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Geometric phases that characterize topological properties of Bloch bands play a fun-

damental role in the band theory of solids. Here we report on the measurement of the

geometric phase acquired by cold atoms moving in one-dimensional optical lattices.

Using a combination of Bloch oscillations and Ramsey interferometry, we extract the

Zak phase – the Berry phase acquired during an adiabatic motion of a particle across

the Brillouin zone – which can be viewed as an invariant characterizing the topological

properties of the band. For a dimerized lattice, which models polyacetylene, we mea-

sure a difference of the Zak phase δϕZak = 0.97(2)π for the two possible polyacety-

lene phases with different dimerization. The two dimerized phases therefore belong

to different topological classes, such that for a filled band, domain walls have frac-

tional quantum numbers. Our work establishes a new general approach for probing

the topological structure of Bloch bands in optical lattices.

The non-trivial topological structure of Bloch bands in solids gives rise to fundamental physical

phenomena, including fermion number fractionalization (1–4), the integer quantum Hall effect (5, 6), as
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well as topologically protected surface states in topological insulators (7, 8). The topological character

of a Bloch band is defined by certain invariants, which can be expressed in terms of the Berry’s phase (9)

acquired by a particle during adiabatic motion through the band (6, 8). The most well-known example is

the two-dimensional topological invariant, the first Chern number, which is related to the Berry’s phase

for a contour enclosing the Brillouin zone and determines the quantized value of the Hall conductivity of

a filled two-dimensional band (5,6). For one-dimensional systems, topological invariants of Bloch bands

have been discussed theoretically (6, 8, 10–12), however never been measured in any experiment.

Here we present direct measurements of Berry’s phase and topological invariants of one-dimensional

periodic potentials using systems of ultra-cold atoms in optical lattices. Topological properties of one di-

mensional solids are characterized by the so-called Zak phase – the Berry’s phase picked up by a particle

moving across the Brillouin zone (12). For a given Bloch wave ψk(x) with quasimomentum k, the Zak

phase can be conveniently expressed through the cell-periodic Bloch function uk(x) = e−ikxψk(x):

ϕZak = i

∫ G/2

−G/2
〈uk|∂k|uk〉 dk, (1)

where G = 2π/d is the reciprocal lattice vector and d is the lattice period (12). Non-trivial Zak phases

underlie the existence of protected edge states (13, 14), fermion number fractionalization (1–3), and

irrationally charged domain walls (15, 16) between topologically distinct one-dimensional solids. These

phenomena, initially discussed in the context of quantum field theory (1,2,15), later on found condensed

matter realizations in polyacetylene (3), described by the celebrated Su-Schrieffer-Heeger (SSH) model,

and linearly conjugated diatomic polymers (16).

In our experiment, the key idea is to combine coherent Bloch oscillations with Ramsey interferome-

try to determine the geometrical Zak phase and reveal the underlying topological character of the Bloch

bands. Previously, the measurement of topological invariants was confined to two-dimensional bands by

exploiting the relation between the Chern number and the Hall conductivity for a filled band introduced

by Thouless-Kohmoto-Nightingale-DeNijs (5). There the integration over the Brillouin zone necessary

to determine the topological invariant was achieved through filling of the underlying Bloch band. In con-
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trast, in our case the integration over the Brillouin zone necessary for extracting topological invariants

is achieved by adiabatic transport of a single-particle wave packet through the band using Bloch oscilla-

tions. Recently, it has also been suggested that in the context of ultra-cold atoms, topological properties

could be studied through time-of-flight images (17–19) or measurements of anomalous velocity (6, 20).

In the following we focus on a dimerized optical lattice with two sites per unit cell – a system

which, despite its simplicity, exhibits rich topological physics, and depending on the parameter values

can mimic either polyacetylene (3), or conjugated diatomic polymers (16). Within a tight-binding model,

the physics of such a system is captured by the Rice-Mele Hamiltonian (16):

Ĥ =−
∑
n

(
Jâ†nb̂n + J ′â†nb̂n−1 + h.c.

)
+ ∆

∑
n

(â†nân − b̂†nb̂n), (2)

where J , J ′ denote modulated tunneling amplitudes within the unit cell, â†n(b̂†n) are the particle creation

operators for an atom on the sublattice site an(bn) in the nth lattice cell (Fig. 1a), and ∆ characterizes

the energy offset between neighboring lattice sites.

When the on-site energies of the two sites are tuned to be equal (∆ = 0), our system corresponds

to the SSH model of polyacetylene (see Fig. 1a). In this case, Ĥ is known to exhibit two topologically

distinct phases, D1 for J > J ′, and D2 for J < J ′, separated by a topological phase transition point at

J = J ′. The distinct topological character of the two phases is reflected in the difference of their Zak

phases, for which δϕZak = π. When the on-site energies are tuned to be different (∆ 6= 0), our system

models a linearly conjugated diatomic polymer; in this case, the difference of the Zak phases is fractional

in units of π.

In the experiment, we realized the Hamiltonian Ĥ of Eq. (2) by loading a Bose-Einstein condensate

of 87Rb into a one-dimensional optical superlattice potential (21). This potential was formed by superim-
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posing two standing optical waves of wavelengths λs = 767 nm and λl = 2λs = 1534 nm that generate

a lattice potential of the form V (x) = Vlsin2(klx + φ/2) + Vssin2(2klx + π/2), where kl = 2π/λl

(Fig. 1a). Phase control between the two standing wave fields enabled us to fully control φ. For example,

switching between φ = 0 and φ = π allowed us to rapidly access the two different dimerized configu-

rations D1 (D2) with ∆ = 0 in the experiment, whereas by tuning φ slightly away from these symmetry

points, we could introduce a controlled energy offset ∆.

The eigenstates of Ĥ can be written as Bloch waves of the form:

ψk(x) = eikxuk(x) =
∑
n

αke
ikxnwa(x− xn)

+ βke
ik(xn+d/2)wb(x− xn − d/2),

where k denotes the quasimomentum, xn = nd with n integer, and wa,b(x) are the Wannier func-

tions (22) for an, bn sites, respectively. The coefficients αk, βk are determined through the eigenvalue

equation Ĥψk = Ekψk. In this case, the cell-periodic wave function uk can be viewed as a two-

component spinor uk = (αk, βk), and Eq. (1) for the Zak phase takes an especially simple form:

ϕZak = i

∫ G/2

−G/2
(α∗k∂kαk + β∗k∂kβk) dk.

For our choice of the unit cell (Supplementary Information), the eigenfunctions for the lower (upper)

band of the SSH model (∆ = 0) are

u∓,k =
1√
2

(
±1
e−iθk

)
,

where θk is determined through Jeikd/2 + J ′e−ikd/2 = |εk|eiθk (Supplementary Information). We can

thus visualize the Bloch periodic functions as pseudo spin-1/2 states oriented in the equatorial plane of

a Bloch sphere (Fig. 1c). Note also that although ψk+G(x) = ψk(x), this translational invariance is

not true for u∓,k, because in our system with a two-site unit cell u∓,k+G = σ̂zu∓,k, where σ̂z is the

third Pauli matrix. As the two state vectors for the upper and lower bands are orthogonal, they point
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in opposite directions and therefore exhibit the same winding when the quasimomentum k is varied

adiabatically. The Zak phases for the lower and upper band are thus identical ϕD1
Zak = π/2. However,

when the dimerization is changed from configuration D1 to D2 (Fig. 1c), the corresponding geometric

phase changes to ϕD2
Zak = −π/2, because of the opposite winding of the state with quasimomentum k.

The difference of the two Zak phases for the two dimerized configurations is then:

δϕZak = ϕD1
Zak − ϕD2

Zak = π. (3)

We point out that the Zak phase of each dimerization is a gauge dependent quantity, i.e. it depends

on the choice of origin of the unit cell, however, the difference of Zak phases of the two dimerizations is

uniquely defined (8,23). There is, however, a natural choice of the origin of the unit cell with which one

can identify which dimerization configuration is topologically trivial or non-trivial (See Section X in the

Supplementary Information).

When an atom is adiabatically evolved through the Brillouin zone of the periodic potential k → k+G,

it acquires a phase shift due to three distinct contributions: i) a geometric phase ϕZak as well as ii) a

dynamical phase ϕdyn =
∫
E(t)/~ dt, both derived from the band-structure, and iii) a phase due to the

Zeeman energy of the atom in an external magnetic field (see semiclassical analysis in the Supplementary

Information):

ϕtot = ϕZak + ϕdyn + ϕZeeman.

To isolate the geometrical Zak phase in the experiment, we employ a three-step sequence (Fig. 2a

and Supplementary Information). Step 1) We start with an atom in the state |↓, k = 0〉 and bring it into a

coherent superposition state 1/
√

2(|↑, k = 0〉+ |↓, k = 0〉) using a microwave π/2-pulse. Here σ =↑, ↓

denote two spin states of the atom with opposite magnetic moment. Then a magnetic field gradient is

applied that creates a constant force in opposite directions for the two spin components. Such a constant

force leads to Bloch oscillations, i.e. a linear evolution of quasimomentum over time (24). In our case

the force is directed in opposite directions for the two spin components. The atomic wavepacket thus
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evolves into the coherent superposition state 1/
√

2(|↑, k〉+eiδϕ|↓,−k〉). When both reach the band edge,

the differential phase between the two states is given by δϕ = ϕZak + δϕZeeman. Note that for all time-

reversal invariant Hamiltonians (as it is the case here), the dynamical phase acquired during the adiabatic

evolution is equal for the two spin states and therefore cancels in the phase difference. In principle, if a

sufficiently high magnetic field stability is present in the laboratory such that ϕZeeman is reproducible, one

could end the experimental sequence here by applying a second π/2-pulse with phase ϕMW as described

in step 3 below. The Zak phase of the lowest band could then be directly extracted from the resulting

Ramsey fringe. Step 2) To eliminate the Zeeman phase difference, we apply a spin-echo π-pulse at this

point and also switch dimerization from D1→D2. For atoms located at the band edge k = ±G/2, this

non-adiabatic dimerization switch induces a transition to the excited band of the SSH model. Step 3) The

sequence is finally completed by letting the spin components further evolve in the upper band until they

return to k = 0. At this point in time, a final π/2-pulse with phase ϕMW is applied in order to interfere

the two spin components and read out their relative phase δϕ through the resulting Ramsey fringe. The

change in dimerization occurring at the mid-point of the echo sequence is crucial in order not to cancel

the Zak phase in addition to the Zeeman phase. Due to the opposite windings of the Bloch states in the

upper and lower bands with quasimomentum k (Fig. 1c), the resulting phase shift encoded in the Ramsey

fringe is thus given by: δϕ = ϕD1
Zak − ϕD2

Zak if the dimerization is swapped, whereas δϕ = 0 if it is left

unchanged.

In Fig. 2b,c we show images of the momentum distribution of the atoms during the spin-dependent

Bloch oscillations in the lower and upper energy bands. Note the opposite evolution in momentum

space due to the opposite magnetic moments of the two spin-states. Atoms in the upper energy band are

characterized by a distinctively different momentum pattern from atoms in the lower energy band. The

Bloch oscillations period of τBloch = 0.85(3) ms was chosen to be slow enough, such that non-adiabatic

Landau-Zener transitions at the band edge are negligible, while still maintaining an overall fast evolution

time to minimize decoherence effects.
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A typical result for the two Ramsey fringes obtained with and without dimerization swapping during

the state evolution can be seen in Fig. 3a. Each plotted value for a given angle ϕMW is an average over

five identical measurements in order to reduce the effect of residual fluctuations. We performed a further

statistical analysis by recording 14 independent Ramsey fringes for the two configurations. The obtained

phase differences are shown in Fig. 3b together with the corresponding histogram. From these individual

measurements we determine the geometric phase difference between the two dimerized configurations

to be:

δϕ = 0.97(2)π,

in excellent agreement with theory, as discussed above. The uncertainty in the recorded value denotes

the standard error of the mean obtained from the distribution function (Fig. 3b) and it is mainly deter-

mined by experimental imperfections in the control of the underlying lattice potentials, particularly of

the relative phase φ between the two standing waves.

To further demonstrate the generality of our method, we studied the dependence of the Zak phase

on a staggered on-site energy ∆ (Fig. 4a and Eq. 2). This corresponds to a heteropolar dimer config-

uration (16), where the value of the Zak phase is non-quantized. The energy offset ∆ displaces the

pseudo-spin Bloch vectors away from the equatorial plane:

u−,k =

(
sin γk

2
cos γk2 e

−iθk

)
, u+,k =

(
− cos γk2

sin γk
2 e
−iθk

)
, γk = arctan

εk
∆
, (4)

resulting in an additional dependence of the Zak phase on the offset ∆ and the band index (Fig. 4a and

Supplementary Information).

In order to probe the dependence of ϕZak on ∆, we performed an experimental sequence that was similar

to the one described above. However, instead of swapping the dimerization from D1 to D2, an energy off-

set |∆| < 2J was introduced for one half of the sequence. Thereafter, because of the spin-echo pulse, the

wavepackets return to k = 0 in the lowest band. Though the system completes a full Bloch oscillation in
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the lowest band, the total geometric phase acquired is not zero, since the Bloch vector is displaced from

the equatorial plane during one half of the sequence (Fig. 4) and the Zak phase is changed from ϕZak to

ϕZak(∆). The resulting phase in the Ramsey fringe is thus given by δϕ = ϕZak − ϕZak(∆) when the en-

ergy offset is present, and it is δϕ = 0 when the offset is absent. As before, the phase difference between

these two fringes for atoms in the lowest band allows us to determine the relative phase ϕZak−ϕZak(∆).

During the non-adiabatic switching of the superlattice potential at step 2 of the experimental sequence

some of the atoms are transferred to the higher band and acquire a different geometric phase. However,

taking into account this contribution to the measured phase difference enabled us to extract the relative

phase δϕ from our data (see Supplementary Information). As shown in Fig. 4b, we find good agreement

between the measured and predicted values of the fractional Zak phase. Fractional Zak phases could also

be determined by carrying out one full Bloch oscillation cycle for each of the spin states. The dynamical

phase would then be cancelled even for general lattice structures without time-reversal symmetry and the

resulting Ramsey phase corresponds to 2ϕZak.

In conclusion, we have presented a general approach for studying topological properties of Bloch

bands in optical lattices and demonstrated its versatility through a first measurement of the topological

invariant in topologically non-trivial Bloch bands. Topologically distinct many-body phases can arise

from such topologically distinct Bloch bands when the bands are filled with fermions. Making use of the

recently demonstrated control of optical potentials at the single-site level (25), we plan to realize domain

walls or sharp boundaries in the dimerized lattice that would allow us to directly study edge states (26,27)

and fractional charges for non-interacting fermions or hardcore bosons (1–3, 28, 29). Although in this

work we focused on one-dimensional systems, our technique can easily be extended to two-dimensional

systems, where the change of the Zak phase in the Brillouin zone gives the topological density of the

Bloch band (30). This enables measurements of both the Chern number of topological bands and the π-

flux associated with a Dirac point. Additionally, we expect that this idea can be extended to measure the
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non-Abelian Berry’s phase in Bloch bands, such as in a system with quantum spin Hall effect (31), to the

study of Floquet states in periodically driven systems (32–34), and to quasiparticles in unconventional

superconductors, such as d-wave superconductors, which have Dirac dispersion at the nodal points (35).

Overall, our work indicates that cold atomic systems provide a versatile platform for studying topologi-

cal states of matter, and establishes a novel method for probing their properties.

We acknowledge helpful discussions with B. Paredes. We thank Yu-Ao Chen and Sylvain Nascimbène

for their help in setting up the experiment and for their comments in early stages of the experiment. This

work was supported by the DFG (FOR635, FOR801), NIM and DARPA (OLE program). M. Aidels-

burger was additionally supported by the Deutsche Telekom Stiftung.
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phase. The difference in phase of the two fits to the Ramsey fringes yields the Zak phase difference
δϕZak = ϕD1

Zak − ϕD2
Zak. In order to reduce the effect of fluctuations, every data point is an average of

five individual measurements and the error bars show the standard deviation of the mean. The phase of
the reference fringe (black) is determined by a small detuning of the microwave pulse (Supplementary
Information). b, Measured relative phase for 14 identical experimental runs (left), which give an average
value of δϕZak = 0.97(2)π. The corresponding histogram is shown on the right with a binning of 0.05π.
The 1σ-width of the resulting distribution is σ = 0.07π.
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Figure 4: Fractional Zak phase. a, Lattice potential without and with an on-site energy staggering ∆.
When ∆ = 0 the Zak phase is ϕZak(∆ = 0) = π/2. As ∆ increases, the pseudo-spin vectors move
away from the equatorial plane and the value of ϕZak(∆) decays rapidly to zero. b, Measured phase
difference ϕZak − ϕZak(∆) as a function of ∆. Each individual point was obtained from four individual
measurements. The vertical error bars represent the standard error of the mean. The green line is the
theoretical prediction and the shaded area represents the uncertainties in the calibration of the energy
offset ∆. The insets show a typical Ramsey fringe for ∆/J = −1.2 (left) and ∆/J = 1.2 (right), which
were used to extract the relative phase δϕ. The blue (black) fringes correspond to measurements with
(without) staggering (Supplementary Information).

16


