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CellML	


•  CellML is designed to support the definition and sharing of 
models of biological processes.	


•  CellML includes information about:	

•  Model structure (how the parts of a model are organizationally related to 

one another);	

•  Mathematics (equations describing the underlying biological processes);	

•  Metadata (additional information about the model that allows scientists to 

search for specific models or model components in a database or other 
repository). 	


•  A public repository of over 500 published signal transduction, 
electrophysiological, mechanical, and metabolic pathway 
processes is available at http://models.cellml.org/	




CellML components	


•  CellML has a simple structure based upon connected 
components.	


•  Components abstract concepts by providing well-defined 
interfaces to other components.	


•  Components encapsulate concepts by hiding details from other 
components.	
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CellML connections	


•  Connections provide the means for sharing information by 
associating variables visible in the interface of one component 
with those in the interface of another component. 	


•  Consistency is enforced by requiring that all variables be 
assigned appropriate physical units.	
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CellML encapsulation	


•  Encapsulation hierarchies are enabled using private interfaces. 	
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CellML model	

•  A model is the root element for a CellML document. It is a 

container for components, connections, units, and 
metadata.	
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CellML import	

•  Model reuse is enabled by the import element.	

•  New models may thus be constructed by combining existing 

models into model hierarchies. 	
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Model libraries	


•  Model reuse encourages the creation of model libraries.	

•  This is possible in CellML because there is no distinction 

between models as stand-alone entities and models as 
templates.	


•  Every import creates a new instance of the imported model in 
the importing model.	


•  The same model can be imported multiple times to create 
separate instances (with distinct identifiers) within the 
importing model.	




Model libraries	


•  Obvious candidates for reuse are existing CellML 1.0 models 
available in the model repository.	


•  Other candidates are the decomposition of existing models by 
identifying reusable generic (sub)models.	


•  These generic models are then formulated as new library 
models, making them available as basic building blocks for 
import into larger models.	


•  Useful generic models include collections of:	

•  units (complicated combinations, non-SI definitions)	

•  constants (codata fundamental physical constants)	

•  processes (integrators, reactions, rate relations, ion channels, …)	


•  Sometimes difficult to balance genericity versus conciseness.	




Combine models using CellML import	


Pandit et al. ���
cardiac action potential	


Hinch et al.	

Ca-induced Ca release	


Niederer et al. ���
myofilament mechanics 	


Terkildsen et al. ���
Integrated model of e-c coupling	






Best practice	


•  Most useful non-trivial library components describe clearly 
identifiable biophysical processes.	


•  Sarala Wimilaratne has given several examples of this 
approach in her PhD thesis on CellML model visualisation 
(Cooling 07 GCPR cycle, Hodgkin-Huxley 52, Nobel 62).	


•  We are compiling a list of best-practice examples based on the 
experience gained through the process of model 
decomposition.	


•  This work is still in its early stages – there is still much to be 
learned about which approaches offer the best long-term 
benefits. Mike Cooling has a poster in the ICSB conference.	


•  Others in this session will discuss the new tools that have been 
built to facilitate model reuse.	




Best practice	


•  Put reusable mathematics in separate components, and use <import>s to 
instantiate these for use where appropriate.	


•  Use ‘_delta’ components to extensibly connect multiple fluxes to species of 
interest.	


•  Use separate conversion components for connections where applicable. 	

•  Build coarse-grained components from aggregations of finer-grained, 

biologically atomic components. 	

•  Define <units> at the lowest level possible, <import>ing into higher level 

components as necessary.	

•  Separate out all parameter values into one or more non-mathematical 

CellML documents.	

•  Universal constants should be <import>ed from a non-mathematical 

CellML document (a standard based document on  [UC] is recommended).	

•  If encapsulating, expose all potentially useful values using ���

public_interface=“out”.	



