wide window for tuning E0 by almost 0.6 V. In addition, 

increasing numbers of hydroxy substituents are expected to raise the aqueous solubility due to 

hydrogen bonding. 

In confirmation of the theory, the experimental reduction potential of 1,8-dihydroxy-

9,10-anthraquinone-2,7-disulphonic acid (DHAQDS) was found to be 118 mV (versus the 

standard hydrogen electrode), which is very close to the 101 mV calculated for this species (Fig. 

3c and d). The experimental E0 of DHAQDS was 95 mV lower than AQDS, and would result in 

an 11% increase in QBFB cell potential. DHAQDS was also found to have faster reduction 

kinetics (k0 = 1.56(5) × 102 cm s−1), possibly due to intramolecular hydrogen bonding of the 

−OH to the ketone (Extended Data Fig. 3b). 

The organic approach liberates battery redox chemistry from the constraints of the limited 

number of elemental redox couples of the periodic table. Although quinones have been used 

previously in batteries using redox-active solids13–15, their incorporation into all-liquid flow 

batteries offers the following advantages over current flow-battery technologies. First, 

scalability: AQDS contains only the Earth-abundant atoms carbon, sulphur, hydrogen and 

oxygen, and can be inexpensively manufactured on large scales. Because some hydroxy-

anthraquinones are natural products, there is also the possibility that the electrolyte material can 

be renewably sourced. Second, kinetics: quinones undergo extremely rapid two-electron redox 

on simple, inexpensive carbon electrodes and do not require a costly precious metal catalyst. 

Furthermore, this electrode permits higher charging voltages by suppressing the parasitic water-

splitting reactions. Third, stability: quinones should exhibit minimal membrane crossover due to 

their relatively large size and charge in aqueous solution as a sulphonate anion. Furthermore, 

although bromine crossover is a known issue in zinc-bromine, vanadium-bromine and hydrogen-

bromine cells, AQDS is stable to prolonged heating in concentrated Br2/HBr mixtures (Extended 

Data Figs 5 and 6), and the QBFB can be cycled in HBr electrolyte solutions (Extended Data 

Fig. 9). Fourth, solubility: AQDS has an aqueous solubility greater than 1 M at pH 0, and thus 

the quinone solution can be stored at relatively high energy density—volumetric and gravimetric 

energy densities exceed 50 W h l−1 and 50 W h kg−1, respectively. Last, tunability: the reduction 

potential and solubility of AQDS can be further optimized by introduction of functional groups 
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such as −OH. Use of DHAQDS is expected to lead to an increase in cell potential, performance, 

and energy density. 

These features lower the capital cost of storage chemicals per kilowatt hour, which sets a 

floor on the ultimate system cost per kilowatt hour at any scale. The precursor molecule 

anthracene is abundant in crude petroleum and is already oxidized on large scale to 

anthraquinone. Sulphonated anthraquinones are used on an industrial scale in wood pulp 

processing for paper16, and they can be readily synthesized from the commodity chemicals 

anthraquinone and oleum8. In fact, a cyclic voltammogram of the crude sulphonation product of 

these two reagents is virtually identical to that of pure AQDS (Extended Data Fig. 8). Based on 

this simple electrolyte preparation that requires no further product separation, we estimate 

chemical costs of $21 per kilowatt hour for AQDS and $6 per kilowatt hour for bromine17 (see 

Methods for information on cost calculations). The QBFB offers major cost improvements over 

vanadium flow batteries with redox-active materials that cost $81 per kilowatt hour (ref. 18). 

Optimization of engineering and operating parameters such as the flow field geometry, electrode 

design, membrane separator and temperature—which have not yet even begun—should lead to 

significant performance improvements in the future, as it has for vanadium flow batteries, which 

took many years to reach the power densities we report here6. The use of redox processes in -

aromatic organic molecules represents a new and promising direction for cost-effective, large-

scale energy storage. 

METHODS SUMMARY 

The QBFB comprised a mixture of commercially available and custom-made components. 

Pretreated 2 cm2, stacked (6×) Toray carbon paper electrodes (each of which is about 7.5 m 

uncompressed) were used on both sides of the cell. Nafion 212 (50 m thick) was used as a 

proton-exchange membrane, and PTFE gasketing was used to seal the cell assembly. On the 

positive side of the cell, 120 ml of 3 M HBr and 0.5 M Br2 were used as the electrolyte solution 

in the fully discharged state; on the negative side, 1 M 2,7-AQDS in 1 M H2SO4 was used. 

AQDS disodium salt was flushed twice through a column containing Amberlyst 15H ion-

exchange resin to remove the sodium ions. Half-cell measurements were conducted using a 

Ag/AgCl aqueous reference electrode (3 M KCl filling solution), a Pt wire counter electrode, and 

a 3-mm-diameter glassy carbon disk electrode. For theoretical calculations, the total free energies 
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of molecules were obtained from first-principles quantum chemical calculations within density 

functional theory at the level of generalized gradient approximation (GGA) using the PBE 

functional. Three-dimensional conformer structures for each quinone/hydroquinone molecule 

were generated using the ChemAxon suite with up to 25 generated conformers per molecule 

using the Dreiding force field. Generated conformers were used as input structures for the DFT 

geometry optimization employed for determining the formation energy, which in turn is used to 

evaluate the reduction potential. In the QBFB cost calculation, a price of $4.74 per kilogram 

(eBioChem) was used for anthraquinone. To get the sulphonated form actually used here, 

anthraquinone must be reacted with oleum (H2SO4/SO3), which adds a negligible cost at scale; 

this cost is not included here. The price of bromine was $1.76 per kilogram, based on estimates 

from the US Geological Survey17. The cell voltage used to calculate costs here was 0.858 V. 

Received 26 June; accepted 25 November 2013; doi:10.1038/nature12909. 
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Figure 1 | Cell schematic and cell performance in galvanic and electrolytic modes. a, Cell 
schematic. Discharge mode is shown; the arrows are reversed for electrolytic/charge mode. 
AQDSH2 refers to the reduced form of AQDS. b, Cell potential versus current density at five 
different states of charge (SOCs; average of three runs); inset shows the cell open circuit 
potential versus SOC with best-fit line superimposed (Eeq = (0.00268×SOC) + 0.670; 
R2 = 0.998). c, Galvanic power density versus current density for the same SOCs. d, Electrolytic 
power density versus current density. All data here were collected at 40 °C using a 3 M 
HBr + 0.5 M Br2 solution on the positive side and a 1 M AQDS + 1 M H2SO4 solution on the 
negative side.  
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Figure 2 | Cell cycling behaviour. a, Constant-current cycling at 0.2 A cm−2 at 40 °C using a 
2 M HBr + 0.5 M Br2 solution on the positive side and a 0.1 M AQDS + 2 M H2SO4 solution on 
the negative side; current efficiency is indicated for each complete cycle. b, Constant-current 
cycling at 0.5 A cm2 at 40 °C using a 3 M HBr + 0.5 M Br2 solution on the positive side and a 
1 M AQDS + 1 M H2SO4 solution on the negative side (same solution used in Fig. 1); discharge 
capacity retention is indicated for each cycle. 
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Figure 3 | Half-cell measurements and theory calculations. a, Rotating disk electrode (RDE) 
measurements of AQDS using a glassy carbon electrode in 1 M H2SO4 at 11 rotation rates 
ranging from 200 r.p.m. (red) to 3,600 r.p.m. (black). b, Koutecký-Levich plot (current1 versus 
rotation rate1/2) derived from a at seven different AQDS reduction overpotentials, . c, 
Calculated reduction potentials of AQDS substituted with –OH groups (black), calculated AQDS 
and DHAQDS values (blue), and experimental values for AQDS and DHAQDS (red squares). d, 
Cyclic voltammogram of AQDS and DHAQDS (1 mM) in 1 M H2SO4 on a glassy carbon 
electrode (scan rate = 25 mV s1). 
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ONLINE METHODS 

Full cell measurements 

The QBFB comprised a mixture of commercially available and custom-made components. 

Circular endplates were machined out of solid aluminium. Current collectors were 

3 inch × 3 inch pyrolytic graphite blocks with interdigitated flow channels (channel 

width = 0.0625 inch, channel depth = 0.08 inch, landing between channels = 0.031 inch, Fuel 

Cell Technologies). Pretreated 2 cm2, stacked (6×) Toray carbon paper electrodes (each of which 

is about 7.5 m uncompressed) were used on both sides of the cell. Pretreatment consisted of a 

10 min sonication in isopropyl alcohol followed by a five hour soak in a hot (50 °C) mixture of 

undiluted sulphuric and nitric acids in a 3:1 volumetric ratio. Nafion 212 (50 m thick) was used 

as a proton-exchange membrane (PEM, Alfa Aesar), and PTFE gasketing was used to seal the 

cell assembly. Membrane pretreatment was done according to previously published protocols7. 

Six bolts (3/8”,16 threads per inch) torqued to 10.2 N m completed the cell assembly, and PTFE 

tubing was used to transport reactants and products into and out of the cell. The cell was kept on 

a hot plate and wrapped in a proportional-integral-derivative (PID)-controlled heating element 

for temperature control. On the positive side of the cell, 120 ml of 3 M HBr and 0.5 M Br2 were 

used as the electrolyte solution in the fully discharged state; on the negative side, 1 M AQDS in 

1 M H2SO4 was used. HBr was used on the negative side instead of H2SO4 for stability testing 

results displayed in Extended Data Fig. 9. State-of-charge calculations are based on the 

composition of the quinone side of the cell. 2,7-Anthraquinone disulphonate disodium salt 98% 

(TCI) was flushed twice through a column containing Amberlyst 15H ion-exchange resin to 

remove the sodium ions. Measurements shown here were done at 40 °C. March centrifugal 

pumps were used to circulate the fluids at a rate of approximately 200 ml min1. For 

characterization, several instruments were used: a CH Instruments 1100C potentiostat (which can 

be used up to ±2 A), a DC electronic load (Circuit Specialists) for galvanic discharge, a DC 

regulated power supply (Circuit Specialists) for electrolytic characterization, and a standard 

multimeter for independent voltage measurements. The cell was charged at 1.5 V until a fixed 

amount of charge ran through the cell. During this process, the electrolyte colours changed from 

orange to dark green (AQDS to AQDSH2) and from colourless to red (Br− to Br2). Periodically, 

the open circuit potential was measured, providing the data inset in Fig. 1b. Also, at various 
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SOCs, potential–current behaviour was characterized using the equipment described above: a 

fixed current was drawn from the cell, and the voltage, once stabilized, was recorded (Fig. 1b). 

For the cycling data in Fig. 2b, the potentiostat was used for constant current (±0.5 A cm2) 

measurements with cut-off voltages of 0 V and 1.5 V. For the cycling data in Fig. 2a, a more 

dilute quinone solution (0.1 M as opposed to 1 M) was used. Here, the half-cycle lengths were 

programmed to run at constant current for a fixed amount of time, provided the voltage cut-offs 

were not reached, so that half of the capacity of the battery was used in each cycle. The voltage 

cut-offs were never reached during charging, but were reached during discharge. Current 

efficiencies are evaluated by dividing the discharge time by the charge time of the previous half-

cycle. 

As shown in Fig. 2, current efficiency starts at about 92% and climbs to about 95% over 

~15 standard cycles. Note that these measurements are done near viable operating current 

densities for a battery of this kind. Because of this, we believe this number places an upper 

bound on the irreversible losses in the cell. In any case, 95% is comparable to values seen for 

other battery systems. For example, ref. 19 reports vanadium bromide batteries with current 

efficiencies of 50–90%, with large changes in current efficiency observed for varying membrane 

conditions. Our system will probably be less dependent on membrane conditions because we are 

storing energy in anions and neutral species as opposed to cations, which Nafion can conduct 

reasonably well. 

In Fig. 2b we illustrate the capacity retention of the battery (that is, the number of 

coulombs available for discharge at the nth cycle divided by that available for discharge at the 

(n − 1)th cycle) to be 99.2% on average, which is quite high and provides direct evidence that 

our irreversible losses are below 1%. If we attribute all of this loss (the 0.78% capacity fade per 

cycle) to some loss of redox-active quinone, it would be equivalent to losing 0.0006634 moles of 

quinone per cycle. If we attribute all of the loss to bromine crossover (which would react with 

the hydroquinone and oxidize it back to quinone), this corresponds to a crossover current density 

of 1.785 mA cm−2, which is within the range of the widely varying crossover values reported in 

the literature20. Note that these crossover numbers can be very sensitive to membrane 

pretreatment conditions. It is also important to mention that, in order to determine very accurate 

current efficiencies, detailed chemical analyses of the electrolyte are necessary. 
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Half-cell measurements 

These were conducted using a BASi Epsilon EC potentiostat, a BASi Ag/AgCl aqueous 

reference electrode (RE-5B, 3 M KCl filling solution) and a Pt wire counter electrode. Rotating 

disk electrode (RDE) measurements were conducted using a BASi RDE (RDE-2) and a 3 mm 

diameter glassy carbon disk electrode. Electrode potentials were converted to the standard 

hydrogen electrode (SHE) scale using E(SHE) = E(Ag/AgCl) + 0.210 V, where E(SHE) is the 

potential versus SHE and E(Ag/AgCl) is the measured potential versus Ag/AgCl. 2,7-

Anthraquinone disulphonate disodium salt 98% was purchased from TCI and used as received. 

1,8-Dihydroxy-anthraquinone-2,7-disulphonic acid was made according to the literature 

procedure21. The electrolyte solution was sulphuric acid (ACS, Sigma) in deionized H2O 

(18.2 M cm, Millipore). The Pourbaix diagram (plot of E0 versus pH) shown in Extended Data 

Fig. 4, was constructed using aqueous 1 mM solutions of AQDS in pH buffers using the 

following chemicals: sulphuric acid (1 M, pH 0), HSO4
/SO4

2 (0.1 M, pH 1–2), AcOH/AcO− 

(0.1 M, pH 2.65–5), H2PO4
/HPO4

2 (0.1 M, pH 5.3–8), HPO4
2/PO4

3 (0.1 M, pH 9.28–11.52), 

and KOH (0.1 M, pH 13). The pH of each solution was adjusted with 1 M H2SO4 or 0.1 M KOH 

solutions and measured with an Oakton pH 11 Series pH meter (Eutech Instruments).  

RDE studies 

All RDE data represent an average of three runs. Error bars in Extended Data Figs 2 and 3 

indicate standard deviations. Before each run, the glassy carbon disk working electrode was 

polished to a mirror shine with 0.05 µm alumina and rinsed with deionized water until a cyclic 

voltammogram of a solution of 1 mM AQDS in 1 M H2SO4 showed anodic and cathodic peak 

voltage separation of 34 to 35 mV (39 mV for DHAQDS) at a sweep rate of 25 mV s−1. The 

electrode was then rotated at 200, 300, 400, 500, 700, 900, 1,200, 1,600, 2,000, 2,500 and 

3,600 r.p.m. while the voltage was linearly swept from 310 to 60 mV (250 to −100 for 

DHAQDS) at 10 mV s−1 (Extended Data Fig. 1). The currents measured at 60 mV (−100 for 

DHAQDS) (that is, the diffusion limited current density) versus the square root of the rotation 

rate () is plotted in Extended Data Fig. 2. The data were fitted with a straight line, with the 

slope defined by the Levich equation as 0.620nFACOD2/31/6, where n = 2, Faraday’s constant 

F = 96,485 C mol−1, electrode area A = 0.0707 cm2, AQDS concentration CO = 106 mol cm−3, 

kinematic viscosity  = 0.01 cm2 s−1. This gives D values of 3.8(1) × 106 cm2 s−1 for AQDS and 
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3.19(7) × 106 cm2 s1 for DHAQDS. The reciprocal of the current at overpotentials of 13, 18, 

23, 28, 33, 38 and 363 mV was plotted versus the reciprocal of the square root of the rotation rate 

(Fig. 3b and Extended Data Fig. 2). The data for each potential were fitted with a straight line; 

the intercept gives the reciprocal of iK, the current in the absence of mass transport limitations 

(the extrapolation to infinite rotation rate). A plot of log10(iK) versus overpotential was linearly 

fitted with a slope of 62 mV (AQDS) and 68 mV (DHAQDS) defined by the Butler-Volmer 

equation as 2.3RT/nF (Extended Data Fig. 3), where R is the universal gas constant, T is 

temperature in Kelvin, and is the charge transfer coefficient. This gives  = 0.474(2) for 

AQDS and 0.43(1) for DHAQDS. The x-intercept gives the log of the exchange current i0, which 

is equal to FACOk0, and gives k0 = 7.2(5) × 103 cm s−1 for AQDS and 1.56(5) × 102 cm s1 for 

DHAQDS. 

Stability studies 

AQDS (50 mg) was dissolved in 0.4 ml of D2O, and treated with 100 µl of Br2. The 1H and 13C 

NMR spectra (Extended Data Figs 5a, b and 6a, b) were unchanged from the starting material 

after standing for 20 h at 25 °C. AQDS (50 mg) was then treated with 1 ml of 2 M HBr and 

100 µl of Br2. The reaction was heated to 100 °C for 48 h and evaporated to dryness at that 

temperature. The resulting solid was fully dissolved in D2O giving unchanged 1H and 13C NMR 

(Extended Data Figs 5c and 6c); however the 1H NMR reference was shifted due to residual acid. 

These results imply that bromine crossover will not lead to irreversible destruction of AQDS. 

Sulphonation of anthraquinone and electrochemical study 

9,10-Anthraquinone was treated with H2SO4 (20% SO3) at 170 °C for 2 h according to a 

literature procedure8. The resulting red solution, containing roughly 37% AQDS, 60% 9,10-

anthraquinone-2,6-disulphonic acid and 3% 9,10-anthraquinone-2-sulphonic acid, was diluted 

and filtered. A portion of this solution was further diluted with 1 M H2SO4 to ~1 mM total 

anthraquinone concentration. The cyclic voltammogram (Extended Data Fig. 8) is similar to that 

of pure AQDS, though the anodic/cathodic peak current density is broadened due to the presence 

of the multiple sulphonic acid isomers. 

Theory and methods 

We used a fast and robust theoretical approach to determine the E0 of quinone/hydroquinone 

couples in aqueous solutions. We employed an empirical linear correlation of Hf, the heat of 
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formation of hydroquinone at 0 K from the quinone and hydrogen gas, to the measured E0 

values22. Following the treatment of ref. 22, the linear correlation is described as G = −nFE0, 

where G is the difference in total free energy between quinone and hydroquinone, n is the 

number of electrons involved in the reaction, and F is the Faraday constant. The entropy 

contributions to the total free energies of reaction have been neglected because the entropies of 

reduction of quinones are found to be very similar22,23, and the E0 of the oxidation–reduction 

system is linearly expressed as (−nF)−1Hf + b, where b is a constant. It was also assumed that 

the reduction of quinones takes place in a single-step reaction involving a two-electron two-

proton process9,24. The total free energies of molecules were obtained from first-principles 

quantum chemical calculations within density functional theory (DFT) at the level of generalized 

gradient approximation (GGA) using the PBE functional25. The projector augmented wave 

(PAW) technique and a plane-wave basis set26,27 as implemented in VASP28,29 were employed. 

The kinetic energy cut-off for the plane-wave basis was set at 500 eV, which was sufficient to 

converge the total energies on a scale of 1 meV per atom. To obtain the ground-state structures 

of molecules in the gas phase, we considered multiple initial configurations for each molecule 

and optimized them in a cubic box of 25 Å using -point sampling. The geometries were 

optimized without any symmetry constraints using the conjugate gradient (CG) algorithm, and 

the convergence was assumed to be complete when the total remaining forces on the atoms were 

less than 0.01 eV Å−1. [  

The search for conformational preference through theoretical calculations for each 

hydroxylated quinone is crucial because of the significant effects of intramolecular hydrogen 

bonds on the total free energies of the molecules30. Three-dimensional conformer structures for 

each quinone/hydroquinone molecule were generated using the ChemAxon suite (Marvin 6.1.0 

by ChemAxon, http://www.chemaxon.com) with up to 25 conformers generated per molecule 

using the Dreiding force field31. The conformers generated were used as input structures for the 

DFT geometry optimization employed for determining Hf, which in turn is used to estimate E0 

and 0
solvG . 

In order to calculate the E0 of the hydroxy-substituted AQDS molecules (Fig 3c), the 

correlation between Hf and E0 was calibrated from experimental data of six well-characterized 

quinones32. Specifically, we employed the experimental values of the aqueous E0 and computed 
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Hf of 1,2-benzoquinone, 1,4-benzoquione, 1,2-naphthoquinone, 1,4-naphthoquinone, 9,10-

anthraquinone, and 9,10-phenanthrene33. The training set ensures that the calibration plot 

addresses most classes and aspects of quinones, including two quinones each from 1-ring 

(benzoquinone), 2-ring (naphthoquinone) and 3-ring (anthraquinone and phenanthrene) 

structures. In addition, the experimental values of E0 of the training set spanned from 0.09 V 

(9,10-anthraquinone) to 0.83 V (1,2-benzoquinone), providing a wide range for E0 (Extended 

Data Fig. 7). The linear calibration plot for E0 yields an R2 = 0.97 between the calculated Hf 

and E0 (Extended Data Fig. 7). 

The 0
solvG  values of the quinones in water were calculated using the Jaguar 8.0 program in 

the Schrödinger suite 2012 (Jaguar, version 8.0, Schrödinger). The standard Poisson-Boltzmann 

solver was employed 34,35. In this model, a layer of charges on the molecular surface represents 

the solvent. 0
solvG  was calculated as the difference between the total energy of the solvated 

structure and the total energy of the molecule in vacuum. A more negative value for 0
solvG  

corresponds to a quinone that is likely to have a higher aqueous solubility. An absolute 

prediction of the solubility is not readily available, as the accurate prediction of the most stable 

forms of molecular crystal structures with DFT remains an open problem36. 

Cost calculations 

These were done using the following formula: C = (3.6 × 103) × (PM)/(nFE), where C is the cost 

in US dollars of the compound per kilowatt hour, P is the cost in US dollars per kilogram, M is 

the molecular mass of the compound, F is Faraday’s constant (96,485 C mol1), n is the number 

of moles of electrons transferred per mole of storage compound (two for the QBFB), and E is the 

open-circuit voltage (V) of the storage device. In calculating the price for the anthraquinone-

bromine battery, a price of $4.74 per kilogram (eBioChem) was used for anthraquinone (note 

that, in order to get the sulphonated form actually used here, anthraquinone must be reacted with 

oleum (H2SO4/SO3), which adds a negligible cost at scale; this cost is not included here). The 

price of bromine was $1.76 per kilogram, based on estimates from the US Geological Survey17. 

The cell voltage used to calculate costs here was 0.858 V. For vanadium, costs were calculated 

from USGS prices from 201118 of vanadium pentoxide at $14.37 per kilogram, and the cell 

voltage used was 1.2 V. Balance-of-system costs have not been estimated because the 

technology is too immature. 
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Extended Data Figure 1 | Plot of potential versus current density at different rotation rates 
of the RDE. The solution is 1 mM DHAQDS (1 mM in 1 M H2SO4), using a rotating disk 
electrode (RDE) of glassy carbon. Rotation rates are 200, 300, 400, 500, 700, 900, 1,200, 1,600, 
2,000, 2,500 and 3,600 r.p.m.  
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Extended Data Figure 2 | Levich and Koutecký-Levich plots obtained using the RDE. a, 
Levich plot (limiting current versus square root of rotation rate ) of 1 mM AQDS in 1 M 
H2SO4. (the fitted line has a slope of 4.53(2) µA s1/2 rad1/2, giving D = 3.8(1) × 106 cm2 s1). 
Data are an average of three runs; error bars indicate the standard deviation. b, As a but for 
DHAQDS in 1 M H2SO4 (slope of 3.94(6) µA s1/2 rad1/2 gives D = 3.19(7) × 106 cm2 s1). c, 
Koutecký-Levich plot (i1 versus 1/2) of 1 mM DHAQDS in 1 M H2SO4. The current response 
i is shown for seven different AQDS reduction overpotentials .  
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Extended Data Figure 3 | Fit of Butler-Volmer equation. Constructed using the current 
response in the absence of mass-transport at low AQDS reduction overpotentials; iK is the 
current extrapolated from the zero-intercept of Fig. 3b and Extended Data Fig. 2c (infinite 
rotation rate). Data are an average of three runs; error bars indicate the standard deviation. a, 
AQDS: best-fit line has the equation y = 62(x + 4.32). This yields  = 0.474(2) and 
k0 = 7.2(5) × 103 cm s1. b, DHAQDS: best-fit line is the function y = 68(x + 3.95). This yields 
 = 0.43(1) and k0 = 1.56(5) × 102 cm s1.  
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Extended Data Figure 4 | Pourbaix diagram (E0 vs. pH) of AQDS. Data are fit to three solid 
lines indicating slopes of −59 mV pH−1, −30 mV pH−1 and 0 mV pH−1, corresponding to two-, 
one- and zero-proton processes, respectively. Dashed lines linearly extrapolate the one- and zero-
proton processes to give E0 values of 18 mV (2e/1H+) and −296 mV (2e/0H+).  
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Extended Data Figure 5 | 1H NMR (500 MHz, D2O) spectra. a, Spectrum of AQDS: chemical 
shift  = 7.99 p.p.m. versus tetramethylsilane (TMS) (doublet (d), coupling constant J = 2 Hz, 
1,8 C–H), 7.79 p.p.m. (doublet of doublets, J = 2 and 8 Hz, 4,5 C–H), 7.50 p.p.m. (d, J = 8 Hz, 
3,6 C–H). b, The same sample, 20 h after addition of Br2. c, 1H NMR of AQDS treated with 2 M 
HBr and Br2 and heated to 100 °C for 48 h. The peaks are shifted due to presence of trace HBr 
which shifted the residual solvent peak due to increased acidity. Coupling constants for each 
peak are identical to a.  
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Extended Data Figure 6 | 13C NMR (500 MHz, D2O) spectra. a, AQDS,  = 181.50 p.p.m. 
versus TMS (C 9), 181.30 p.p.m. (C 10), 148.51 p.p.m. (C 2,7), 133.16 p.p.m. (C 11), 
132.40 p.p.m. (C 12), 130.86 p.p.m. (C 3,6), 128.59 p.p.m. (C 4,5), 124.72 p.p.m. (C 1,8). b, The 
same sample, 24 h after addition of Br2. c, 13C NMR of AQDS treated with 2 M HBr and Br2 and 
heated to 100 °C for 48 h.  
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Extended Data Figure 7 | Calibration model for Hf and experimental E0. This shows a 
linear relationship (red dashed line; R2 = 0.97 between calculated Hf (this work) and 
experimental E0 (from the literature) of six quinones in aqueous solutions: BQ, benzoquinone; 
NQ, naphthoquinone; AQ, anthraquinone; and PQ, phenanthraquinone.  
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Extended Data Figure 8 | AQDS cyclic voltammograms. Black curve, obtained for a 1 mM 
solution of AQDS in 1 M H2SO4 on a stationary glassy carbon working electrode. Red curve, 
obtained for a crude anthraquinone sulphonation solution containing a mixture of AQDS, 9,10-
anthraquinone-2,6-disulphonic acid, and 9,10-anthraquinone-2-sulphonic acid diluted to 1 mM 
total anthraquinone in 1 M H2SO4.  
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Extended Data Fig. 9 | Flow battery cycling behaviour with HBr electrolyte on both sides. 
Data collected by cycling the current at 0.2 A cm−2 at 40 °C using a 2 M HBr + 0.5 M Br2 
solution on the positive side and a 2 M HBr + 0.1 M AQDS solution on the negative side; cell 
potential versus time performance is comparable to data in Fig. 2.  
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Extended Data Table 1 | AQDS screened by theoretical calculations. 
The effect of –OH substitution on reduction potential and solvation energy. 

 

 
 

ID 
-OH 

substituted 
R1 R3 R4 R5 R6 R8 E0 (V) G0

solv (kJ mol−1) 

1 Non- H H H H H H 0.222 -81.5 
2 

Mono- 
OH H H H H H 0.185 -81.5 

3 H OH H H H H 0.325 -111.7 
4 H H OH H H H 0.108 -88.2 
5 

Di- 

OH OH H H H H 0.176 -110.3 
6 OH H OH H H H 0.027 -85.6 
7 OH H H OH H H 0.122 -96.7 
8 OH H H H OH H 0.143 -85.7 
9 OH H H H H OH 0.101 -83.2 
10 H OH OH H H H 0.153 -105.4 
11 H OH H OH H H 0.179 -119.1 
12 H OH H H OH H 0.202 -112.0 
13 H H OH OH H H 0.000 -95.6 
14 

Tri- 

OH OH OH H H H -0.070 -101.7 
15 OH OH H OH H H 0.083 -116.2 
16 OH OH H H OH H 0.187 -114.3 
17 OH OH H H H OH 0.310 -120.9 
18 OH H OH OH H H -0.102 -91.4 
19 OH H OH H OH H 0.089 -114.0 
20 OH H OH H H OH -0.085 -87.1 
21 OH H H OH OH H -0.048 -102.8 
22 H OH OH OH H H -0.107 -107.8 
23 H OH OH H OH H 0.106 -136.8 
24 

Tetra- 

OH OH OH OH H H -0.098 -109.0 
25 OH OH OH H OH H 0.012 -108.4 
26 OH OH OH H H OH -0.222 -102.3 
27 OH OH H OH OH H -0.019 -132.3 
28 OH OH H OH H OH 0.046 -114.6 
29 OH OH H H OH OH 0.080 -111.1 
30 OH H OH OH OH H -0.259 -99.0 
31 OH H OH OH H OH -0.199 -91.9 
32 H OH OH OH OH H -0.083 -120.6 
33 

Penta- 
OH OH OH OH OH H -0.252 -117.1 

34 OH OH OH OH H OH -0.292 -108.3 
35 OH OH OH H OH OH -0.030 -111.6 
36 Hexa- OH OH OH OH OH OH -0.077 -121.0 


