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Abstract

Climate change affects the phenology of many species. As temperature and
precipitation are thought to control autumn color change in temperate deciduous
trees, it is possible that climate change might also affect the phenology of autumn
colors. Using long-term data for eight tree species in a New England hardwood
forest, we show that the timing and cumulative amount of autumn color are
correlated with variation in temperature and precipitation at specific times of the
year. A phenological model driven by accumulated cold degree-days and
photoperiod reproduces most of the interspecific and interannual variability in the
timing of autumn colors. We use this process-oriented model to predict changes in
the phenology of autumn colors to 2099, showing that, while responses vary among
species, climate change under standard IPCC projections will lead to an overall

increase in the amount of autumn colors for most species.
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Introduction

Climate change and autumn colors

Temperature affects biological processes ranging from the molecular to the
ecological level. It is not surprising, therefore, that climate change is altering the
phenology of many species [1-7]. In plants, the impacts of climate change on spring
phenology (flowering) are well documented [8-13]. Much less is known, however,
about how warming temperatures and altered precipitation regimes affect autumn
phenology, specifically as related to leaf coloration and senescence.

About 15% of the tree species of the temperate regions of the world change
their leaf color from green to yellow or red in autumn, a percentage that can reach
70% in some regions like New England (Northeast USA) [14-15]. As leaf color
change and leaf fall are thought to be controlled by temperature and precipitation
[16-18], it is possible that climate change may also affect autumn phenology, with
obvious biological and ecological implications [19].

At the continental scale, warmer autumns have for instance been related to
lower net carbon fixation [20-21], as a consequence of a higher enhancement of
ecosystem respiration than the concomitant enhancement of gross photosynthesis. At
a local scale, temperate deciduous forests may on the contrary show a higher annual
net carbon fixation during warmer autumn as a consequence of an extended leafy
season [22]. There is further evidence that the asynchrony of autumn phenology may
alter the competition between co-occurring plant species, either in the case of

symmetric (between understory plants - all plants being light-limited by the
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overstorey canopy) [23] or asymmetric (between overstory and understory plants)
[24] competition.

Additionally, the potential impact of climate change on the intensity and
duration of autumn coloration is, in some regions, of enormous economic importance
[25]. Autumn tourism—much of which is to participate in so-called “leaf peeping”—
contributes billions of dollars each year to the economies of the states of the eastern
U.S.A. and provinces in adjacent Canada. If climate change reduces the duration of
autumn color display, or results in less vibrant displays, future tourism revenues will

likely be reduced.

Rationale of the study

In order to predict how autumn colors may respond to forecast changes in
environmental drivers, we analyzed data on leaf color change collected annually
between 1993 and 2010 in a New England forest for eight study-species that develop
anthocyanins in autumn. For each species we calculated the average percentage of
colored leaves and of fallen leaves for each day of the year for the 18 years during
which the data were gathered. We investigated correlations between temperature and
precipitation during different times of the year, and the timing of various autumn
color thresholds and leaf fall dates. We compared two types of models to explain
autumn coloration and leaf fall. First, we used an empirical approach [26] based on
stepwise multiple linear regression, with monthly means of temperature and
precipitation as the candidate independent variables. Second, we used a more

mechanistic approach using a cold-degree-day photoperiod-dependent model [27].
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The correlation analysis and empirical modeling allow us to identify environmental
drivers that may be missing from the mechanistic model, which is highly constrained
in its structure, and which does not, for example, account for relationships between
precipitation and autumn color. We evaluated the models against the observational
data using cross-validation methods. We then used the most robust modeling
approach, in conjunction with IPCC climate projections, to forecast changes in the

phenology of autumn color and leaf fall, between now and the year 2099.

Materials and Methods

Data

We analyzed data on the autumn phenology of Acer rubrum (red maple), Acer
saccharum (sugar maple), Fraxinus americana (white ash), Nyssa sylvatica (black
gum), Prunus serotina (black cherry), Quercus alba (white oak), Quercus rubra (red
oak) and Quercus velutina (black oak) at Harvard Forest, a research area owned and
managed by Harvard University, in Petersham, Massachusetts, USA (Prospect Hill
Tract; 42.54 °N, 72.18 °W). For more than twenty years, phenological observations
have been made, every 3-7 days in spring and autumn [18, 28], by the same observer.
The observed trees (3 to 5 permanently-tagged individuals per species) are located
within 1.5 km of the Harvard Forest headquarters at elevations between 335 and 365
m above sea level. The field protocol for autumn observations was finalized in 1993

and here we use observations through the end of 2010. Beginning in September, and
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continuing through the end of leaf fall, leaf coloration (the percentage of leaves that
have changed color on a given tree) and leaf fall (the percentage of leaves that have
fallen from a given tree) are estimated for each individual observed. The raw data are
available at http://harvardforest.fas.harvard.edu/data/archive.html (datasets HF000,
HFO001, HF003); the transformed data and the codes used for the analysis are

available from the authors, while the final data are in Supplementary Table 1.

Measures of autumn color

We used the original data to infer the day (cx) on which the percentage of colored
leaves is x and the day (f) in which the percentage of fallen leaves is x (where x may
take a value of 10, 25, 50, 75 or 90 percent). Assuming that both color and leaf
retention change as a linear function between the days in which the observations

were recorded, we derived ¢ using the formula

Cx=CxINFT (x'xINF)(CxSUP'CxINF)/ (XSUP-XINF)

where xnr and xsyp are the available measure immediately lower and higher than x; f;

was derived in a similar way as

SNt (e-XiNe) (frsup-faNE )/ (XSUP-XINF)

For a few species, in some years (18 in a total of 2304 data points, that is 0.65% of

the data), certain thresholds (mainly c;¢ and c¢;,s) had already been reached before the
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first field observations were made: in these cases, rather than extrapolate backwards,
we simply treated these as missing data.

We also used ¢, and f; to build two different measures of abundance of
autumn color: dy=fo-cx measures the duration of autumn color as the number of days
between the day when a percentage x of the leaves are red (cx) and the day when
90% of the leaves have fallen (fo). The amount of autumn color is measured by (i,-i,-
DYt (i) Vumyn-1)/2 1 yu>yu1 and by (Gp-in-1)yut (Gn-in-1)n-1-Yn)/2 if y<yn.1, where
vi=rs(1-1,/100); r, is the percentage of red leaves, ¢, is the percentage of leaves
retained, i, is the (julian) day when the n™ measure (of a total of m measures) was

taken. The yearly amount of autumn color
A= E (in'in—l)(yn+yn—l) / 2
ym ]

therefore is (in a Cartesian plane), the area below the lines that connect the daily
amount of autumn color (see Figure 1). 100 units of 4 correspond to one calendar

day in which all leaves are retained and red.
Correlation analysis and regression modeling

Air temperature and precipitation are measured (daily) at the Harvard Forest near to
the trees on which phenological observations have been conducted. Data for the
Shaler (1964-2002) and Fisher (2001-present) meteorological stations are available

online at the web address given above; any missing observations were filled using
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measurements from the Harvard Forest EMS AmeriFlux tower, approximately 1 km
distant.

For both temperature and precipitation, we first calculated averages (of the
daily measures) over all the 1- to 52-week timeframes preceding each day of the
year. We then calculated the correlation coefficients between these averages and
each of the measures of autumn color (4; ¢y, fx, dx; see above) for each species.
Based on the correlation analysis, we identified the periods of the year during which
the largest positive and the largest negative correlations were observed with the
measures of autumn color.

For our empirical modeling of leaf color threshold dates (cx) and leaf fall
threshold dates (f;), we calculated monthly means of temperature and precipitation
during the leaf-on (May to October) period. We conducted a stepwise multiple linear
regression procedure with the monthly mean drivers as candidate independent
variables (6 months x 2 drivers = 12 candidate variables). We specifically chose a
monthly time interval (rather than weekly) for averaging, and restricted our analysis
to the leaf-on period, so as to avoid having too many candidate variables, which
could increase the likelihood of type 1 (false positive) errors and potentially lead to
the inclusion of spuriously correlated variables in the regression. At each iteration of
the stepwise procedure, variables that would be significant at a p-value of < 0.20
were added to the regression but were subsequently removed if, after other variables
were accounted for, the p-value exceeded 0.05. We fit a separate model to each ¢y
threshold and each f; threshold; 4 and dx were then calculated from ¢y and fx. Below,

we refer to this Multiple Linear Regressions approach as the MLR model.
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Process-oriented modeling

We used a cold-degree-day photoperiod-dependent (CDD/P) model [27]. This model
was initially designed to simulate a coloring stage and was further applied in this
study to the simulation of a fall stage. Whatever the senescence stage (cx or f)
considered, it is defined in the model by S, (arbitrary units) for each day (doy)
following Dy, (the date at which a critical photoperiod Py, is reached),
representing the progress of the simulated process. Leaf coloring or fall reaches a
given stage (cx or f;) when S;,, reaches a threshold value (Y., arbitrary units). In this
model, the time derivative of the state of senescence (R, arbitrary units) on a daily

basis is formulated as:

If P(doy)>Pyar Ssen(doy) =0

If P(doy)<Psur and T(doy)>T) Ryen(doy) =0

If P(doy)<Pgiar and T(doy)<T Rsen(doy) = [To-T(doy)I" /[ P(doy)}

Ssen(doy) = Ssen (doy-1) + Ren(doy)

Where P(doy) is the photoperiod expressed in hours on the day of year doy; T(doy),
the daily mean temperature (°C); 7, the maximum temperature at which the
considered senescence (i.e. coloration or fall) process is effective (°C); f[P(doy)], a

photoperiod function that can be expressed as follows :
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JIP(doy)] = P(doy) | Psan

or

f[P(dOy)] = I'P(dOJ/) /Pstart

The complete model therefore includes five parameters (P, 1o, X, Vs Yeric)-
The dummy parameters x and y may take any of the {0, 1, 2} discrete values, to
allow for any absent / proportional / more than proportional effects of temperature
and photoperiod to be included. A feature of this model structure is that, depending
on the value of x, the modeled phenophase can be considered as dependent (x > 0) or
independent (x = 0) on cold-degree days. In the latter case, the occurrence of the
phenophase is only determined by a threshold photoperiod.

The optimization procedure consisted of exploring the whole space of
parameters for Py (from 10 to 16 h with a 0.5 h step), Ty, (from +7 to +30 °C with a
0.5 °C step), x, and y. The Y parameter was identified through the Powell (gradient
descent) optimization method [29]. Parameter optimization was based on minimizing
the model-data mismatch, quantified in terms of root mean squared error.

As with the MLR approach, the CDD/P model was fit independently on leaf
color (cx) and leaf fall (fx) data for each species. Yet, while the MLR approach was
fit on each color and fall stage (e.g. 5 fits for color from ¢y to cqg), we fit the CDD/P
model over the complete phenological trajectory (e.g. simultaneously for all five

stages from cjo to cgp for leaf coloration) defining for each model structure a set of

10
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five Y. parameters, one per observed stage. We thereafter used the two CDD/P
models fit independently on coloring and fall data to predict canopy duration (dx) and
the amount of color (4). Statistics were computed using MATLAB version 7.10 (The

MathWorks Inc., 2010).

Robustness assessment of the modeling approaches

The accumulation of a large phenological dataset requires sustained effort over many
years, which is why multi-decadal records are relatively scarce. With 18 years worth
of data, the Harvard Forest dataset is one of the longest autumn datasets published
[28]. However, it is certainly possible that either the statistical (MLR) or process-
oriented (CDD/P) approaches could result in models being over-fit to what is still a
relatively short time series.

After performing a first fit of both approaches on the full dataset, we
evaluated the robustness of each model (i.e. the ability of the model to predict an
unknown dataset) by using cross-validation analysis [30,31]. This approach is
commonly used when wholly independent data (e.g., from another site) are
unavailable for model testing (for examples in the phenology literature, see [26]).
Specifically, we used a one-out cross-validation, which is particularly appropriate
when the dataset is relatively small. To conduct the cross-validation, the models were
fit sequentially on 17 of 18 points (i.e. years) from the original dataset (“calibration”)
and tested for their ability to simulate the remaining point (“validation”). This was

repeated 18 times, so that each data point was included in the validation set exactly

11
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once. Model performance statistics (root mean square error, RMSE, and model
efficiency, ME [32]) were then calculated across the 18 validation points.

We assessed the ability of each of the two modeling approaches to maximize
the trade-off between model parsimony and goodness-of-fit using Akaike’s

information criterion, corrected for small samples (AICc [33]).

Future Climate Scenarios

We used our models to generate forecasts of future shifts in autumn color phenology
at Harvard Forest. Thus the model structure is a hypothesis, and the resulting
predictions can be tested as future data become available. We ran the models forward
using climate projections (2010-2099) for the Harvard Forest grid cell. These were
previously generated by Hayhoe et al. [34] using the NOAA GFDL CM2 global
coupled climate model [35], statistically downscaled to one-eighth degree (~10 km)
spatial resolution at a daily time step. The CM2 model was run using two scenarios
of CO; and other greenhouse gas emissions (the IPCC Special Report on Emission
Scenarios [SRES] higher [Alfi] and lower [B1] scenarios [36]). Compared to a
1960-1990 baseline of 7.1 °C mean annual temperature and 1100 mm annual
precipitation, corresponding values (mean 2070-2099) are 12.0 °C and 1270 mm for
the Alfi scenario and 9.5 °C and 1240 mm for the Bl scenario. Under the Alfi
scenario, summer temperature are projected to increase more than temperatures
during the rest of the year, while relatively more precipitation will fall during the

autumn and winter months, and less during the spring and summer months. Under

12
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the B1 scenario, changes in seasonality are negligible, with changes in temperature

and precipitation being relatively similar across the year.

Results

Variations in phenology

In the 18 years in which the data were collected, autumn color display typically
started at the beginning of September, peaked at variable times in October, and lasted
until November, with marked differences among species and, within each species,
among years (Figure 1; Supplementary Table 1). Peak color was earliest for Prunus
serotina, Acer rubrum and Fraxinus americana, and latest for Acer saccharum and
the various Quercus spp.

Year-to-year shifts in the entire sequence of stages are easily seen, with 1994
being a year of early coloration and 2002 being a year of late coloration (example of
Quercus alba, Figure 2a). The interspecific variability of autumn stages is illustrated
with the example of 50% leaf fall, which occurs on average 23 days earlier in Acer
rubrum than in Quercus rubra (Figure 2b). The interannual variability of autumn
stages varied from species to species, with, for example, a SD of 3.1 days in Acer
rubrum and 6.6 days in Quercus alba for 50% leaf fall.

The interannual variation of autumn phenology of each species was
correlated with interannual variation in temperature and precipitation at specific
times of the year. Consider, for example, Acer rubrum (Figure 3). Both leaf fall ()

and the display of red leaves (c,) were shifted significantly later in years with

13
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warmer autumn temperatures. Dates of the full display of autumn colors (¢75, c90)
were positively correlated with temperatures from spring through autumn (although
spring temperature correlations were weaker than those in autumn), but earlier onset
of color (cj¢) occurred in years with warmer spring temperatures. Both the duration
of autumn colors (dx) and the total amount of autumn color (4) tended to increase in
years with warmer temperatures, particularly warmer spring and autumn
temperatures.

For each species there is a different “fingerprint” to correlations between
autumn colors and temperature/precipitation at different times of the year
(Supplementary Figure 1). In Acer saccharum, Nyssa sylvatica, and Prunus serotina,
the onset of color and leaf fall were correlated with temperature in a manner that was
similar to Acer rubrum. In Fraxinus americana, advances in the onset of autumn
color (cyp), and delays in the full display of autumn color (c9o) occurred in years with
warmer temperatures, while leaf fall dates were advanced in years with warmer
temperatures. As a consequence, the duration of the full display of autumn color (dyo)
was reduced in years with warmer autumn temperatures. In Quercus velutina, delays
in both leaf coloration and leaf fall were correlated with warmer autumn
temperatures, and the total amount of autumn color (A) was positively correlated
with summer and autumn temperatures.

Our analysis suggests, therefore, that over the course of the year, interannual
variation in temperature is correlated with species-specific and phenophase-specific
variation in autumn phenology. Similar patterns are seen when the same analysis is
conducted for precipitation (Supplementary Figure 2). To the extent that these may

represent causal relationships, it is therefore quite likely that the autumn phenology
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of each species will respond to future climate change in a slightly different manner.

Stepwise regression analysis

In order to increase our understanding of the statistical dependence between autumn
phenology and the climate drivers, we conducted a total of 40 stepwise regressions (5
thresholds x 8 species) for each of ¢x and fx (Supplementary Table 2). Across all ¢y,
the mean (+ 1 SD) R* was 0.49 + 0.28; for f;, the corresponding value was 0.44 +
0.26. However, for 7 of the ¢4 regressions, and 6 of the f; regressions, no variables
were selected by the stepwise procedure, and hence these models had R* = 0.

Mean September temperature was included in 23 of the ¢ regressions, and 27
of the f; regressions. In all cases, the regression coefficients were positive, indicating
that warmer September temperatures were associated with delayed coloring and leaf
fall. By comparison, mean October temperature was included in only 5 of the ¢
regressions and 3 of the fx regressions, and the signs of the regression coefficients
varied among species.

Temperatures earlier in the growing season were, in some cases, included in
the regressions. For example, mean May temperature was included in 11 of the ¢y
regressions and 6 of the fx regressions. In each of these cases, the regression
coefficient was negative, indicating that warmer May temperatures were associated

with advanced coloring and leaf fall.
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Despite the apparent importance of precipitation indicated by the correlation
analyses described above, for no month was mean monthly precipitation included in

more than three (of 40) ¢4 or f; regressions.

Cold-degree-day modeling

Across all ¢, the mean (+ 1 SD) R* was 0.43 + 0.20; for fx, the corresponding value
was 0.34 + 0.22. Presumably because of its lower degree of flexibility, the CDD/P
model did not fit the observations as well as the more highly parameterized MLR
model.

In all but one case, the CDD/P model structure yielding the lowest prediction
error included cold-degree-days (i.e. a sum of temperature below a certain
temperature threshold) as a driving variable for the simulation of ¢x and f; phenology
(Supplementary Table 2). Only for leaf fall in Fraxinus americana was this model
structure unable to simulate the suite of stages better than the null model (which
implicitly assumes that photoperiod was the sole trigger of senescence processes,
yielding each year the same prediction date for a given stage). In 10 over 80 coloring
and fall cases (Supplementary Table 2), the selected model structure incorporated an
interaction effect of photoperiod and cold-degree-days, meaning that a given
departure from the base temperature stimulated senescence processes differently as

daylength decreased.

Comparison of modeling approaches

16
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When fit over the full dataset, the MLR model usually (80% cases) fit the data better
(higher modeling efficiency, ME, and lower RMSE) than the CDD/P model (Table
1). In addition, in 69% of cases, the MLR maximised the trade-off between model
parsimony and goodness-of-fit: the MLR approach generally resulted in lower
Akaike’s Information Criterion (AICc) values than the CDD/P approach (Table 1).
However, the MLR approach appeared to be somewhat less robust than the CDD/P
approach, suggesting that the empirical models may have been over-fit. For example,
in the one-out cross-validation analysis, predictions from the CDD/P approach
consistently had lower RMSE than those from the MLR approach (Figure 4). This
gives us greater confidence in the use of the CDD/P model for forecasting purposes,

compared to the MLR approach.

Phenological Forecasts

For modeled future dates of leaf color (cx) and leaf fall (f5), we fit a linear regression
to estimate the predicted rates of change (days per year) in autumn phenology over
the period 2010-2099. We conducted a similar analysis for canopy duration (dx) and
total color (4). This was done using the final models identified by both the MLR and
CDD/P approaches, keeping in mind that the cross-validation analysis indicated the
latter approach to be more robust. Indeed, we found that when run under future
climate scenarios, the MLR predictions were sometimes not reliable: “crossing-over”
commonly occurred, for some species as early as 2020 or 2030, so that (for example)

fs0 was predicted to occur before f>5. These inconsistencies were particularly common
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for both leaf coloration and leaf fall for two species, Fraxinus americana and
Quercus alba. Of the eight species considered, Acer rubrum and Quercus velutina
were the only species for which crossing-over was not observed to occur. For this
reason, we focus our analysis on the forecasts generated with the CDD/P model,
acknowledging, however, that (i) this approach may omit important drivers
(specifically, precipitation) of autumn leaf phenology and (ii) this approach also
predicted dubious patterns in the case of Fraxinus americana, for which e.g. cgy
(90% canopy coloration) was predicted to occur after fo9 (90% leaf fall) originating
from the inability of the CDD/P model to describe the current interannual variations
of leaf fall in this sole species. These results, along with uncertainty estimates
(indicating 95% confidence intervals on slope estimates, rather than the uncertainty
in phenology model parameters or model structure [37]), are shown in Figure 5.

For the CDD/P approach, a shift towards later occurrences of a given cx or fx
stage is the rule (Figure 5). In some species, such as Acer rubrum, Quercus alba, and
Quercus velutina, shifts towards later leaf color (Figure 5a) and leaf fall dates
(Figure 5b) are somewhat smaller for earlier thresholds (e.g. cio, fi0) than later
thresholds (e.g. coo, fo0). For other species, all stages of leaf coloring and leaf fall are
predicted to shift by essentially the same amount. Across all thresholds, leaf color
duration (Figure 5c) is predicted to increase (by about 0.1 d/y) for Acer saccharum,
Nyssa sylvatica, and Prunus serotina, but decrease (by about 0.3 d/y) for Fraxinus
americand.

The projected change in total amount of color (4) is generally positive for all
species (Figure 5d). The projected change is substantially larger for the Alfi scenario

(higher CO, emissions, larger rise in mean annual temperature and larger increase in
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annual precipitation) than the Bl scenario (lower CO, emissions, smaller rise in
mean annual temperature smaller increase in annual precipitation). Under the Bl
scenario, the 95% confidence interval on the slope estimate includes zero for several
species. We notice that the CDD/P model (fitted, independently on coloration and
fall data) could not predict a consistent trend for Fraxinus Americana, for which, for
instance, full leaf loss was predicted to occur before full coloration by year 2075.
The strongest response to the Alfi scenario is predicted for Nyssa sylvatica (+5
units/y), while little or no change in total color is predicted for Acer saccharum, a
species that is especially popular with leaf peepers. We note that for Acer rubrum
and Quercus velutina, the only two species for which MLR predictions were
considered reliable, the responses to the Alfi scenario are much smaller for the
CDD/P approach (+2 and +1 units/y, respectively) than the MLR approach (+7 and

+9 units/y, respectively).

Discussion

Our results demonstrate substantial year-to-year variability in the timing and amount
of autumn color for the eight species considered. Both the empirical, statistical
method (MLR approach, modeling phenological transition dates as a function of
monthly precipitation and temperature during the current year’s growing season) and
the more process-oriented model (CDD/P approach, simulating the influence of cold-
degree-days interacting with photoperiod on senescence processes) could be
successfully fit to the data, allowing us to reject the null hypothesis that these events

are controlled strictly by photoperiod. The CDD/P model was shown, by a one-out
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cross-validation analysis, to be more robust than the MLR model. The stepwise
regression model is wholly empirical, and imposes no formal structure on the
relationships between phenological states and meteorological drivers. By
comparison, the CDD/P model structure is based on hypotheses [27] about how cold
temperatures and/or photoperiod combine to regulate autumn phenology.
Furthermore, whereas in the empirical approach the model was estimated separately
for each individual phenological threshold, in the CDD/P model the entire
progression through all five thresholds (x= 10%, 25%, 50%, 75%, 90%) for each of
¢y and f, was predicted with a single model

Sensitivity to temperatures at specific times of the year varied among species.
For most species, we found that a warm September delayed leaf coloring, and in
some cases a warm May advanced coloring. In just a few cases was precipitation in
any month included as a statistically significant model driver. Covariation between
temperature and precipitation (e.g., warmer Septembers tend to be dry Septembers)
may explain why both temperature and precipitation in the same month were rarely
included in a single MLR model. Additionally, the monthly averaging used in the
regression analysis may have been too coarse, but this approach (e.g. rather than
weekly averaging) was selected to minimize the number of candidate independent
variables.

Various hypotheses about the environmental controls on autumn coloration
and senescence have been proposed [16], but these have not systematically been
translated into mechanistic models with good predictive power. Most models
developed to date focus on air temperature (sometimes in conjunction with

photoperiod) as the primary driver of autumn phenological transitions [e.g. 18, 27,
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38]. While empirical analyses, such as performed here (see also the “random forest”
decision tree approach [26]), do not provide insight into the underlying mechanisms,
they can help us identify the drivers that must be included in a model. We therefore
propose that the next generation of mechanistic models of autumn phenology should
be structured so as to include interacting functions of temperature and precipitation
(or more likely variables related to soil water balance, such as soil moisture or
Palmer Drought Index).

Previous modeling studies have generally concluded that autumn leaf
coloring and autumn leaf fall in temperate deciduous species will be delayed in the
future as continued warming due to climate change occurs. For example,
Lebourgeois et al. [26] predict that by 2100, leaf coloring would be delayed, on
average, by 13 days compared to the present. Delpierre et al. [27] used a modeling
analysis to predict a trend towards delayed leaf coloring of 1.4 and 1.7 days per
decade in Fagus sylvatica and Quercus petraea, respectively, over the 1951-2099
period. Similarly, using the Delpierre et al.’s cold-degree-day model, Vitasse et al.
[38] predicted delayed autumn senescence trends (through 2100) of between 1.4 and
2.3 days per decade in the same Fagus and Quercus species. Our model-based
predictions are largely consistent with these estimates (e.g. Figure 5). However, our
results further predict that impacts of climate change will likely vary not only among
species, but also among specific phenophases—and thus, for example, dates of 10%
and 90% leaf color or leaf fall may not shift exactly in parallel. This might help
explain previous conflicting suggestions that warmer temperatures may advance or
delay leaf coloring [2,19,27,38-41]. We put these forward as predictions that should

be tested as additional data become available in coming years, or as improved
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mechanistic models of autumn phenology are developed.

In conclusion, we have shown that forecasting autumn phenology under the
IPCC Alfi scenario predicts increases in the amount of autumn color in a New
England forest. While the response to changing temperatures and precipitation is
species-specific, climate change is expected to have a substantial impact overall on
the timing and duration of autumn colors. This may have a dramatic impact on both
ecosystem-level C cycling [19] and competitive interactions between species [40], as
well as on the landscape and economy of New England and other regions where
changes in the timing of autumn leaf colors are one of the most clearly visible

indicators of climate change.
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Figure legends

Figure 1. The amount of autumn colors over time for eight deciduous broadleaf
species that turn red in autumn. The amount of autumn color (0-100) is calculated as
in(100-j,) on day n, where the percentage of red leaves i, is multiplied by the
percentage of leaves retained (100 - j,). Individual years (1993-2010) are shown by

dotted lines, and their average by the thick curve.

Figure 2. Interannual variability of autumn senescence stages. 2a: timing of leaf
coloration stages (c19 = 10% of leaves colored ... co9 = 90% of leaves coloured) for
Quercus alba, white oak. 2b: timing of 50% leaf fall for four species (ACRU = Acer
rubrum; FRAM = Fraxinus americana, PRSE = Prunus serotina ; QURU = Quercus

rubra).

Figure 3. Correlation between interannual variation in temperature and interannual
variation in autumn color phenology in red maple, Acer rubrum. Each point (x,y) in
each plot represents a time window spanning the y weeks (vertical axis) before day x
(horizontal axis). The color at each point (x,y) represents the correlation between the
average air temperature for the time window (x,y) and the measure of autumn leaf
phenology for that plot: onset of autumn colors (¢;), time of leaf fall (f;), duration of
autumn colors (d;) and total amount of color (4). Values of R are shown by colors
ranging from orange-red (minimum, negative) to blue-purple (maximum, positive);
absolute values of R > 0.468 (the critical value of the Pearson product-moment

correlation coefficient; p = 0.05; d.f. = 16) are inside the bold lines. Here, both leaf
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fall and the display of red leaves were shifted significantly later in years with warmer
autumn temperatures. Dates of the full display of autumn colors (c7s, co9) were
positively correlated with temperatures from spring through (especially) autumn,
while warmer spring temperatures are correlated with earlier onset of color (cio).
Both the duration of autumn colors (dx) and the total amount of autumn color (4)

tended to increase in years with warmer temperatures.

Figure 4: Comparison of the empirical and process-oriented models. Comparison of
goodness-of-fit (in terms of RMSE) of empirical (MLR) and process-oriented
(CDD/P) models for leaf coloration (left) and leaf fall (right), in a leave-one-out
cross-validation analysis. The MLR model is shown to be less robust, as its RMSE is

higher (to the right of the 1:1 line) in a majority of cases.

Figure 5. Projected rates of change in the timing of leaf coloration and leaf fall (5a
and 5b; dates at which thresholds of 10%, 25%, 50%, 75% and 90% were reached),
leaf color duration (5c; number of days between different leaf color duration
thresholds and 90% leaf fall), and total amount of autumn colors (5d). For each
species, the process-oriented (CDD/P) model, calibrated to 18 years of field data,
was run forward using statistically downscaled climate projections from the GFDL
CM2 model (IPCC Alfi and Bl scenarios; only Alfi scenario results shown in
panels a through c). Projected rates of change (as plotted on the y-axis) were then
calculated as the slope of the linear regression line between each phenological
variable and year, over the period 2010-2099. Thus, for panels a through c, units are

days per year, whereas for d, units are amount of color/year. ACRU: Acer rubrum;
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655 ACSA: Acer saccharum; FRAM: Fraxinus americana; NYSY: Nyssa sylvatica;
656  PRSE: Prunus serotina; QUAL: Quercus alba; QURU: Quercus rubra: QUVE:

657  Quercus velutina.
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659 Tables

660

661 Table 1. Empirical (MLR) and process-oriented (CDD/P) model fit statistics,

662  calculated across the entire trajectory of leaf coloration (cj¢ ... c90) and leaf fall (fio

663 ... fo) for all eight study species.

664
Phenology Species MLR model CDD model
RMSE ME P AICc |[RMSE ME P AlCc |AAIC
Leaf Color Acer rubrum 2.6 093 10 188.7 (2.3 094 9 162.226.6
Acer saccharum 33 0.88 14 2445 |34 088 9 235.7|8.8
Fraxinus americana |2.9 093 16 222.3 (4.0 0.87 9 260.6 |-38.3
Nyssa sylvatica 4.2 0.83 8 270.0 4.0 0.84 9 264.2|5.8
Prunus serotina 44 091 11 282.5|4.7 0.89 9 289.1-6.7
Quercus alba 2.4 096 16 190.3 3.3 092 9 2285 -38.2
Quercus rubra 2.9 0.92 14 228.1 (3.1 091 9 2240 (4.1
Quercus velutina 2.6 094 17 212.2 |3.1 091 9 220.1 |-7.8
Leaf Fall  Acer rubrum 1.8 094 15 141924 0.89 9 173.6 |-31.8
Acer saccharum 34 0.85 11 243.712.9 0.89 9 207.236.6
Fraxinus americana |4.7 076 8 2958 |5.1 072 9 310.6 |-14.8
Nyssa sylvatica 3.2 0.90 17 249.8 4.2 0.83 9 2725 |-22.7
Prunus serotina 5.8 078 8 335316.0 076 9 3422 |-69
Quercus alba 35 091 13 2584 (49 0.84 9 3029 |-44.6
Quercus rubra 4.1 0.80 9 2749 (4.2 0.79 9 278.5|-3.6
Quercus velutina 3.0 091 14 234235 0.87 9 246.4 |-12.2
665
666
667 AlICc = Akaike’s Information Criterion, corrected for small samples (AAIC =

668 AICCc(MLR) — AICc(CDD/P)); ME

model efficiency; P

number of fit

669  parameters. ACRU: Acer rubrum; ACSA: Acer saccharum; FRAM: Fraxins

670  americana; NYSY: Nyssa sylvatica; PRSE: Prunus serotina; QUAL: Quercus alba;

671  QURU: Quercus rubra: QUVE: Quercus velutina.
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Supporting Information

Supplementary Figure 1: Impact of temperature on the phenology of autumn
colours and leaf fall. Each point (x,y) in each plot represents a time window
spanning the y weeks (vertical axis) before day x (horizontal axis). The color at each
point (x,y) represents the correlation between the average air temperature for the
time window (x,y) and the measure of autumn leaf phenology for that plot: onset of
autumn colors (¢j), time of leaf fall (f;), duration of autumn colors (d;) and total
amount of color (4). Values of R are shown by colors ranging from orange-red
(minimum, negative) to blue-purple (maximum, positive); absolute values of
R>0.468 (the critical value of the Pearson product-moment correlation coefficient;

p=0.05; d.f=16) are inside the bold lines.

Supplementary Figure 2: Impact of precipitation on the phenology of autumn
colours and leaf fall. Same as Supplementary Figure 1 but for precipitation rather

than temperature.

Supplementary Table 1: Variables and species. The IDs and the values of all the

variables (¢, fi, d;, A) for all years, for the 8 species used in the analysis.

Supplementary Table 2: Parameters and statistics of model fits. Models were fit
on the complete dataset. MLR model: P = number of parameters estimated in
regression model. Temperature and Precipitation columns indicate months that were

selected for inclusion in the regression model. + and — signs denote the sign of the
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697  regression coefficient. CDD/P model: parameters described in the text. F(P(doy))
698  refers to the use of the first or second function for simulating the interacting effect of
699  photoperiod on the temperature dependence of phenological processes (see text for
700  details).

701
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