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Abstract ���

 ���

Climate change affects the phenology of many species. As temperature and ���

precipitation are thought to control autumn color change in temperate deciduous ���

trees, it is possible that climate change might also affect the phenology of autumn ���

colors. Using long-term data for eight tree species in a New England hardwood ���

forest, we show that the timing and cumulative amount of autumn color are ���

correlated with variation in temperature and precipitation at specific times of the ���

year. A phenological model driven by accumulated cold degree-days and ���

photoperiod reproduces most of the interspecific and interannual variability in the ���

timing of autumn colors. We use this process-oriented model to predict changes in ���

the phenology of autumn colors to 2099, showing that, while responses vary among ���

species, climate change under standard IPCC projections will lead to an overall ���

increase in the amount of autumn colors for most species. ���

���
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Introduction ���

 ���

Climate change and autumn colors ���

 ���

Temperature affects biological processes ranging from the molecular to the ���

ecological level. It is not surprising, therefore, that climate change is altering the ���

phenology of many species [1-7]. In plants, the impacts of climate change on spring ���

phenology (flowering) are well documented [8-13]. Much less is known, however, ���

about how warming temperatures and altered precipitation regimes affect autumn ���

phenology, specifically as related to leaf coloration and senescence.  ���

 About 15% of the tree species of the temperate regions of the world change ���

their leaf color from green to yellow or red in autumn, a percentage that can reach ���

70% in some regions like New England (Northeast USA) [14-15]. As leaf color ���

change and leaf fall are thought to be controlled by temperature and precipitation ���

[16-18], it is possible that climate change may also affect autumn phenology, with ���

obvious biological and ecological implications [19].  ���

 At the continental scale, warmer autumns have for instance been related to ���

lower net carbon fixation [20-21], as a consequence of a higher enhancement of ���

ecosystem respiration than the concomitant enhancement of gross photosynthesis. At ���

a local scale, temperate deciduous forests may on the contrary show a higher annual ���

net carbon fixation during warmer autumn as a consequence of an extended leafy ���

season [22]. There is further evidence that the asynchrony of autumn phenology may ���

alter the competition between co-occurring plant species, either in the case of ���

symmetric (between understory plants - all plants being light-limited by the ���
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overstorey canopy) [23] or asymmetric (between overstory and understory plants) ���

[24] competition.  ���

 Additionally, the potential impact of climate change on the intensity and ���

duration of autumn coloration is, in some regions, of enormous economic importance  ���

[25]. Autumn tourism—much of which is to participate in so-called  “leaf  peeping”—���

contributes billions of dollars each year to the economies of the states of the eastern ���

U.S.A. and provinces in adjacent Canada. If climate change reduces the duration of ���

autumn color display, or results in less vibrant displays, future tourism revenues will ���

likely be reduced. ���

 ���

Rationale of the study ���

 ���

In order to predict how autumn colors may respond to forecast changes in ���

environmental drivers, we analyzed data on leaf color change collected annually ���

between 1993 and 2010 in a New England forest for eight study-species that develop ���

anthocyanins in autumn. For each species we calculated the average percentage of ���

colored leaves and of fallen leaves for each day of the year for the 18 years during ���

which the data were gathered. We investigated correlations between temperature and ���

precipitation during different times of the year, and the timing of various autumn ���

color thresholds and leaf fall dates. We compared two types of models to explain ���

autumn coloration and leaf fall. First, we used an empirical approach [26] based on ���

stepwise multiple linear regression, with monthly means of temperature and ���

precipitation as the candidate independent variables. Second, we used a more ���

mechanistic approach using a cold-degree-day photoperiod-dependent model [27]. ���
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The correlation analysis and empirical modeling allow us to identify environmental ���

drivers that may be missing from the mechanistic model, which is highly constrained ���

in its structure, and which does not, for example, account for relationships between ���

precipitation and autumn color. We evaluated the models against the observational ���

data using cross-validation methods. We then used the most robust modeling ���

approach, in conjunction with IPCC climate projections, to forecast changes in the ���

phenology of autumn color and leaf fall, between now and the year 2099. ���

 ���

Materials and Methods ���

 ���

'DWD�����

 ���

We analyzed data on the autumn phenology of Acer rubrum (red maple), Acer ���

saccharum (sugar maple), Fraxinus americana (white ash), Nyssa sylvatica (black ���

gum), Prunus serotina (black cherry), Quercus alba (white oak), Quercus rubra (red ���

oak) and Quercus velutina (black oak) at Harvard Forest, a research area owned and ���

managed by Harvard University, in Petersham, Massachusetts, USA (Prospect Hill ����

Tract; 42.54 °N, 72.18 °W). For more than twenty years, phenological observations ����

have been made, every 3-7 days in spring and autumn [18, 28], by the same observer. ����

The observed trees (3 to 5 permanently-tagged individuals per species) are located ����

within 1.5 km of the Harvard Forest headquarters at elevations between 335 and 365 ����

m above sea level. The field protocol for autumn observations was finalized in 1993 ����

and here we use observations through the end of 2010.  Beginning in September, and ����
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continuing through the end of leaf fall, leaf coloration (the SHUFHQWDJH�RI�OHDYHV�WKDW�����

KDYH�FKDQJHG�FRORU�RQ�D�JLYHQ�WUHH��DQG�OHDI�IDOO��WKH�SHUFHQWDJH�RI�OHDYHV�WKDW�KDYH�����

IDOOHQ�IURP�D�JLYHQ�WUHH��DUH�HVWLPDWHG�IRU�HDFK�LQGLYLGXDO�REVHUYHG��The raw data are ����

available at http://harvardforest.fas.harvard.edu/data/archive.html (datasets HF000, ����

HF001, HF003); the transformed data and the codes used for the analysis are ����

available from the authors, while the final data are in Supplementary Table 1. ����

 ����

0HDVXUHV�RI�DXWXPQ�FRORU������

 ����

We used the original data to infer the day (cx) on which the percentage of colored ����

leaves is x and the day (fx) in which the percentage of fallen leaves is x (where x may ����

take a value of 10, 25, 50, 75 or 90 percent). Assuming that both color and leaf ����

retention change as a linear function between the days in which the observations ����

were recorded, we derived cx using the formula  ����

 ����

cx=cxINF+(x-xINF)(cxSUP-cxINF)/(xSUP-xINF) ����

 ����

where xINF and xSUP are the available measure immediately lower and higher than x; fx ����

was derived in a similar way as  ����

 ����

fx=fxINF+(x-xINF)(fxSUP-fxINF)/(xSUP-xINF) ����

 ����

For a few species, in some years (18 in a total of 2304 GDWD�SRLQWV, that is 0.65% of ����

the data), certain thresholds (mainly c10 and c25) had already been reached before the ����
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first field observations were made: in these cases, rather than extrapolate backwards, ����

we simply treated these as missing data.  ����

 We also used cx and fx to build two different measures of abundance of ����

autumn color: dx=f90-cx measures the duration of autumn color as the number of days ����

between the day when a percentage x of the leaves are red (cx) and the day when ����

90% of the leaves have fallen (f90). The amount of autumn color is measured by (in-in-����

1)yn-1+(in-in-1)(yn-yn-1)/2 if yn>yn-1 and by (in-in-1)yn+(in-in-1)(yn-1-yn)/2 if yn<yn-1, where ����

yn=rn(1-tn/100); rn is the percentage of red leaves, tn is the percentage of leaves ����

retained, in is the (julian) day when the nth measure (of a total of m measures) was ����

taken. The yearly amount of autumn color ����

 ����

A = (in-in-1)(yn+yn-1) / 2 ����

 ����

therefore is (in a Cartesian plane), the area below the lines that connect the daily ����

amount of autumn color (see Figure 1). 100 units of A correspond to one calendar ����

day in which all leaves are retained and red.  ����

 ����

&RUUHODWLRQ�DQDO\VLV�DQG�UHJUHVVLRQ�PRGHOLQJ�����

 ����

Air temperature and precipitation are measured (daily) at the Harvard Forest near to ����

the trees on which phenological observations have been conducted. Data for the ����

Shaler (1964-2002) and Fisher (2001-present) meteorological stations are available ����

online at the web address given above; any missing observations were filled using ����
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measurements from the Harvard Forest EMS AmeriFlux tower, approximately 1 km ����

distant.  ����

For both temperature and precipitation, we first calculated averages (of the ����

daily measures) over all the 1- to 52-week timeframes preceding each day of the ����

year. We then calculated the correlation coefficients between these averages and ����

each of the measures of autumn color (A; cx, fx, dx; see above) for each species. ����

Based on the correlation analysis, we identified the periods of the year during which ����

the largest positive and the largest negative correlations were observed with the ����

measures of autumn color.  ����

For our empirical modeling of leaf color threshold dates (cx) and leaf fall ����

threshold dates (fx), we calculated monthly means of temperature and precipitation ����

during the leaf-on (May to October) period. We conducted a stepwise multiple linear ����

regression procedure with the monthly mean drivers as candidate independent ����

variables (6 months x 2 drivers = 12 FDQGLGDWH�YDULDEOHV���:H� VSHFLILFDOO\� FKRVH�D�����

PRQWKO\�WLPH�LQWHUYDO��UDWKHU�WKDQ�ZHHNO\��IRU�DYHUDJLQJ��DQG�UHVWULFWHG�RXU�DQDO\VLV�����

WR� WKH� OHDI�RQ� SHULRG�� VR� DV� WR� DYRLG� KDYLQJ� WRR�PDQ\� FDQGLGDWH� YDULDEOHV�� ZKLFK�����

FRXOG�LQFUHDVH�WKH�OLNHOLKRRG�RI�W\SH����IDOVH�SRVLWLYH��HUURUV�DQG�SRWHQWLDOO\�OHDG�WR�����

WKH�LQFOXVLRQ�RI�VSXULRXVO\�FRUUHODWHG�YDULDEOHV�LQ�WKH�UHJUHVVLRQ��$W�HDFK�LWHUDWLRQ�RI�����

WKH� VWHSZLVH� SURFHGXUH�� YDULDEOHV� WKDW�ZRXOG� EH� VLJQLILFDQW� DW� D� S�YDOXH� RI� �� ���������

ZHUH�DGGHG�WR�WKH�UHJUHVVLRQ�EXW�ZHUH�VXEVHTXHQWO\�UHPRYHG�LI��DIWHU�RWKHU�YDULDEOHV�����

ZHUH�DFFRXQWHG� IRU�� WKH�S�YDOXH�H[FHHGHG�������:H� ILW� D� VHSDUDWH�PRGHO� WR�HDFK�F[�����

WKUHVKROG�DQG�HDFK�I[�WKUHVKROG��$�DQG�G[�ZHUH�WKHQ�FDOFXODWHG�IURP�F[�DQG�I[��%HORZ������

ZH�UHIHU�WR�WKLV�0XOWLSOH�/LQHDU�5HJUHVVLRQV�approach as the MLR model. ����

�����
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3URFHVV�RULHQWHG�PRGHOLQJ�����

�����

We used a cold-degree-day photoperiod-dependent (CDD/P) model [27]. This model ����

was initially designed to simulate a coloring stage and was further applied in this ����

study to the simulation of a fall stage. Whatever the senescence stage (cx or fx) ����

considered, it is defined in the model by Ssen (arbitrary units) for each day (doy) ����

following Dstart (the date at which a critical photoperiod Pstart is reached), ����

representing the progress of the simulated process. Leaf coloring or fall reaches a ����

given stage (cx or fx) when Ssen reaches a threshold value (Ycrit, arbitrary units). In this ����

model, the time derivative of the state of senescence (Rsen, arbitrary units) on a daily ����

basis is formulated as: ����

 ����

If P(doy)>Pstart    Ssen(doy) = 0    ����

  ����

 ����

If P(doy)<Pstart and  T(doy)>Tb Rsen(doy) = 0 ����

 ����

If P(doy)<Pstart and  T(doy)<Tb Rsen(doy) = [Tb-T(doy)]x·f[P(doy)]y ����

     Ssen(doy) = Ssen (doy-1) + Rsen(doy)  ����

 ����

Where P(doy) is the photoperiod expressed in hours on the day of year doy; T(doy), ����

the daily mean temperature (°C); Tb, the maximum temperature at which the ����

considered senescence (i.e. coloration or fall) process is effective (°C); f[P(doy)], a ����

photoperiod function that can be expressed as follows : ����
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 ����

f[P(doy)] = P(doy) / Pstart  ����

 ����

or  ����

 ����

f[P(doy)] = 1-P(doy) / Pstart  ����

 ����

The complete model therefore includes five parameters (Pstart, Tb, x, y, Ycrit). ����

The dummy parameters x and y may take any of the {0, 1, 2} discrete values, to ����

allow for any absent / proportional / more than proportional effects of temperature ����

and photoperiod to be included. A feature of this model structure is that, depending ����

on the value of x��WKH�PRGHOHG�SKHQRSKDVH�FDQ�EH�FRQVLGHUHG�DV�GHSHQGHQW��[�!����RU�����

LQGHSHQGHQW� �[� � ��� RQ� FROG�GHJUHH� GD\V�� ,Q� WKH� ODWWHU� FDVH�� WKH� RFFXUUHQFH� RI� WKH�����

SKHQRSKDVH�LV�RQO\�GHWHUPLQHG�E\�D�WKUHVKROG�SKRWRSHULRG�������

7KH� RSWLPL]DWLRQ� SURFHGXUH� FRQVLVWHG� RI� H[SORULQJ� WKH� ZKROH� VSDFH� RI�����

SDUDPHWHUV�IRU�3VWDUW��IURP����WR����K�ZLWK�D�����K�VWHS���7E��IURP����WR������&�ZLWK�D�����

�����&�VWHS���[��DQG�\��7KH�<FULW�SDUDPHWHU�ZDV�LGHQWLILHG�WKURXJK�WKH�3RZHOO��JUDGLHQW�����

GHVFHQW��RSWLPL]DWLRQ�PHWKRG�>��@��3DUDPHWHU�RSWLPL]DWLRQ�ZDV�EDVHG�RQ�PLQLPL]LQJ�����

WKH�PRGHO�GDWD�PLVPDWFK��TXDQWLILHG�LQ�WHUPV�RI�URRW�PHDQ�VTXDUHG�HUURU������

$V�ZLWK�WKH�0/5�DSSURDFK��WKH�&''�3�PRGHO�ZDV�ILW�LQGHSHQGHQWO\�RQ�OHDI�����

FRORU��F[��DQG�OHDI�IDOO��I[��GDWD�IRU�HDFK�VSHFLHV��<HW��ZKLOH�WKH�0/5�DSSURDFK�ZDV�����

ILW�RQ�HDFK�FRORU�DQG�IDOO�VWDJH��H�J����ILWV�IRU�FRORU�IURP�F���WR�F�����ZH�ILW�WKH�&''�3�����

PRGHO� RYHU� WKH� FRPSOHWH� SKHQRORJLFDO� WUDMHFWRU\� �H�J�� VLPXOWDQHRXVO\� IRU� DOO� ILYH�����

VWDJHV�IURP�F��� WR�F���IRU�OHDI�FRORUDWLRQ��GHILQLQJ�IRU�HDFK�PRGHO�VWUXFWXUH�D�VHW�RI�����
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ILYH� <FULW� SDUDPHWHUV�� RQH� SHU� REVHUYHG� VWDJH�� :H� WKHUHDIWHU� XVHG� WKH� WZR� &''�3�����

PRGHOV�ILW�LQGHSHQGHQWO\�RQ�FRORULQJ�DQG�IDOO�GDWD�WR�SUHGLFW�FDQRS\�GXUDWLRQ��G[��DQG�����

WKH�DPRXQW�RI�FRORU��$���6WDWLVWLFV�ZHUH�FRPSXWHG�XVLQJ�0$7/$%�YHUVLRQ�������7KH�����

0DWK:RUNV�,QF��������������

�����

5REXVWQHVV�DVVHVVPHQW�RI�WKH�PRGHOLQJ�DSSURDFKHV�����

�����

7KH�DFFXPXODWLRQ�RI�D�ODUJH�SKHQRORJLFDO�GDWDVHW�UHTXLUHV�VXVWDLQHG�HIIRUW�RYHU�PDQ\�����

\HDUV��ZKLFK�LV�ZK\�PXOWL�GHFDGDO�UHFRUGV�DUH�UHODWLYHO\�VFDUFH��:LWK����\HDUV�ZRUWK�����

RI�GDWD�� WKH�+DUYDUG�)RUHVW�GDWDVHW� LV�RQH�RI� WKH� ORQJHVW� DXWXPQ�GDWDVHWV�SXEOLVKHG�����

>��@��+RZHYHU�� LW� LV� FHUWDLQO\� SRVVLEOH� WKDW� HLWKHU� WKH� VWDWLVWLFDO� �0/5��RU� SURFHVV�����

RULHQWHG��&''�3��DSSURDFKHV�FRXOG�UHVXOW�LQ�PRGHOV�EHLQJ�RYHU�ILW�WR�ZKDW�LV�VWLOO�D�����

UHODWLYHO\�VKRUW�WLPH�VHULHV�������

$IWHU� SHUIRUPLQJ� D� ILUVW� ILW� RI� ERWK� DSSURDFKHV� RQ� WKH� IXOO� GDWDVHW�� ZH�����

HYDOXDWHG� WKH� UREXVWQHVV� RI� HDFK�PRGHO� �L�H�� WKH� DELOLW\� RI� WKH�PRGHO� WR� SUHGLFW� DQ�����

XQNQRZQ� GDWDVHW�� E\� XVLQJ� FURVV�YDOLGDWLRQ� DQDO\VLV� >�����@�� 7KLV� DSSURDFK� LV�����

FRPPRQO\� XVHG� ZKHQ� ZKROO\� LQGHSHQGHQW� GDWD� �H�J��� IURP� DQRWKHU� VLWH�� DUH�����

XQDYDLODEOH� IRU�PRGHO� WHVWLQJ� �IRU� H[DPSOHV� LQ� WKH� SKHQRORJ\� OLWHUDWXUH�� VHH� >��@�������

6SHFLILFDOO\�� ZH� XVHG� D� RQH�RXW� FURVV�YDOLGDWLRQ�� ZKLFK� LV� SDUWLFXODUO\� DSSURSULDWH�����

ZKHQ�WKH�GDWDVHW�LV�UHODWLYHO\�VPDOO��7R�FRQGXFW�WKH�FURVV�YDOLGDWLRQ��WKH�PRGHOV�ZHUH�����

ILW�VHTXHQWLDOO\�RQ����RI����SRLQWV��L�H��\HDUV��IURP�WKH�RULJLQDO�GDWDVHW��³FDOLEUDWLRQ´������

DQG� WHVWHG�IRU� WKHLU�DELOLW\� WR�VLPXODWH� WKH�UHPDLQLQJ�SRLQW� �³YDOLGDWLRQ´���7KLV�ZDV�����

UHSHDWHG����WLPHV��VR�WKDW�HDFK�GDWD�SRLQW�ZDV�LQFOXGHG�LQ�WKH�YDOLGDWLRQ�VHW�H[DFWO\�����



�

� ���

RQFH�� 0RGHO� SHUIRUPDQFH� VWDWLVWLFV� �URRW� PHDQ� VTXDUH� HUURU�� 506(�� DQG� PRGHO�����

HIILFLHQF\��0(�>��@��ZHUH�WKHQ�FDOFXODWHG�DFURVV�WKH����YDOLGDWLRQ�SRLQWV�������

:H�DVVHVVHG�WKH�DELOLW\�RI�HDFK�RI�WKH�WZR�PRGHOLQJ�DSSURDFKHV�WR�PD[LPL]H�����

WKH� WUDGH�RII� EHWZHHQ� PRGHO� SDUVLPRQ\� DQG� JRRGQHVV�RI�ILW� XVLQJ� $NDLNH¶V�����

LQIRUPDWLRQ�FULWHULRQ��FRUUHFWHG�IRU�VPDOO�VDPSOHV��$,&F�>��@�������

�����

)XWXUH�&OLPDWH�6FHQDULRV�����

 ����

We used our models to generate forecasts of future shifts in autumn color phenology ����

at Harvard Forest. Thus the model structure is a hypothesis, and the resulting ����

predictions can be tested as future data become available. We ran the models forward ����

using climate projections (2010-2099) for the Harvard Forest grid cell. These were ����

previously generated by Hayhoe et al. [34] using the NOAA GFDL CM2 global ����

coupled climate model [35], statistically downscaled to one-eighth degree (~10 km) ����

spatial resolution at a daily time step. The CM2 model was run using two scenarios ����

of CO2 and other greenhouse gas emissions (the IPCC Special Report on Emission ����

Scenarios [SRES] higher [A1fi] and lower [B1] scenarios [36]). Compared to a ����

1960-1990 baseline of 7.1 °C mean annual temperature and 1100 mm annual ����

precipitation, corresponding values (mean 2070-2099) are 12.0 °C and 1270 mm for ����

the A1fi scenario and 9.5 °C and 1240 mm for the B1 scenario. Under the A1fi ����

scenario, summer temperature are projected to increase more than temperatures ����

during the rest of the year, while relatively more precipitation will fall during the ����

autumn and winter months, and less during the spring and summer months. Under ����
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the B1 scenario, changes in seasonality are negligible, with changes in temperature ����

and precipitation being relatively similar across the year. ����

 ����

Results ����

 ����

9DULDWLRQV�LQ�SKHQRORJ\������

 ����

In the 18 years in which the data were collected, autumn color display typically ����

started at the beginning of September, peaked at variable times in October, and lasted ����

until November, with marked differences among species and, within each species, ����

among years (Figure 1; Supplementary Table 1). Peak color was earliest for Prunus ����

serotina, Acer rubrum and Fraxinus americana, and latest for Acer saccharum and ����

the various Quercus spp.  ����

Year-to-year shifts in the entire sequence of stages are easily seen, with 1994 ����

being a year of early coloration and 2002 being a year of late coloration (example of ����

Quercus alba, Figure 2a). The interspecific variability of autumn stages is illustrated ����

with the example of 50% leaf fall, which occurs on average 23 days earlier in Acer ����

rubrum than in Quercus rubra� �)LJXUH� �E�. The interannual variability of autumn ����

stages varied from species to species, with, for example, a SD of 3.1 days in Acer ����

rubrum and 6.6 days in Quercus alba for 50% leaf fall. ����

7KH� LQWHUDQQXDO� YDULDWLRQ� RI� DXWXPQ� SKHQRORJ\� RI� HDFK� VSHFLHV� ZDV�����

FRUUHODWHG� ZLWK� LQWHUDQQXDO� YDULDWLRQ� LQ� WHPSHUDWXUH� DQG� SUHFLSLWDWLRQ� DW� VSHFLILF�����

WLPHV�RI�WKH�\HDU� Consider, for example, Acer rubrum (Figure 3). Both leaf fall (fx) ����

and the display of red leaves (cx) were shifted significantly later in years with ����
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warmer autumn temperatures. Dates of the full display of autumn colors (c75, c90) ����

were positively correlated with temperatures from spring through autumn (although ����

spring temperature correlations were weaker than those in autumn), but earlier onset ����

of color (c10) occurred in years with warmer spring temperatures. Both the duration ����

of autumn colors (dx) and the total amount of autumn color (A) tended to increase in ����

years with warmer temperatures, particularly warmer spring and autumn ����

temperatures. ����

For each species there is   a   different   “fingerprint”   to   correlations   between  ����

autumn colors and temperature/precipitation at different times of the year ����

(Supplementary Figure 1). In Acer saccharum, Nyssa sylvatica, and Prunus serotina, ����

the onset of color and leaf fall were correlated with temperature in a manner that was ����

similar to Acer rubrum. In Fraxinus americana, advances in the onset of autumn ����

color (c10), and delays in the full display of autumn color (c90) occurred in years with ����

warmer temperatures, while leaf fall dates were advanced in years with warmer ����

temperatures. As a consequence, the duration of the full display of autumn color (d90) ����

was reduced in years with warmer autumn temperatures. In Quercus velutina, delays ����

in both leaf coloration and leaf fall were correlated with warmer autumn ����

temperatures, and the total amount of autumn color (A) was positively correlated ����

with summer and autumn temperatures.  ����

Our analysis suggests, therefore, that over the course of the year, interannual ����

variation in temperature is correlated with species-specific and phenophase-specific ����

variation in autumn phenology. Similar patterns are seen when the same analysis is ����

conducted for precipitation (Supplementary Figure 2). To the extent that these may ����

represent causal relationships, it is therefore quite likely that the autumn phenology ����
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of each species will respond to future climate change in a slightly different manner. ����

 ����

 ����

6WHSZLVH�UHJUHVVLRQ�DQDO\VLV������

 ����

,Q�RUGHU�WR�LQFUHDVH�RXU�XQGHUVWDQGLQJ�RI�WKH�VWDWLVWLFDO�GHSHQGHQFH�EHWZHHQ�DXWXPQ�����

SKHQRORJ\�DQG�WKH�FOLPDWH�GULYHUV��Ze conducted a total of 40 stepwise regressions (5 ����

thresholds x 8 species) for each of cx and fx (Supplementary Table 2). Across all cx, ����

the mean (± 1 SD) R2 was 0.49 ± 0.28; for fx, the corresponding value was 0.44 ± ����

0.26. However, for 7 of the cx regressions, and 6 of the fx regressions, no variables ����

were selected by the stepwise procedure, and hence these models had R2 = 0.  ����

 Mean September temperature was included in 23 of the cx regressions, and 27 ����

of the fx regressions. In all cases, the regression coefficients were positive, indicating ����

that warmer September temperatures were associated with delayed coloring and leaf ����

fall. By comparison, mean October temperature was included in only 5 of the cx ����

regressions and 3 of the fx regressions, and the signs of the regression coefficients ����

varied among species.  ����

 Temperatures earlier in the growing season were, in some cases, included in ����

the regressions. For example, mean May temperature was included in 11 of the cx ����

regressions and 6 of the fx regressions. In each of these cases, the regression ����

coefficient was negative, indicating that warmer May temperatures were associated ����

with advanced coloring and leaf fall.  ����
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 Despite the apparent importance of precipitation indicated by the correlation ����

analyses described above, for no month was mean monthly precipitation included in ����

more than three (of 40) cx or fx regressions.  ����

 ����

 ����

&ROG�GHJUHH�GD\�PRGHOLQJ�����

 ����

Across all cx, the mean (± 1 SD) R2 was 0.43 ± 0.20; for fx, the corresponding value ����

was 0.34 ± 0.22. Presumably because of its lower degree of flexibility, the CDD/P ����

model did not fit the observations as well as the more highly parameterized MLR ����

model.  ����

 In all but one case, the CDD/P model structure yielding the lowest prediction ����

error included cold-degree-days (i.e. a sum of temperature below a certain ����

temperature threshold) as a driving variable for the simulation of cx and fx phenology ����

(Supplementary Table 2). Only for leaf fall in Fraxinus americana was this model ����

structure unable to simulate the suite of stages better than the null model (which ����

implicitly assumes that photoperiod was the sole trigger of senescence processes, ����

yielding each year the same prediction date for a given stage). In 10 over 80 coloring ����

and fall cases (Supplementary Table 2), the selected model structure incorporated an ����

interaction effect of photoperiod and cold-degree-days, meaning that a given ����

departure from the base temperature stimulated senescence processes differently as ����

daylength decreased. ����

 ����

&RPSDULVRQ�RI�PRGHOLQJ�DSSURDFKHV�����
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�����

:KHQ�ILW�RYHU�WKH�IXOO�GDWDVHW��WKH�0/5�PRGHO�XVXDOO\������FDVHV��ILW�WKH�GDWD�EHWWHU�����

�KLJKHU�PRGHOLQJ�HIILFLHQF\��0(��DQG�ORZHU�506(�� WKDQ�WKH�&''�3�PRGHO��7DEOH�����

���� ,Q�DGGLWLRQ�� LQ�����RI�FDVHV�� WKH�0/5�PD[LPLVHG� WKH� WUDGH�RII�EHWZHHQ�PRGHO�����

SDUVLPRQ\� DQG� JRRGQHVV�RI�ILW�� WKH� 0/5� DSSURDFK� JHQHUDOO\� UHVXOWHG� LQ� ORZHU�����

$NDLNH¶V� ,QIRUPDWLRQ�&ULWHULRQ� �$,&F��YDOXHV� WKDQ� WKH�&''�3�DSSURDFK� �7DEOH���������

+RZHYHU��WKH�0/5�DSSURDFK�DSSHDUHG�WR�EH�VRPHZKDW�OHVV�UREXVW�WKDQ�WKH�&''�3�����

DSSURDFK��VXJJHVWLQJ�WKDW�WKH�HPSLULFDO�PRGHOV�PD\�KDYH�EHHQ�RYHU�ILW��)RU�H[DPSOH������

LQ� WKH� RQH�RXW� FURVV�YDOLGDWLRQ� DQDO\VLV�� SUHGLFWLRQV� IURP� WKH� &''�3� DSSURDFK�����

FRQVLVWHQWO\�KDG� ORZHU�506(� WKDQ� WKRVH� IURP� WKH�0/5�DSSURDFK� �Figure 4���7KLV�����

JLYHV�XV�JUHDWHU�FRQILGHQFH�LQ�WKH�XVH�RI�WKH�&''�3�PRGHO�IRU�IRUHFDVWLQJ�SXUSRVHV������

FRPSDUHG�WR�WKH�0/5�DSSURDFK������

 ����

3KHQRORJLFDO�)RUHFDVWV������

 ����

For modeled future dates of leaf color (cx) and leaf fall (fx), we fit a linear regression ����

to estimate the predicted rates of change (days per year) in autumn phenology over ����

the period 2010-2099. We conducted a similar analysis for canopy duration (dx) and ����

total color (A). This was done using the final models identified by both the MLR and ����

CDD/P approaches, keeping in mind that the cross-validation analysis indicated the ����

latter approach to be more robust. Indeed, we found that when run under future ����

climate scenarios, the MLR predictions ZHUH�VRPHWLPHV�QRW�UHOLDEOH:  “crossing-over”  ����

commonly occurred, for some species as early as 2020 or 2030, so that (for example) ����

f50 was predicted to occur before f25. These inconsistencies were particularly common ����
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for both leaf coloration and leaf fall for two species, Fraxinus americana and ����

Quercus alba. Of the eight species considered, Acer rubrum and Quercus velutina ����

were the only species for which crossing-over was not observed to occur. For this ����

reason, we focus our analysis on the forecasts generated with the CDD/P model, ����

acknowledging, however, that (i) this approach may omit important drivers ����

(specifically, precipitation) of autumn leaf phenology and (ii) this approach also ����

predicted dubious patterns in the case of Fraxinus americana, for which e.g. c90 ����

(90% canopy coloration) was predicted to occur after f90 (90% leaf fall) originating ����

from the inability of the CDD/P model to describe the current interannual variations ����

of leaf fall in this sole species. These results, along with uncertainty estimates ����

(indicating 95% confidence intervals on slope estimates, rather than the uncertainty ����

in phenology model parameters or model structure [37]), are shown in Figure 5.  ����

 For the CDD/P approach, a shift towards later occurrences of a given cx or fx ����

stage is the rule (Figure 5). In some species, such as Acer rubrum, Quercus alba, and ����

Quercus velutina, shifts towards later leaf color (Figure 5a) and leaf fall dates ����

(Figure 5b) are somewhat smaller for earlier thresholds (e.g. c10, f10) than later ����

thresholds (e.g. c90, f90).  For other species, all stages of leaf coloring and leaf fall are ����

predicted to shift by essentially the same amount. Across all thresholds, leaf color ����

duration (Figure 5c) is predicted to increase (by about 0.1 d/y) for Acer saccharum, ����

Nyssa sylvatica, and Prunus serotina, but decrease (by about 0.3 d/y) for Fraxinus ����

americana.  ����

 The projected change in total amount of color (A) is generally positive for all ����

species (Figure 5d). The projected change is substantially larger for the A1fi scenario ����

(higher CO2 emissions, larger rise in mean annual temperature and larger increase in ����
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annual precipitation) than the B1 scenario (lower CO2 emissions, smaller rise in ����

mean annual temperature smaller increase in annual precipitation). Under the B1 ����

scenario, the 95% confidence interval on the slope estimate includes zero for several ����

species. We notice that the CDD/P model (fitted, independently on coloration and ����

fall data) could not predict a consistent trend for Fraxinus Americana, for which, for ����

instance, full leaf loss was predicted to occur before full coloration by year 2075. ����

The strongest response to the A1fi scenario is predicted for Nyssa sylvatica (+5 ����

units/y), while little or no change in total color is predicted for Acer saccharum, a ����

species that is especially popular with leaf peepers. We note that for Acer rubrum ����

and Quercus velutina, the only two species for which MLR predictions were ����

considered reliable, the responses to the A1fi scenario are much smaller for the ����

CDD/P approach (+2 and +1 units/y, respectively) than the MLR approach (+7 and ����

+9 units/y, respectively).  ����

 ����

Discussion ����

�����

Our results demonstrate substantial year-to-year variability in the timing and amount ����

of autumn color for the eight species considered. Both the empirical, statistical ����

method (MLR approach, modeling phenological transition dates as a function of ����

monthly precipitation and temperature during the current  year’s  growing  season) and ����

the more process-oriented model (CDD/P approach, simulating the influence of cold-����

degree-days interacting with photoperiod on senescence processes) could be ����

successfully fit to the data, allowing us to reject the null hypothesis that these events ����

are controlled strictly by photoperiod. The CDD/P model was shown, by a one-out ����
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cross-validation analysis, to be more robust than the MLR model. The stepwise ����

regression model is wholly empirical, and imposes no formal structure on the ����

relationships between phenological states and meteorological drivers. By ����

comparison, the CDD/P model structure is based on hypotheses [27] about how cold ����

temperatures and/or photoperiod combine to regulate autumn phenology. ����

Furthermore, whereas in the empirical approach the model was estimated separately ����

for each individual phenological threshold, in the CDD/P model the entire ����

progression through all five thresholds (x= 10%, 25%, 50%, 75%, 90%) for each of ����

cx and fx was predicted with a single model  ����

 Sensitivity to temperatures at specific times of the year varied among species. ����

For most species, we found that a warm September delayed leaf coloring, and in ����

some cases a warm May advanced coloring. In just a few cases was precipitation in ����

any month included as a statistically significant model driver. Covariation between ����

temperature and precipitation (e.g., warmer Septembers tend to be dry Septembers) ����

may explain why both temperature and precipitation in the same month were rarely ����

included in a single MLR model. Additionally, the monthly averaging used in the ����

regression analysis may have been too coarse, but this approach (e.g. rather than ����

weekly averaging) was selected to minimize the number of candidate independent ����

variables. ����

Various hypotheses about the environmental controls on autumn coloration ����

and senescence have been proposed [16], but these have not systematically been ����

translated into mechanistic models with good predictive power. Most models ����

developed to date focus on air temperature (sometimes in conjunction with ����

photoperiod) as the primary driver of autumn phenological transitions [e.g. 18, 27, ����
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38]. While  empirical  analyses,  such  as  performed  here  (see  also  the  “random  forest”  ����

decision tree approach [26]), do not provide insight into the underlying mechanisms, ����

they can help us identify the drivers that must be included in a model. We therefore ����

propose that the next generation of mechanistic models of autumn phenology should ����

be structured so as to include interacting functions of temperature and precipitation ����

(or more likely variables related to soil water balance, such as soil moisture or ����

Palmer Drought Index). ����

 Previous modeling studies have generally concluded that autumn leaf ����

coloring and autumn leaf fall in temperate deciduous species will be delayed in the ����

future as continued warming due to climate change occurs. For example, ����

Lebourgeois et al. [26] predict that by 2100, leaf coloring would be delayed, on ����

average, by 13 days compared to the present. Delpierre et al. [27] used a modeling ����

analysis to predict a trend towards delayed leaf coloring of 1.4 and 1.7 days per ����

decade in Fagus sylvatica and Quercus petraea, respectively, over the 1951-2099 ����

period.  Similarly,  using   the  Delpierre   et   al.’s   cold-degree-day model, Vitasse et al. ����

[38] predicted delayed autumn senescence trends (through 2100) of between 1.4 and ����

2.3 days per decade in the same Fagus and Quercus species. Our model-based ����

predictions are largely consistent with these estimates (e.g. Figure 5). However, our ����

results further predict that impacts of climate change will likely vary not only among ����

species, but also among specific phenophases—and thus, for example, dates of 10% ����

and 90% leaf color or leaf fall may not shift exactly in parallel. This might help ����

explain previous conflicting suggestions that warmer temperatures may advance or ����

delay leaf coloring [2,19,27,38-41]. We put these forward as predictions that should ����

be tested as additional data become available in coming years, or as improved ����
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mechanistic models of autumn phenology are developed.  ����

 In conclusion, we have shown that forecasting autumn phenology under the ����

IPCC A1fi scenario predicts increases in the amount of autumn color in a New ����

England forest. While the response to changing temperatures and precipitation is ����

species-specific, climate change is expected to have a substantial impact overall on ����

the timing and duration of autumn colors. This may have a dramatic impact on both ����

ecosystem-level C cycling [19] and competitive interactions between species [40], as ����

well as on the landscape and economy of New England and other regions where ����

changes in the timing of autumn leaf colors are one of the most clearly visible ����

indicators of climate change. ����

 ����
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Figure legends ����

 ����

Figure 1. The amount of autumn colors over time for eight deciduous broadleaf ����

species that turn red in autumn. The amount of autumn color (0-100) is calculated as ����

in(100-jn) on day n, where the percentage of red leaves in is multiplied by the ����

percentage of leaves retained (100 - jn). Individual years (1993-2010) are shown by ����

dotted lines, and their average by the thick curve. ����

 ����

Figure 2. Interannual variability of autumn senescence stages. 2a: timing of leaf ����

coloration stages (c10 =  10%  of  leaves  colored  …    c90 = 90% of leaves coloured) for ����

Quercus alba, white oak. 2b: timing of 50% leaf fall for four species (ACRU = Acer ����

rubrum; FRAM = Fraxinus americana, PRSE = Prunus serotina ; QURU = Quercus ����

rubra). ����

 ����

Figure 3. Correlation between interannual variation in temperature and interannual ����

variation in autumn color phenology in red maple, Acer rubrum. Each point (x,y) in ����

each plot represents a time window spanning the y weeks (vertical axis) before day x ����

(horizontal axis). The color at each point (x,y) represents the correlation between the ����

average air temperature for the time window (x,y) and the measure of autumn leaf ����

phenology for that plot: onset of autumn colors (ci), time of leaf fall (fi), duration of ����

autumn colors (di) and total amount of color (A). Values of R are shown by colors ����

ranging from orange-red (minimum, negative) to blue-purple (maximum, positive); ����

absolute values of R > 0.468 (the critical value of the Pearson product-moment ����

correlation coefficient; p = 0.05; d.f. = 16) are inside the bold lines. Here, both leaf ����
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fall and the display of red leaves were shifted significantly later in years with warmer ����

autumn temperatures. Dates of the full display of autumn colors (c75, c90) were ����

positively correlated with temperatures from spring through (especially) autumn, ����

while warmer spring temperatures are correlated with earlier onset of color (c10). ����

Both the duration of autumn colors (dx) and the total amount of autumn color (A) ����

tended to increase in years with warmer temperatures. ����

 ����

Figure 4: Comparison of the empirical and process-oriented models. Comparison of ����

goodness-of-fit (in terms of RMSE) of empirical (MLR) and process-oriented ����

(CDD/P) models for leaf coloration (left) and leaf fall (right), in a leave-one-out ����

cross-validation analysis. The MLR model is shown to be less robust, as its RMSE is ����

higher (to the right of the 1:1 line) in a majority of cases.  ����

 ����

Figure 5. Projected rates of change in the timing of leaf coloration and leaf fall (5a ����

and 5b; dates at which thresholds of 10%, 25%, 50%, 75% and 90% were reached), ����

leaf color duration (5c; number of days between different leaf color duration ����

thresholds and 90% leaf fall), and total amount of autumn colors (5d). For each ����

species, the process-oriented (CDD/P) model, calibrated to 18 years of field data, ����

was run forward using statistically downscaled climate projections from the GFDL ����

CM2 model (IPCC A1fi and B1 scenarios; only A1fi scenario results shown in ����

panels a through c). Projected rates of change (as plotted on the y-axis) were then ����

calculated as the slope of the linear regression line between each phenological ����

variable and year, over the period 2010-2099. Thus, for panels a through c, units are ����

days per year, whereas for d, units are amount of color/year.�ACRU: Acer rubrum; ����
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ACSA: Acer saccharum; FRAM: Fraxinus americana; NYSY: Nyssa sylvatica; ����

PRSE: Prunus serotina; QUAL: Quercus alba; QURU: Quercus rubra: QUVE: ����

Quercus velutina. �����

����
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Tables ����

 ����

Table 1. Empirical (MLR) and process-oriented (CDD/P) model fit statistics, ����

calculated across the entire trajectory of leaf coloration (c10 …  c90) and leaf fall  (f10 ����

…  f90) for all eight study species. ����

 ����
 
Phenology Species MLR model CDD model �
� � 506(� 0(� 3� $,&F� 506(� 0(� 3� $,&F� ¨$,&�
/HDI�&RORU� $FHU�UXEUXP� ���� ����� ��� ������ ���� ����� �� ������ �����
� $FHU�VDFFKDUXP� ���� ����� ��� ������ ���� ����� �� ������ ����
� )UD[LQXV�DPHULFDQD� ���� ����� ��� ������ ���� ����� �� ������ ������
� 1\VVD�V\OYDWLFD� ���� ����� �� ������ ���� ����� �� ������ ����
� 3UXQXV�VHURWLQD� ���� ����� ��� ������ ���� ����� �� ������ �����
� 4XHUFXV�DOED� ���� ����� ��� ������ ���� ����� �� ������ ������
� 4XHUFXV�UXEUD� ���� ����� ��� ������ ���� ����� �� ������ ����
� 4XHUFXV�YHOXWLQD� ���� ����� ��� ������ ���� ����� �� ������ �����
�
/HDI�)DOO� $FHU�UXEUXP� ���� ����� ��� ������ ���� ����� �� ������ ������
� $FHU�VDFFKDUXP� ���� ����� ��� ������ ���� ����� �� ������ �����
� )UD[LQXV�DPHULFDQD� ���� ����� �� ������ ���� ����� �� ������ ������
� 1\VVD�V\OYDWLFD� ���� ����� ��� ������ ���� ����� �� ������ ������
� 3UXQXV�VHURWLQD� ���� ����� �� ������ ���� ����� �� ������ �����
� 4XHUFXV�DOED� ���� ����� ��� ������ ���� ����� �� ������ ������
� 4XHUFXV�UXEUD� ���� ����� �� ������ ���� ����� �� ������ �����
� 4XHUFXV�YHOXWLQD� ���� ����� ��� ������ ���� ����� �� ������ ������

 ����

 ����

AICc   =   Akaike’s   Information   Criterion,   corrected   for   small   samples   (∆AIC   =  ����

AICc(MLR) – AICc(CDD/P)); ME = model efficiency; P = number of fit ����

parameters. ACRU: Acer rubrum; ACSA: Acer saccharum; FRAM: Fraxins ����

americana; NYSY: Nyssa sylvatica; PRSE: Prunus serotina; QUAL: Quercus alba; ����

QURU: Quercus rubra: QUVE: Quercus velutina. ����

  ����
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Supporting Information ����

 ����

Supplementary Figure 1: Impact of temperature on the phenology of autumn ����

colours and leaf fall. Each point (x,y) in each plot represents a time window ����

spanning the y weeks (vertical axis) before day x (horizontal axis). The color at each ����

point (x,y) represents the correlation between the average air temperature for the ����

time window (x,y) and the measure of autumn leaf phenology for that plot: onset of ����

autumn colors (ci), time of leaf fall (fi), duration of autumn colors (di) and total ����

amount of color (A). Values of R are shown by colors ranging from orange-red ����

(minimum, negative) to blue-purple (maximum, positive); absolute values of ����

R>0.468 (the critical value of the   Pearson product-moment correlation coefficient; ����

p=0.05; d.f.=16) are inside the bold lines. ����

 ����

Supplementary Figure 2: Impact of precipitation on the phenology of autumn ����

colours and leaf fall. Same as Supplementary Figure 1 but for precipitation rather ����

than temperature. ����

 ����

Supplementary Table 1: Variables and species. The IDs and the values of all the ����

variables (ci, fi, di, A) for all years, for the 8 species used in the analysis. ����

 ����

Supplementary Table 2: Parameters and statistics of model fits. Models were fit ����

on the complete dataset. MLR model: P = number of parameters estimated in ����

regression model. Temperature and Precipitation columns indicate months that were ����

selected for inclusion in the regression model. + and – signs denote the sign of the ����
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� ���

regression coefficient. CDD/P model: parameters described in the text. F(P(doy)) ����

refers to the use of the first or second function for simulating the interacting effect of ����

photoperiod on the temperature dependence of phenological processes (see text for ����

details). ����

 ����
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