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Abstract

Enterococcus faecium has emerged as one of the most important pathogens in healthcare-associated infections worldwide
due to its intrinsic and acquired resistance to many antibiotics, including vancomycin. Antimicrobial photodynamic therapy
(aPDT) is an alternative therapeutic platform that is currently under investigation for the control and treatment of infections.
PDT is based on the use of photoactive dye molecules, widely known as photosensitizer (PS). PS, upon irradiation with
visible light, produces reactive oxygen species that can destroy lipids and proteins causing cell death. We employed Galleria
mellonella (the greater wax moth) caterpillar fatally infected with E. faecium to develop an invertebrate host model system
that can be used to study the antimicrobial PDT (alone or combined with antibiotics). In the establishment of infection by E.
faecium in G. mellonella, we found that the G. mellonella death rate was dependent on the number of bacterial cells injected
into the insect hemocoel and all E. faecium strains tested were capable of infecting and killing G. mellonella. Antibiotic
treatment with ampicillin, gentamicin or the combination of ampicillin and gentamicin prolonged caterpillar survival
infected by E. faecium (P = 0.0003, P = 0.0001 and P = 0.0001, respectively). In the study of antimicrobial PDT, we verified that
methylene blue (MB) injected into the insect followed by whole body illumination prolonged the caterpillar survival
(P = 0.0192). Interestingly, combination therapy of larvae infected with vancomycin-resistant E. faecium, with antimicrobial
PDT followed by vancomycin, significantly prolonged the survival of the caterpillars when compared to either antimicrobial
PDT (P = 0.0095) or vancomycin treatment alone (P = 0.0025), suggesting that the aPDT made the vancomycin resistant E.
faecium strain more susceptible to vancomycin action. In summary, G. mellonella provides an invertebrate model host to
study the antimicrobial PDT and to explore combinatorial aPDT-based treatments.
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Introduction

Enterococci are part of the gastrointestinal tract of humans [1–

3], but due to intrinsic and acquired resistance to many antibiotics,

they have become leading causes of nosocomial infections

worldwide [4–7]. Enterococcus faecalis and Enterococcus faecium account

for 95% of clinical isolates from the genus Enterococcus, and are

isolated from patients with endocarditis, bloodstream infection,

wound and surgical-site infection, and intra-abdominal and

urinary tract infection [3,8,9]. In dentistry, they are frequently

associated with chronic periodontitis and persistent endodontic

infections [10–12]. In the 1980s and early 1990s, more than 90%

of all enterococcal infections were caused by E. faecalis and only 5–

10% by E. faecium. Due to the acquisition of the virulence

determinants as well as acquired antibiotic resistance, this ratio has

changed, and currently, E. faecium is associated with between 38–

75% of all enterococcal infections [4,13].

The increased resistance of bacteria to antibiotics has emerged

as one of the most important clinical challenges of this century,

highlighting the need for new and effective antimicrobial
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countermeasures against resistant bacteria and especially the

‘‘ESKAPE’’ pathogens (Enterococcus faecium, Staphylococcus aureus,

Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa and

Enterobacter spp.) [14,15]. Photodynamic therapy (PDT), is a light-

based technology platform [16] that uses harmless visible light in

combination with non-toxic dye, called photosensitizer (PS), to

control infections. PSs are usually organic aromatic molecules with

a high degree of electron delocalization [17]. Porphyrins, chlorins,

bacteriochlorins, phthalocyanines as well as a plethora of dyes with

different molecular frameworks have been proposed as antimicro-

bial PSs [18–20]. Historically PDT has had a prominent role in

cancer therapy and is also currently used to treat age-related

macular degeneration [21]. Currently, PDT is being investigated

as an alternative treatment for localized infections [22]. Dental,

dermatologic as well as oral soft tissue infections are areas of

special interest for antimicrobial PDT (aPDT) research [14,23–

27].

The use of mammalian models for studying pathogenesis and

the efficacy of antimicrobial treatments in vivo is costly and

cumbersome [28]. The use of invertebrate model hosts has

important advantages for obtaining in vivo data at low cost and

with no special housing requirements or need for regulatory

approval. The larvae of the greater wax moth, Galleria mellonella,

has been used to study host-pathogen interaction as an alternative

to mammalian models and a positive correlation between

microbial virulence in mammalian hosts and in G. mellonella has

been demonstrated for a range of organisms [29–31]. Advantages

of the Galleria model include facile inoculation of microorganisms

and the ability to thrive at 37uC.

G. mellonella is an ideal model to examine aPDT in vivo: the

photosensitizer can be injected into the insect haemocoel and the

relatively translucent body facilitates light delivery activating the

PS. Because of the importance of E. faecium as a hospital pathogen

that is often resistant to most antimicrobial therapies, it was of

interest to examine the utility of aPDT in limiting this infection.

We characterized the G. mellonella model for E. faecium infection

and tested methylene blue (MB) mediated aPDT and aPDT-

antibiotic combination therapy for efficacy.

Materials and Methods

Microbial Strains and Culture Conditions
The strains of E. faecium used in these experiments are

summarized in Table 1. We tested strains of E. faecium with

different phenotypic characteristics. We also compared efficacy of

aPDT for treating infection caused by E. faecalis.

E. faecium and E. faecalis inocula were prepared by growing

bacteria aerobically in brain-heart-infusion (BHI) at 37uC without

shaking (overnight growth). The culture concentration was

determined by optical density and compared to a standard curve

determined by plating serial dilutions on BHI agar. Cell numbers

were assessed at 24 h and expressed in colony forming units (CFU)

per ml. Prior to injection, cells were washed twice in phosphate-

buffered saline (PBS) and diluted in PBS to the desired

concentration.

G. mellonella Injection
G. mellonella in the final instar larval stage (250–350 mg body

weight) were stored in the dark at 15uC and used within 7 days

from shipment (Vanderhorst Wholesale, St. Marys, OH). Two

control groups were included in each experiment: one inoculated

with PBS as a control for physical trauma, and the other not

injected as a control for general viability. A 10 ml Hamilton syringe

was used to inject 10 ml inoculum aliquots into the hemocoel of

each larvae via the last left proleg. After injection, larvae were

incubated at 37uC in plastic containers.

G. mellonella Survival Assays
After injection, larvae were observed every 24 h, and considered

dead when they displayed no movement in response to touch.

Sixteen randomly chosen G. mellonella larvae were used per group

in all assays. Survival curves were constructed by the Kaplan-

Meier method and compared by the Log-rank (Mantel-Cox) test

using Graph Pad Prism statistical software. A P value ,0.05 was

considered statistically significant. All experiments were repeated

at least twice, and representative experiments are presented.

Persistence of E. faecium in the Hemolymph
The number of bacterial cells in the hemolymph was measured

at 0, 2, 4, 8, 12 and 24 h after larvae were infected with the E.

faecium strain E007. At each indicated time-point, 5 surviving

larvae per group were bled by insertion of a lancet into the

hemocoel. Hemolymph from 5 larvae was pooled into 1.5 ml

Eppendorf tubes in a final volume of approximately 130 mL.

Then, the hemolymph was homogenized, serially diluted, and

plated on BHI agar containing tetracycline (12.5 mg/L), kana-

mycin (45 mg/L) and amphotericin B (3 mg/L), to prevent

contamination by other bacteria or fungal cells. Plates were

incubated aerobically at 37uC for 24 h, and colonies were counted

in each pool (CFU/pool).

Table 1. Bacterial strains used in this study.

Strain Relevant characteristics Reference

E. faecium

E007 clinical isolate; pMV158GFP; tetracycline resistance [64]

1,231,410 clinical isolate; vancomycin resistance [40]

D344R clinical isolate; ampicillin resistance [65]

2158 TX1330RF/(pHylEfmTX16); virulent in mouse peritonitis model [32]

E. faecalis

OG1RF rifampin and fusidic acid resistance [35]

V583 blood culture isolated; vancomycin resistance [36]

doi:10.1371/journal.pone.0055926.t001
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Administration of Antibacterial Agents
Antibiotics were injected within 120 min after the infection of

larvae with a lethal dose of E. faecium. The antibiotics and doses

included ampicillin (150 mg/kg), streptomycin (15 mg/kg), gen-

tamicin (6 mg/kg) and vancomycin (50 mg/kg). A different proleg

was used for the infection and antibiotic injection. As control

group, the caterpillars received PBS injections. After that, killing

curves were plotted using the Log-rank (Mantel-Cox) test.

Photodynamic Therapy
The phenothiazinium salt methylene blue (MB, Sigma Aldrich)

was used as the PS in this study. MB solutions at a final working

concentration of 1 mM were prepared by dissolving the dye in

distilled and deionized filter sterilized water (ddH2O). A new PS

solution was prepared on the same day of each experiment. After

the PS injection, larvae were maintained in the dark until the time

of light irradiation.

A broad-band non coherent light source (LumaCare, Newport

Beach, CA) was used for light delivery. This device was fitted with

a 660615 nm band-pass filter probe that was employed to

produce a uniform spot for illumination. The optical power was

measured using a power meter (PM100D power/energy meter,

Thorlabs, Inc., Newton, NJ).

All experiments were performed as follows: G. mellonella received

the PS injection (10 mL) 90 min after the bacterial infection. We

waited for at least 30 additional min after the PS injection to allow

a good dispersion of the PS into the insect body, prior to the light

irradiation. After the irradiation, survival curves were plotted using

the log-rank (Mantel-Cox) test.

Results

Initially, a set of experiments was performed to provide a

comprehensive understanding of the host response following E.

faecium infection. We injected different inocula of E. faecium E007

Figure 1. Killing of G. mellonella larvae by E. faecium. Comparison of survival curves by Log-rank test: A) G. mellonella survival after injection of
different inocula of E. faecium (105, 106 or 107 CFU/larva) and maintained at 37uC. Injection with 8.46107 CFU/larva resulted in significantly higher
death rate, compared to injection with 8.46106 CFU/larva (P = 0.0001) or 8.46105 CFU/larva (P = 0.0001). Injection with 8.46106 CFU/larva resulted in
significantly higher death rate compared to injection with 8.46105 CFU/larva (P = 0.0139). B) Killing of G. mellonella by E. faecium D344R ampicillin
resistant (3.06107 CFU/larva), E. faecium 1,231,410 vancomycin resistant (4.86107 CFU/larva) and E. faecium 2158 that was tested previously in mouse
peritonitis model (1.256107 CFU/larva). A representative example was used for each group.
doi:10.1371/journal.pone.0055926.g001
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(clinical isolate tetracycline resistant) in G. mellonella and it was

observed that the increasing concentrations (105, 106 and

107 CFU/larva) of the E. faecium cell numbers resulted in

progressively decreasing survival of the infected larvae (Fig. 1A).

Besides using the E. faecium 007 strain, we performed infection

assays using other clinical isolates of E. faecium, including the strain

1,231,410 vancomycin resistant and the strain D344R ampicillin

resistant. We also employed the strain 2158 that was previously

evaluated in the mouse peritonitis model [32]. We observed that

these strains were also capable of infecting and killing G. mellonella

(Fig. 1B). In addition, we verified that the virulence capability of

the strain 2158 in G. mellonella was well correlated with the

virulence profile of the same strain in the mouse peritonitis model

[32].

The number of bacterial cells in the hemolymph was measured

at 0, 2, 4, 8, 12 and 24 h after larvae were infected with a lethal

dose (56107 CFU/larva) of the E. faecium strain E007 (time 0 was

immediately after injection). As shown in Fig. 2, during the first

2 h after injection the CFU decreased, suggesting an initially

effective immune response to the infection. However, at 8 hours

after the infection the maximum number of E. faecium was

recovered (4.86109 CFU/pool).

An important question about the G. mellonella-E. faecium infection

model is whether it could serve for testing antibacterial agents. We

explored this possibility by assessing the efficacy of single and

combinatorial antibiotic treatments for G. mellonella caterpillars

infected by E. faecium. We evaluated the monotherapy with the

antibiotics ampicillin (150 mg/kg), streptomycin (15 mg/kg) and

gentamicin (6 mg/kg). Another experimental larvae group was

administered the combination of ampicillin (150 mg/kg) and

gentamicin (6 mg/kg) to evaluate the ability of the model to assess

combinatorial treatment. The injection of a single dose of

antibiotics ampicillin, and gentamicin prolonged the survival of

G. mellonella caterpillars. However, for streptomycin no statistically

significant difference was observed. Among the larvae that

received single antibiotic, gentamicin treatment led to greater

than 50% larvae survival up to 7 days after infection. Moreover,

the group that received the combination treatment consisting of

ampicillin and gentamicin showed the highest survival rate (more

than 80% after 7 days) when compared to the other groups treated

with a single antibiotic (Fig. 3). The combination of an

aminoglycoside (gentamicin) with a cell-wall-active antibiotic (such

as ampicillin) is the most widely antibacterial treatment for severe

enterococcal infections [30].

After we verified that G. mellonella infected by E. faecium can be

treated by antibacterial agents, we asked whether this host-

pathogen system could be used to study aPDT. The first step was

to assess potential toxic effects of PS to the larvae and whether they

promoted melanization. We selected the widely used PS methy-

lene blue (MB) for a number of reasons, including its low reported

host toxicity, easy availability and broad clinical applicability [26–

27]. Injection of larvae with MB at 1 mM did not yield

melanization, death or other visible toxic effects. Additionally,

the comparison of the E. faecium infected groups that received a

Figure 2. Number of bacterial cells in G. mellonella hemolymph
post E. faecium E007 infection. The caterpillars were infected with
5.36107 CFU/larva and were maintained at 37uC. Number of bacterial
cells was quantified from pools of five larvae hemolymph per time-
point (0, 2, 4, 8, 12 and 24 h after infection). Bars represent mean and
the standard deviation of three pools per time-point.
doi:10.1371/journal.pone.0055926.g002

Figure 3. Antimicrobial drugs prolong the survival of G. mellonella caterpillars infected by E. faecium. We examined the role of the most
commonly used agents (alone or in association) for enterococcal infection by administering single doses of ampicillin, gentamicin, streptomycin and
the association of ampicillin and gentamicin. The antibiotics were administered within 2 h after larvae were infected with 5.66107 CFU/larva of E.
faecium E007. A control group received the E. faecium E007 inoculum and PBS instead of antibiotics. Treatment with ampicillin (P = 0.0003),
gentamicin (P = 0.0001) and the combination of ampicillin and gentamicin (P = 0.0001) significantly prolonged the survival of G. mellonella caterpillars
when compared to control. However, streptomycin was not effective against E. faecium E007 (P = 0.0995). A representative example was used for each
group.
doi:10.1371/journal.pone.0055926.g003
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second injection of MB or PBS did not show any substantial

difference between the groups (data not shown).

A second preliminary step to simulate an in vivo aPDT study

involved assessing the effects of the exposure of G. mellonella to red

light only, before or after the infection, employing survival assays.

There is evidence in other systems that red light may trigger

immune responses and the absorption of red light by mitochon-

drial respiratory chain components may result in the increase of

reactive oxygen species (ROS), and adenosinetriphosphate (ATP)

or cyclic AMP, that initiate a signaling cascade, which promotes

cellular proliferation and cytoprotection. Also, red light may

stimulate defense cells to increase phagocytosis and to produce

proteolytic enzymes [33,34]. Groups of larvae exposed to red light

alone before or after infection were compared to infected larvae

that received no light exposure. No difference between the groups

was observed in both experiments indicating that red light alone is

not toxic to the larvae and did not alter the larvae immune

response to infection (data not shown).

In order to find the optimal dose-response to MB-mediated-

PDT, we evaluated 10 groups of larvae that were infected with the

clinical isolate E. faecium-E007 and received MB injection (10 mL

of 1 mM). We gradually increased the light exposure time. More

specifically, 8 groups were exposed to red light at different fluences

(0.9, 1.8, 3.6, 5.4, 7.2, 10.8, 14.4 and 18 J/cm2, corresponding to

30, 60, 120, 180, 240, 360, 480 and 600 seconds of irradiation),

while two control groups received injection of PBS or MB with no

light exposure. After irradiation, the survival rate of G. mellonella

was counted 24 h post E. faecium infection. The best survival rate

was reached with 30 seconds of irradiation (0.9 J/cm2). We found

that after 120 seconds of light exposure that corresponded to

3.6 J/cm2, killing of G. mellonella was significantly higher compared

to the control groups (P = 0.0023) indicating that the aPDT at that

time exposure level was lethally toxic to the host (data not shown).

Next, a finer evaluation was performed to establish the optimum

light dosimetry and 8 additional groups were divided analyzing the

photodynamic effects at 15, 30, 45, 60, 75, 90, 105 and 120

seconds of irradiation (0.45, 0.9, 1.35, 1.8, 2.25, 2.7 and 3.6 J/

cm2) and once again 0.9 J/cm2 (30 seconds of irradiation)

provided the best survival rate (Fig. 4).

A further experimental procedure was designed to study the

effects of aPDT, mediated by MB (1 mM) and red light at 0.9 J/

cm2, on Galleria survival when infected by six different bacteria

strains. We tested different strains of E. faecium, including E. faecium

E007 tetracycline resistant, E. faecium D344R ampicillin resistant,

E. faecium 1,231,410 vancomycin resistant, and E. faecium 2158

used in the mouse peritonitis model [32]. We also tested two

strains of E. faecalis: E. faecalis OG1RF (a rifampin and fusidic acid

resistant laboratory derivative of an isolate from a child with

rampant caries [35] and E. faecalis V583, that was the first

vancomycin resistant enterococcal strain isolated in the USA [36].

We observed that aPDT, prolonged significantly the larvae

survival in most of the clinical isolates when compared to non-

PDT treated larvae, except of the vancomycin resistant E. faecium

1,231,410 (Fig. 5A, B, C, D, E, F).

As noted on the previous section the killing of larvae depends on

the number of bacteria inoculated (Fig. 1A) and the most probable

explanation for the prolonged survival of the infected larvae after

MB-mediated PDT is the reduction of the bacterial tissue burden.

Figure 4. Dose-response 24 h after infected G. mellonella by E. faecium E007 were exposed to antimicrobial PDT. Larvae were infected
with 36107 CFU/larva of E. faecium E007. Best result was found when the fluence of 0.9 J/cm2 was applied.
doi:10.1371/journal.pone.0055926.g004
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We therefore measured CFU immediately after aPDT, (time 0) as

well as 4 and 8 h post-PDT treatment using larvae infected by E.

faecium 007. We compared the hemolymph burden of aPDT-

treated larvae with non-treated larvae. The aPDT effect that

reduces bacterial cell viability, would occur immediately upon light

exposure, as the singlet oxygen (the main PDT pathway that

promotes cell death) lifetime in biological systems has been

reported to be shorter than 0.04 ms [37]. A significant reduction in

the CFU number was also observed at 4 and 8 h post-PDT

treatment (Fig. 6). Even though there was still a significant

bacterial burden, it is reasonable to assume that enterococci were

impaired by the non-lethal oxidative damage which may make

Figure 5. Killing of G. mellonella by E. faecium and E. faecalis exposed to antimicrobial PDT. In the aPDT group, the larvae received the PS
injection 90 min after the bacterial infection. In order to allow a good dispersion of the PS into the insect body, we waited at least 30 additional min
after the PS injection prior to the light irradiation. Control group received PS without light exposure. A) E. faecium E007 tetracycline resistant
(3.06107 CFU/larva), B) E. faecium D344R ampicillin resistant (1.086107 CFU/larva), C) E. faecium 1,231,410 vancomycin resistant (4.86107 CFU/larva),
D) E. faecium 2158 used in the mouse peritonitis model (1.256107 CFU/larva), E) E. faecalis OG1RF rifampin and fusidic acid resistant (1.76106 CFU/
larva), F) E. faecalis V583 vancomycin resistant (1.36106 CFU/larva). A representative example was used for each group.
doi:10.1371/journal.pone.0055926.g005
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them more susceptible to insect immunity, resulting in a greater

reduction in bacterial burden (4 and 8 h after PDT compared to

time 0) and therefore prolonged the survival of PDT exposed

hosts.

We also evaluated the hypothesis that aPDT might permeabilize

the microbial cell wall making vancomycin-resistant enterococci

susceptible to vancomycin. Therefore, we employed the G.mello-

nella-E. faecium developed system to assess the sequential applica-

tionof aPDT with antibiotics (Fig. 7). Larvae infected by a VRE

strain were treated with MB-mediated PDT or with vancomycin.

Neither therapy alone significantly prolonged larvae survival.

However the sequential challenge employing aPDT followed by

vancomycin led to a remarkable increase in the survival of

caterpillars. The survival of G. mellonella infected by E. faecium

1,231,410, a vancomycin resistant clinical isolate, was more

pronounced with a sequential treatment employing MB-mediated

PDT followed by a single dose of vancomycin when compared to

infected caterpillars treated with PDT alone or subjected to one

dose of vancomycin.

Discussion

In this report, we describe the use of G. mellonella larvae to

develop an invertebrate host model system for evaluation of a

variety of antimicrobial treatments against E. faecium, including

aPDT and antibiotics. First, we performed a set of experiments to

elucidate the G. melllonella host response following E. faecium

infection. We found that killing of G. mellonella larvae depended on

the number of bacteria inoculated, and all E. faecium strains tested

were capable of infecting and killing G. mellonella. In addition,

treatment with clinically approved antibiotics prolonged caterpillar

survival infected by E. faecium. Then we utilized this model in order

to outline the first invertebrate model for the study of aPDT and

demonstrated that aPDT results in a significant reduction in the

CFU number immediately upon light exposure as well as 4 and

8 h post-PDT treatment.

G. mellonella has been used to study the host-pathogen

interaction as an alternative host model to mammalian hosts

[29–31,39–51]. As variation of the initial bacterial inoculum can

considerably affect the G. mellonella infection, we injected 105, 106

and 107 CFU/larva of E. faecium E007 in G. mellonella resulting in

20, 60 and 100% of mortality, respectively, after 72 h of infection.

Similar mortality patterns were observed in studies employing the

opportunistic pathogens S. aureus and E. faecalis. Peleg et al. [52]

found mortality rates of 98 and 100% after 72 h of infection with

106 and 107 CFU/larva. Gaspar et al. [53] demonstrated that E.

faecalis strains were able to kill between 60 and 98% of G. mellonella

larvae with inocula about 26106 CFU/larva (48 h post-infection).

In this study we verified that a set of E. faecium multidrug

resistant clinical isolates was capable to infect and kill G. mellonella.

In a recent study, Lebreton et al. [40] showed that G. mellonella

larvae were susceptible to infection by a variety of E. faecium

hospital-adapted, commensal or animal isolates as well as mutant

Figure 6. Number of bacterial cells in G. mellonella hemolymph
over time post antimicrobial PDT treatment. Larvae were infected
with 4.86107 CFU/larva of E. faecium 007 and were maintained at 37uC.
After 90 min post-infection, the PS was injected. We waited additional
30 min prior to light irradiation. After light irradiation, the number of
bacterial cells was quantified from pools of five larvae hemolymph per
time point (0, 4 and 8 h after PDT that corresponded to 2, 6 and 10 h
after infection). All PDT exposed groups resulted in significantly
bacterial burden reduction when compared to the control group that
was not exposed to PDT of each studied time-point (Student t test
considering statistical significance with P,0.05: immediately P = 0.0080,
4 h P = 0.0001, 8 h P = 0.0010). Bars and Error bars represent respectively
the mean and standard deviation of three pools per time point.
doi:10.1371/journal.pone.0055926.g006

Figure 7. Killing of G. mellonella caterpillars after infection by VRE E. faecium 1,231,410, treated by administration of vancomycin
(50 mg/kg), antimicrobial PDT, both in a combined therapy, or PBS (Control). The caterpillars received injection of 1.36107 CFU/larva and
were maintained at 37uC. The combined treatment with aPDT followed by vancomycin injection resulted in significantly lower death rate when
compared to treatment with PBS (P = 0.0012), vancomycin only (P = 0.0025) or aPDT alone (P = 0.0095). A representative example was used for each
group.
doi:10.1371/journal.pone.0055926.g007
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strains with deletion of virulence genes. The authors suggested that

G. mellonella could be a suitable and convenient surrogate model to

study E. faecium susceptibility to host defenses and the role of

suspected virulence factors in the colonization process. However,

the E. faecium strains evaluated by Lebreton et al. [40] exhibited

reduced pathogenicity for G. mellonella compared to the results

obtained in the present study. Interestingly, the vancomycin

resistant strain 1,231,410 which was evaluated in both studies

showed in our experiment setting a mortality rate of 100% after

50 h of injection with 4.86107 CFU/larva. Lebreton et al. [40]

reported approximately 10% of mortality 50 h post infection by E.

faecium 1,231,410 (26106 CFU/larva). Besides the inoculum

concentration, the differences between our results and the data

obtained by Lebreton et al. [40] can be explained by the G.

mellonella lineage. We used G. mellonella within 7 days from

shipment without a food source while Lebreton et al. [40] used

larvae starved for 24 h. Recently, Banville et al. [54] demonstrat-

ed that the deprivation of G. mellonella larvae of food leads to a

reduction in cellular immune responses and an increased

susceptibility to infection.

G. mellonella can be treated by administration of traditional

antimicrobial agents [38]. Treatment efficacy of Gram-positive

bacterial infection with clinically approved antibiotics was recently

reported in this model by Desbois et al. [39]. We observed that the

injection of a single dose of the antibiotics ampicillin, and

gentamicin prolonged the survival of G. mellonella caterpillars

infected by E. faecium. The combination of an aminoglycoside

(gentamicin) with a cell-wall-active antibiotic (such as ampicillin) is

the most widely used antibacterial treatment for severe entero-

coccal infections [55]. We also found a better result using the

combination of ampicillin and gentamicin (more than 80%

survival rate after 7 days).

The emergence of multidrug resistance (MDR) involves a

variety of pathogenic microorganisms and antimicrobial agents. As

a consequence MDR has prompted the investigation and

development of new and alternative antimicrobial technologies

and countermeasures, of which aPDT has emerged as an effective

approach to selective destruction of pathogens [24,56–58]. In vivo

antimicrobial PDT studies have been performed in vertebrate

models, such as mice [59–61]. However, the high cost, together

with the laborious and time consuming nature of the work may

limit the number of variables studied, as well as the number of

strains or species tested in a same experiment. G. mellonella as a

model to study in vivo antimicrobial PDT can be very useful,

especially when studying with different phenotypic features or

different species of pathogen.

To the best of our knowledge, this is the first time an insect

model host has been used to study antimicrobial PDT. In order to

evaluate the G. mellonella system as a model for antimicrobial PDT,

a preliminary set of experiments was performed with different

groups of larvae that each received different PDT doses. Usually, a

higher dose of PDT would be expected to provide better results in

bacterial number reduction, but when applied in this insect model

host, it was found that high-dose PDT had no effect on prolonging

the survival rate when compared to non-exposed larvae. The

working hypothesis is that higher PDT doses could promote

damage in host tissues or on the host immune response. When a

low dose of PDT was selected for application it was potent in the

microorganisms and could be tolerated by G. mellonella larva

without toxicity. Low doses of PDT can be also efficient,

especially, in Gram-positive bacteria due their permeable cell wall.

In order to avoid host damage we applied a low antimicrobial

dose therefore we found only a modest bacterial cell burden

reduction. It is plausible that this sub-lethal PDT dose promotes

bacterial cell-wall damage, thus facilitating the insect immune

system response to clear the infection. With a weaker or permeable

cell wall, bacteria could become easily phagocytized by G. mellonella

hemocytes, and/or more susceptible to humoral insect immune

response, by antimicrobial peptide action. This could explain the

significant caterpillar survival rate in PDT exposed groups. The

analysis implies that the precise mechanistic aspects of the

pathogen photoinactivation in the caterpillar remain elusive.

The same reservations applies in many occasions for the in vitro

PDI explorations [62]. A comprehensive experimental design with

emphasis in assessing the killing rate and the cell wall damage

following in vitro exposure of E. faecium to different light levels will

be essential to dissect the mechanism of the selective E. faecium

photoinactivation in the host.

It has been demonstrated that photodynamic inactivation affect

fungal cell wall and subsequently enhances the efficacy of

antifungals [24]. This prompt the formulation of the hypothesis

that the low PDT dose could also affect the bacteria cell wall. If the

hypothesis holds truth it will be safe to assume, that the sequential

application of aPDT and antimicrobial compounds such as

antibiotics could act synergistically in treating the infection. It is

known that vancomycin resistance by enterococci is considered the

paradigm of the post-antibiotic era [13]. Conventional antimicro-

bial therapy could be combined with aPDT as an adjunct therapy

[58]. The combination of PDT with antimicrobials has been used

with success when compared to either approach [23,63].

Importantly, we observed that the G. mellonella larvae survival

after infection by a VRE strain was prolonged when vancomycin

was administered after aPDT. When vancomycin or aPDT were

applied alone no extension of caterpillar survival was observed. It

is entirely possible that the permeabilization of the bacterial cell

wall by the sub-lethal aPDT dose, makes it more susceptible to

vancomycin. The exact mechanism by which aPDT makes VRE

susceptible to vancomycin remains to be clarified. Again, further

experimentation will be required to address the exact mechanism

of this promising therapeutic modality for VRE infections or other

resistant pathogens.

Overall, the first facile, whole animal alternative model host for

aPDT testing is described. This invertebrate animal model

provides a novel valuable tool to explore combinatorial aPDT-

based treatments. It is logical to anticipate that the model

described will be used to study the in vivo efficacy of new

photosensitizers, and PDT-based protocols, without the ethical,

financial and logistical barriers of mammalian models.
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