
CellML 1.1 modularity	

Poul Nielsen	

CellML	

•  CellML is designed to support the definition and sharing of
models of biological processes.	

•  CellML includes information about:	

•  Model structure (how the parts of a model are organizationally related to

one another);	

•  Mathematics (equations describing the underlying biological processes);	

•  Metadata (additional information about the model that allows scientists to

search for specific models or model components in a database or other
repository). 	

•  A public repository of over 500 published signal transduction,
electrophysiological, mechanical, and metabolic pathway
processes is available at http://models.cellml.org/	

CellML components	

•  CellML has a simple structure based upon connected
components.	

•  Components abstract concepts by providing well-defined
interfaces to other components.	

•  Components encapsulate concepts by hiding details from other
components.	

Component
Public
Interface Units

Variables
Mathematics
Metadata

CellML connections	

•  Connections provide the means for sharing information by
associating variables visible in the interface of one component
with those in the interface of another component. 	

•  Consistency is enforced by requiring that all variables be
assigned appropriate physical units.	

Component
Public
Interface Units

Variables
Mathematics
Metadata

Component
Public
Interface Units

Variables
Mathematics
Metadata

Component
Public
Interface Units

Variables
Mathematics
Metadata

Connection Connection

CellML encapsulation	

•  Encapsulation hierarchies are enabled using private interfaces. 	

Component
Public
Interface

Private
Interface

Units
Variables
Mathematics
Metadata

Component
Public
Interface

Private
Interface

Units
Variables
Mathematics
Metadata

Component
Public
Interface

Private
Interface

Units
Variables
Mathematics
Metadata

Component
Public
Interface

Private
Interface

Units
Variables
Mathematics
Metadata

Component
Public
Interface

Private
Interface

Units
Variables
Mathematics
Metadata

Connection

Connection

Connection

Connection

CellML model	

•  A model is the root element for a CellML document. It is a

container for components, connections, units, and
metadata.	

Component
Public
Interface

Private
Interface

Units
Variables
Mathematics
Metadata

Component
Public
Interface

Private
Interface

Units
Variables
Mathematics
Metadata

Component
Public
Interface

Private
Interface

Units
Variables
Mathematics
Metadata

Component
Public
Interface

Private
Interface

Units
Variables
Mathematics
Metadata

Component
Public
Interface

Private
Interface

Units
Variables
Mathematics
Metadata

Connection

Connection

Connection

Connection

Model

CellML import	

•  Model reuse is enabled by the import element.	

•  New models may thus be constructed by combining existing

models into model hierarchies. 	

Component
Public
Interface

Private
Interface

Units
Variables
Mathematics
Metadata

Component
Public
Interface

Private
Interface

Units
Variables
Mathematics
Metadata

Component
Public
Interface

Private
Interface

Units
Variables
Mathematics
Metadata

Component
Public
Interface

Private
Interface

Units
Variables
Mathematics
Metadata

Component
Public
Interface

Private
Interface

Units
Variables
Mathematics
Metadata

Connection

Connection

Connection

Connection

Model

Component
Public
Interface

Private
Interface

Units
Variables
Mathematics
Metadata

Component
Public
Interface

Private
Interface

Units
Variables
Mathematics
Metadata

Component
Public
Interface

Private
Interface

Units
Variables
Mathematics
Metadata

Connection

Connection

Model

Connection

Model

Component
Public
Interface

Private
Interface

Units
Variables
Mathematics
Metadata

Connection

Model libraries	

•  Model reuse encourages the creation of model libraries.	

•  This is possible in CellML because there is no distinction

between models as stand-alone entities and models as
templates.	

•  Every import creates a new instance of the imported model in
the importing model.	

•  The same model can be imported multiple times to create
separate instances (with distinct identifiers) within the
importing model.	

Model libraries	

•  Obvious candidates for reuse are existing CellML 1.0 models
available in the model repository.	

•  Other candidates are the decomposition of existing models by
identifying reusable generic (sub)models.	

•  These generic models are then formulated as new library
models, making them available as basic building blocks for
import into larger models.	

•  Useful generic models include collections of:	

•  units (complicated combinations, non-SI definitions)	

•  constants (codata fundamental physical constants)	

•  processes (integrators, reactions, rate relations, ion channels, …)	

•  Sometimes difficult to balance genericity versus conciseness.	

Combine models using CellML import	

Pandit et al. ���
cardiac action potential	

Hinch et al.	

Ca-induced Ca release	

Niederer et al. ���
myofilament mechanics 	

Terkildsen et al. ���
Integrated model of e-c coupling	

Best practice	

•  Most useful non-trivial library components describe clearly
identifiable biophysical processes.	

•  Sarala Wimilaratne has given several examples of this
approach in her PhD thesis on CellML model visualisation
(Cooling 07 GCPR cycle, Hodgkin-Huxley 52, Nobel 62).	

•  We are compiling a list of best-practice examples based on the
experience gained through the process of model
decomposition.	

•  This work is still in its early stages – there is still much to be
learned about which approaches offer the best long-term
benefits. Mike Cooling has a poster in the ICSB conference.	

•  Others in this session will discuss the new tools that have been
built to facilitate model reuse.	

Best practice	

•  Put reusable mathematics in separate components, and use <import>s to
instantiate these for use where appropriate.	

•  Use ‘_delta’ components to extensibly connect multiple fluxes to species of
interest.	

•  Use separate conversion components for connections where applicable. 	

•  Build coarse-grained components from aggregations of finer-grained,

biologically atomic components. 	

•  Define <units> at the lowest level possible, <import>ing into higher level

components as necessary.	

•  Separate out all parameter values into one or more non-mathematical

CellML documents.	

•  Universal constants should be <import>ed from a non-mathematical

CellML document (a standard based document on [UC] is recommended).	

•  If encapsulating, expose all potentially useful values using ���

public_interface=“out”.	

