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Abstract 

Wrinkling modes are determined for a two-layer system comprised of a neo-

Hookean film bonded to an infinitely deep neo-Hookean substrate with the entire bilayer 

undergoing compression.  The full range of the film/substrate modulus ratio is considered 

from the limit of a traction-free homogeneous substrate to very stiff films on compliant 

substrates.  The role of substrate pre-stretch is considered wherein an unstretched film is 

bonded to a pre-stretched substrate with wrinkling arising as the stretch in the substrate is 

relaxed.  An exact bifurcation analysis reveals the critical strain in the film at the onset of 

wrinkling. Numerical simulations carried out within a finite element framework uncover 

advanced post-bifurcation modes including period-doubling, folding and a newly 

identified mountain ridge mode.   
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1. Introduction 

 A large literature exists reporting short wavelength buckling wrinkles of 

compressed thin films bonded to thick compliant substrates.  Allen’s [1] monograph on 

the mechanics of thin film wrinkling applies to structural systems where the surface film 

or layer is very stiff compared to the substrate.  As applications of soft materials, such as 

elastomers and gels, grow, there is increasing interest in wrinkling of film/substrate 

bilayers where both materials are soft and the stiffness ratio of the film to the substrate is 

not necessarily very large [2].  An important limiting case is surface wrinkling of a 

compressed homogeneous substrate which Biot [3] analyzed for a neo-Hookean material.   

 In the first part of this paper, Biot’s exact finite strain bifurcation analysis is 

extended to a bilayer system comprised of a neo-Hookean film bonded to an infinitely 

deep neo-Hookean substrate.  Biot [3] considered several bilayer problems, but not the 

important case where the film and the substrate are jointly compressed, nor did he 

consider the role of substrate pre-stretch.  Here, the critical bifurcation strain is obtained 

for the film/substrate modulus ratio ranging from the limit in which the film and substrate 

have the same modulus, i.e., a homogeneous substrate, to a very stiff film on a compliant 

substrate.  The role of substrate pre-stretch is also considered.  Substrate pre-stretching is 

a technique now widely used by experimentalist to produce compression in the film layer.  

A thin unstretched film is bonded to a thick pre-stretched substrate.  Then, as the stretch 

in the substrate is relaxed, the film is compressed and wrinkling occurs. In the second 

part of the paper, numerical simulations are carried out in plane strain within a finite 

element framework to uncover advanced post-bifurcation modes including period-

doubling, folding and a newly identified mountain ridge mode. 

 Both materials in the bilayer are incompressible neo-Hookean elastic materials.  

Quantitative details for other nonlinear elastic material models will differ somewhat from 

the results present in this paper.  Nevertheless, the trends brought out for neo-Hookean 

materials are expected to have broad applicability.  Moreover, when the film is very stiff 

compared to the substrate, the strain in the film remains small and, thus, it is expected 

that results in this range are applicable to any (incompressible) linear elastic film 

material.  The ground state shear modulus of the film is f  and that of the substrate is 

s .  The thickness of the undeformed film is h ; the substrate is infinitely deep.  



Lagrangian coordinates, ( 1,3)ix i  , specifying the locations of material points in 

the undeformed state of the film are identified in Fig. 1.  The coordinate 2x  is 

perpendicular to the surface of the undeformed bilayer.  The surface of the bilayer is 

traction-free.  The stretches in the film and the substrate in the pre-bifurcation state are 

uniform and are denoted by  1 2 3( , , )f f f    and 1 2 3( , , )s s s   , respectively.  Pre-stretches 

in the substrate, if present, are denoted by 0 0 0
1 2 3( , , )s s s   .  Thus, with coordinates 1 3( , )x x  

identifying material points in the interface of the undeformed substrate, the corresponding 

material points in the interface of the undeformed film to which they are attached are 

identified by 0
1 1 1sx x  and 0

3 3 3sx x .  In the uniform pre-bifurcation state, the stretches 

in the film and substrate are related to one another by 

0
1 1 1/f s s   , 0

2 2 2/f s s   , 0
3 3 3/f s s        (1) 

For the combinations of compression and pre-stretch considered in this paper, the 

bifurcation mode is an incremental plane strain deformation in the 1 2( , )x x  plane.  In all 

cases, the normal deflection of the surface of the bifurcation mode is proportional to a 

sinusoidal variation of the form, 1 1cos( ) cos(2 / )kx x  , where 2 / k  is the 

wrinkling wavelength referenced to the undeformed film and 1 f   is the wavelength in 

the deformed state. 

 

2. Effect of substrate pre-stretch on wrinkling of stiff films on compliant substrates 

 Before considering the neo-Hookean bilayer, a result derived in the Appendix will 

be presented for wrinkling of a stiff linear elastic film on a compliant neo-Hookean 

substrate which has undergone a uniform pre-stretch, 0 0 0
1 2 3( , , )s s s   , prior to attaching the 

film.  The formulas below extend the well known result of Allen [1] by account for the 

fact that the incremental moduli of the pre-stretched neo-Hookean substrate change from 

the ground state and become anisotropic.  In the extended result the film is isotropic and 

linearly elastic with modulus fE  and Poisson ratio f .  The formulas apply to arbitrary 

combinations of substrate pre-stretch and subsequent film compression under the 

assumption that the maximum compressive stress in the film is in the 1-direction 



( 11   ).  The wrinkling mode is an incremental plane strain mode with normal 

surface deflection in the form  2 0 1cosu k x  with 1x  attached to material points in the 

undeformed film.  The critical stress in the film and the associated wave number are 
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Here, 2/ (1 )f f fE E   ,  / 2(1 )f f fE      and / 2(1 )f f f      .  The pre-

stretch factor   is unity when there is no pre-stretch.  This result was obtained in [4] for 

the special case of plane strain pre-stretch.  This factor is for the neo-Hookean substrate.  

Nevertheless, the influence of pre-stretched predicted for this substrate are expected to be 

illustrative of other elastomeric materials that stiffen when stretched. 

 

3.  Bifurcation analysis of wrinkling of a bilayer of neo-Hookean materials 

 3.1  Plane strain compression with no substrate pre-stretch.  With no pre-

stretch in the substrate and the bilayer subject to plane strain compression, the pre-

bifurcation stretches satisfy  

 3 3 1f s   , 1 1 1f s    ,  2 2 2 11/f s          (3) 

Compression in the 1-direction is considered with a (nominal) compressive strain defined 

by 

 11            (4) 

By dimensional arguments, the compressive strain at the wrinkling bifurcation, W , is 

only a function of /f s  .  Details of the bifurcation analysis are given in the Appendix.  

The film and the substrate are each treated as a continuum with no approximation in the 

bifurcation analysis. The plot of W  as a function of /f s   is given in Fig. 2.  Included 

in Fig. 2 is the compressive bifurcation strain, 0 , as predicted by (2) for plane strain: 
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(with 1/ 2f  , f f   and 0 / fE  .)  Remarkably, the simple formula (5) for 0  

with 1  , corresponding to Allen’s result for an incompressible film and substrate with 



no pre-stretch, retains reasonable accuracy even at modest ratios of the moduli with 

bifurcation strains that are not small.  For this to be true, the strain in (5) must be 

interpreted as the nominal strain defined in (4).  

 The limit for the homogeneous case ( / 1f s   ) in Fig. 2 is 0.456W   

corresponding to Biot’s [3] result for surface wrinkling of a homogeneous neo-Hookean 

half space under plane strain compression.  Because there is no length scale associated 

with the homogeneous half-space, the surface bifurcation mode in this limit can have any 

wavelength.1  As recent work [6] has shown, surface wrinkling of a homogeneous half-

space is highly unstable and imperfection-sensitive such that compressive strains as large 

as 0.456W   in the film are not likely to be achieved.  Instead, finite strain creases in 

the film become energetically favorable when the compressive strain exceeds 0.35   in 

plane strain compression [7,8].  Thus, one can anticipate that the bifurcation result in Fig. 

2 for / 2f s    is an upper bound in the sense that imperfections will trigger surface 

creases within the film before the wrinkling bifurcation mode can be attained.  For larger 

/f s   with smaller W , the bifurcation mode has a unique wavelength proportional to 

the film thickness, h , as will be illustrated. 

 

3.2  Plane strain compression with plane strain substrate pre-stretch.  An 

undeformed film is attached to a substrate which has been subject to a pre-stretch, 

0
1 1s  ,  in plane strain with 0

3 1s   and 0 0
2 11/s s  .  The film/substrate system 

subsequently undergoes incremental plane strain compression with decreasing 1s  subject 

to 3 1s   and 2 11/s s  .  The stretches in the film are given by (1).  The effect of the 

pre-stretch on the critical compressive strain in the film, 11W f   , at the onset of 

wrinkling is shown in Fig. 3.   Included in this figure is the prediction of the simple 

                                                 
1 In passing it is worth mentioning that surface wrinkling strain, 0.456W  , is also the critical strain for 

wrinkling localized at the bonded interface between two semi-infinite half-spaces of neo-Hookean 
materials with different ground state moduli.  This result, due to Biot [5], can be readily appreciated by 
noting that each half-space undergoes traction-free surface wrinkling at the same strain with arbitrary 
sinusoidal wavelength.  Thus, the two wrinkled half-spaces can be “fit together” satisfying continuity of 
displacements and tractions. 
 



formula (5) which becomes increasing accurate for / 10f s   .  Pre-stretch has a large 

effect on the wrinkling strain when the film is stiff compared to the substrate such that, 

for increasing pre-stretch, W  scales with 0 4/3
1s . 

 Pre-stretch produces anisotropic stiffening of the substrate (see Appendix) which 

increases the wrinkling strain when the film is stiff compared to the substrate as seen in 

Fig. 3.  In the range in which the ground state modulus of the film is only slightly larger 

than that of the substrate, the pre-stretch has the unexpected effect of lowering the critical 

bifurcation strain.  This is seen in Fig. 4 where the critical bifurcation strain W  is plotted 

for the same levels of pre-stretch for a much smaller range of /f s  .  With / 1f s    

and no pre-stretch (i.e. an initially homogeneous substrate), 0.456W  , corresponding to 

Biot’s arbitrarily short wavelength surface mode as already noted.  However, for all other 

combinations plotted in Fig. 4, the critical strain is below the Biot limit and the 

wavelength of the mode associated with the critical compressive strain has a wavelength 

that is long compared to the film thickness.  Fig. 5 further highlights this unusual 

influence of substrate pre-stretch for the case in which the ground state modulus of the 

film and the substrate are the same ( / 1f s   ).  In the range of pre-stretch, 0
11 5s  , 

the critical compressive strain in the film is less that the Biot strain and the wavelength of 

the critical mode is long compared to the film thickness.  For pre-stretches greater than 5, 

the Biot mode again becomes critical.  This behavior appears anomalous given the 

stiffening that occurs in the substrate under pre-stretch.  However, as the substrate 

becomes anisotropic, some of the incremental moduli components diminish.  In addition, 

as the film is compressed it’s incremental in-plane stiffness increases.  Evidently, the 

very different anisotropies that develop in the film and the substrate account for the 

behavior in Fig. 5, but a simple explanation of the anomaly is not apparent. 

The dimensionless wave number, kh , of the mode from the exact analysis for the 

cases shown in Fig. 3  is plotted in Fig. 6.  The normal deflection of the mode is 

proportional to 1cos( )kx  where 1x  is defined in Section 1.  The wavelength of the mode 

in the deformed state is 12 /f k .  The plot for / 10f s    includes the 

dimensionless wave number, 0k h , from (5) which becomes increasing accurate for large 



/f s  .  Pre-stretch also has an appreciable affect on the critical wave number such that 

it increases in proportion to 0 2/3
1s  when the pre-stretch is relatively large. 

 

3.3  Uniaxial compression with uniaxial stressing pre-stretch.  To illustrate the role of 

the deformation history on wrinkling, consider uniaxial pre-stretching followed by 

uniaxial compression, as is sometimes employed in wrinkling experiments.  Specifically, 

consider pre-stretching of the substrate carried out under uniaxial tension such that 

0
1 1s   with 0 0 0

2 3 11/s s s    .  Then, the film is attached to the substrate and the 

substrate is assumed to undergo incremental uniaxial compressive stressing under 

decreasing 1s  with 2 3 11/s s s    .  Film stretches are given by (1).  The 

compressive wrinkling strain in the film, 11W f   , at bifurcation is plotted in Fig. 7.  

The corresponding predictions from (2) for this case are 
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(now with 1/ 2f  , f f  , 0 (4 / 3) / /f fE E    ), and 0  is included in Fig.7.   

The trends are similar to those for plane strain deformations.  For moderately large pre-

stretch W  again scales with 0 4/3
1s .  

The wrinkling strain of the homogeneous substrate is 0.556W   under uniaxial 

stressing conditions with no pre-stretch.  Biot’s [3] result for surface wrinkling 

bifurcation of a homogeneous neo-Hookean substrate under general uniform stretching is 

 31 0.5437 /W           (7) 

for conditions in which the maximum compressive stress acts in the 1-direction.   This 

result provides the values quoted above for plane strain and uniaxial stressing.  Under 

uniaxial stressing, substrate pre-stretch causes only a slight reduction of the critical strain 

in the domain of modulus ratios near unity (Fig. 7).   

 

4.  Numerical analysis of post-bifurcation modes under plane strain 



A finite element model has been employed to investigate plane strain compression 

of the neo-Hookean bilayer at compressive strain levels well beyond the bifurcation 

strain.  Advanced post-bifurcation modes are revealed for cases with and without 

substrate pre-stretch.  Plane strain ( 3 3 1f s   ) finite element simulations have been 

performed via the commercial software, ABAQUS [9]. The ratio of the anticipated 

wavelength to the element size is taken to be approximately 100.  In the finite element 

simulations, the incompressible neo-Hookean material model is employed for both the 

film and the substrate.  The hybrid element (CPE6MH in ABAQUS) suitable for 

simulations of incompressible materials is adopted.  Two schemes are adopted to 

introduce initial stress-free geometric surface imperfections.  For the case of no substrate 

pre-stretch, a linear perturbation procedure is accomplished using the “buckle” function 

in the software. The critical eigenmode scaled by a very small factor ( 0.005h ) is 

introduced as a geometric imperfection into the mesh.  For the case in which the substrate 

is pre-stretched, finite element simulations are first run by specifying a displacement 

 2 10.025 cosu h kx  at the upper surface, where k is the anticipated wave number.  The 

computed displacement field is introduced as a stress-free geometric imperfection into 

the mesh.    

In the post-buckling analysis, displacement-controlled loading is employed with 

1u  (independent of 2x ) and zero shear traction specified on the vertical sides of the 

model.  The nominal compressive overall strain applied to the system after the film is 

attached to the substrate,  , is defined exactly as in (4) in terms of the film stretch, 1 f , 

evaluated in terms of the difference between 1u  on the two sides of the model.  On the 

bottom surface, 2u  and the shear traction are taken to be zero.   The width of the model is 

taken to be on the order of 5-10 wavelengths of the sinusoidal wrinkling mode, as will be 

evident from the deflection patterns.  The depth of the substrate is taken to be more than 

10 times the sinusoidal wavelength and, thus, sufficiently deep to ensure that there is no 

interaction with the modes and the bottom of the substrate—effectively, the substrate is 

infinitely deep.  The numerical model relies on the slight initial geometric imperfection to 

initiate growth of the post-bifurcation modes.   



It is not straightforward to simulate plane strain compression with substrate pre-

stretch with the finite element software because of the necessity of specifying the mesh in 

advance.  If a regular mesh is imposed on the bilayer followed by substrate pre-stretch, 

the film elements can be rendered inactive using the function, “model change, remove”, 

but the resulting mesh in the film winds up highly distorted before the compression phase 

begins.  This problem can be circumvented using features available in the software by the 

following steps.  A background mesh is designed which shares nodes with the film mesh 

and which has a uniform ground state shear modulus.  The entire film/substrate is then 

pre- stretched to the desired substrate pre-stretch.  In this way, the mesh in the film 

deforms with the substrate.  Before compression of both film and the substrate, the 

background mesh can be removed with the function, “model change, remove”.  Using the 

function, “model change, add”, one can reactivate the film mesh, set the state of the film 

to be stress-free, and re-set the ground state modulus of the substrate to its correct value, 

s .  From this point, the system is subject to increments of plane strain compression. 

 

4.1 Plane strain compression with no substrate pre-stretch.  Numerical simulations 

have been performed for the bilayer modulus ratio in the range 3 / 80f s    with 

results displayed in Fig. 8.  The linear perturbation analysis using the “buckle” function 

in the software allows direct computation of  W , corresponding to the onset of the 

sinusoidal wrinkling mode.  It is in good agreement with the result of Section 3.1.   

Two very different post-bifurcation modes are observed depending on /f s  .  

When /f s   is large, the sinusoidal wrinkling mode is stable to strains that can be many 

times W  (see Fig. 9).  Then, at a compressive strain denoted by PD  in Fig. 8, the 

sinusoidal mode transitions into a mode with twice the wavelength (see Fig. 9).  This 

period-doubling mode would occur as a secondary bifurcation in a perfect system, but in 

the present simulations it is triggered by slight imperfections.  The precise value of PD  is 

difficult to pin down in the simulations, as evident from the small variations in Fig. 8.   

For this bilayer system it is noted that 0.2PD   for all / 10f s   .  For stiff films, the 

sinusoidal wrinkling mode is highly stable for relatively large compressions prior to the 



onset of period-doubling, as illustrated in Fig. 9.  A combined analytical-experimental 

study [10] of the nonlinear evolution of the sinusoidal wrinkling mode prior to period-

doubling has been carried for stiff films on compliant neo-Hookean substrates.  Studies of 

period-doubling for stiff thin films on compliant elastomer substrates, including 

experimental realizations of the mode, have been presented in [4] and [11].   In addition, 

period-doubling in wrinkling has been also been identified in the system of a cylindrical 

cavity covered by a stiff surface layer [12]. 

For / 10f s   , the post-bifurcation mode changes to what will be called a 

“folding mode”  at a strain denoted by, F , that is only slightly above W , as seen in Fig. 

8.  The steps involved in the formation of the folding mode are illustrated by the example 

in Fig. 10.  A localization develops within the multiple undulations of the sinusoidal 

mode where, in the example in Fig. 10, two neighboring undulations grow relative to all 

the others—a distinct two-lobed undulation develops.  With a slight further increase of 

overall compression, the localization process continues as one of the two undulations 

becomes dominant in the form of an incipient fold.  Then, at the deepest point on this 

incipient fold, a crease is nucleated at the film surface.  The simulation is terminated at 

this point.  The localized folding mode was observed in all the simulations performed in 

the range 3 / 10f s   . 

 

4.2 Plane strain compression with modest substrate pre-stretch, 0
1 1.3s  .  When the 

substrate pre-stretch is relatively small as in Fig. 11, the behavior is qualitatively similar 

to that just described for the case on no pre-stretch.  The pre-stretch shifts the transition 

from folding to period-doubling to somewhat larger /f S   and, more significantly, it 

delays the onset of the double-period mode to larger strains.  An example of evolution of 

the sinusoidal mode to the period-doubling mode for / 186f S    is given in Fig. 12. 

 

4.3 Plane strain compression with “large” substrate pre-stretch, 0
1 2s  .  The 

behavior described above changes dramatically for a larger pre-stretch, 0
1 2s  .  In this 

case, an entirely different mode is observed at compressive strains in the film that are 



only modestly larger than the bifurcation strain, W , as seen in Figs. 13 and 14.  For the 

entire range of modulus ratio for which the simulations have been performed, 

4 / 1000f S   , the secondary mode observed is the “mountain ridge mode”, labeled 

so for reasons that will be evident from the mode shape in Fig. 14.  Like the folding 

mode, this mode is a compressive localization.  As the ridge forms, it relaxes the 

compression in the film on both sides of itself and thereby reduces the amplitudes of the 

wrinkles in its neighborhood.  Similar stress relaxation is seen for on either side of a 

buckle delamination when the film is sufficiently stiff compared to the substrate [13].  As 

seen in Fig. 14, further overall compression causes more mountain ridges to form.  For 

stiff films ( / 836f S    in Fig. 14), the overall compressive strains at which the 

mountain ridges form are not nearly as large as the strains required for period-doubling 

seen in Figs. 8 and 11 for the other cases.  Thus, this phenomenon should be expected for 

any linear elastic film material. 

 

5.  Conclusions 

 The neo-Hookean film/substrate bilayer admits a rich variety of wrinkling modes, 

especially when pre-stretch of the substrate is considered.  In all cases, the first mode to 

appear as the bilayer is compressed is the sinusoidal wrinkling mode associated with 

bifurcation from the bi-uniform state.  The compressive strain in the film at bifurcation, 

W , depends on the substrate pre-stretch, 0
1s , as well as the ground state modulus ratio, 

/f S  .  For systems with a modest stiffness difference between the film and substrate 

(e.g., 1 / 10f S   ), the bifurcation strain is relatively large and no doubt strongly 

dependent on the fact that the film has been taken to be a neo-Hookean material.  For 

stiffer films, the bifurcation strain is relatively small such that it and its associated mode 

should be applicable to any linear elastic film material.  When the film is stiff (i.e., 

/ 100f S   ), the simple formula (2) generalizes the well known formula of Allen [1] to 

account for the fact that the incremental moduli of the pre-stretched substrate are 

different from its ground state moduli.  This formula applies specifically to neo-Hookean 



substrates but is expected to reflect the role of pre-stretch for any elastomeric material 

that stiffens as it is stretched. 

The second mode to appear as the system is compressed beyond bifurcation can 

be one of several advanced post-bifurcation modes, including folding, period-doubling 

and mountain ridging.  Folding and mountain ridging involve a localization process in 

which the local deflection of the film relaxes compression in its neighborhood thereby 

growing at the expense of the undulations in its neighborhood.  Which one of the 

advanced mode to appear depends on the combination of the ground state modulus ratio, 

/f S  , and substrate pre-stretch, 0
1s .  The set of numerical simulations presented here 

have been limited to two levels of pre-stretch, although a selected number of additional 

simulations at other pre-stretches indicate that the modes reported in Section 4 are not 

isolated events.  It remains for further work to perform a more exhaustive set of 

simulations that would map the occurrence of the advanced modes as a function of 

ground state modulus ratio, substrate pre-stretch and overall compression.  Pre-stretch 

induces anisotropic incremental moduli in the substrate, increasing some components and 

decreasing others.  The anisotropic moduli play an important role in selecting the 

advanced mode, and these moduli depend on the constitutive model of the substrate.  

Thus, to an extent which is not yet established, the occurrence of the various advanced 

modes revealed here may differ for other substrate constitutive models. 

To our knowledge, there have been no reported experimental observations of the 

mountain ridge mode in the literature related to stiff films on compliant elastomer 

substrates, but it is possible that experiments have not yet been performed in the relevant 

range of pre-stretch.  The mountain ridge mode occurs at relative small compressive 

strains for stiff films.  Thus, it should be realizable for any linear elastic film material on 

a substrate can be reasonably approximated as a neo-Hookean material.  

 

Appendix   

Bifurcation analysis of neo-Hookean bilayer.  The equations governing the bifurcation 

problem are constructed from exact solutions for increments of displacements and 

stresses in a uniformly stretched layer.  Let , 1,3i i   be the uniform stretches with 



1 2 3 1     and 2 1/r   .  In a finite thickness neo-Hookean layer with ground state 

shear modulus  , separated solutions to the field equations for the incremental problem 

exist with displacement increments,    1 2 1 1 2 1, sin( ), cos( )u u U kx U kx , given by 
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     (8) 

assuming 1r  .  This representation is degenerate for 1r  , but the solution for this limit 

is not required here.  Note that the current stretch state enters (8) only through r .  The 

solution holds for any k .  The Cartesian coordinates 1 2( , )x x  label material points in the 

undeformed layer and the displacement increments are with respect to this coordinate 

system.  Nominal stress increments,    21 22 21 1 22 1, sin( ), cos( )n n N kx N kx , with 

components referred to the same coordinate system and defined as force per undeformed 

area, are given by 
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 (9) 

This Lagrangian formulation, which employs the components of the second Piola-

Kirchhoff stress, is the same used in the study of the stability of wrinkling of a 

homogeneous half-space [6].  The reader is referred to [6] or to Biot’s book [5] for 

background details. 

 For the film layer, with 20 x h  , f   and 2 1/f f fr r    , enforce 

 21 22, 0N N   on 2x h  to obtain 3 4( , )c c  in terms of 1 2( , )c c : 
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      with    
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Then solve for  21 22,N N  on 2 0x   in terms of  1 2( , )c c : 
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with 
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Next, solve for 1 2( , )U U  on 2 0x   in terms of  1 2( , )c c  using (8) and (10): 

1 1
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  (12) 

By (11) and (12), the increments of nominal stress and displacement on the bottom of the 

film layer having a traction-free top surface are related by 

 21 11

22 2
f

N U
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N U
    

   
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  on 2 0x        (13) 

 Now consider the semi-infinite substrate.  If the substrate has a pre-stretch, 0
1s , 

relative to the film, the coordinate in the substrate relative to its undeformed state is 
0

1 1 1/ sx x  .  Continuity of increments of traction and displacement across the interface 

require 

    21 1 22 1 21 1 22 1
1 3 1 3

1 1
sin( ), cos( ) sin( ), cos( )

s s f f

N kx N kx N kx N kx
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    1 1 2 1 1 1 2 1sin( ), cos( ) sin( ), cos( )U kx U kx U kx U kx
     (15) 

One condition is 1 1kx kx  and, thus, 0
1sk k .  The factors, 1 31/   , multiplying the 

increments in (14) account for the fact that the nominal stress increments in the two 

layers are defined relative to different undeformed areas if the substrate has a pre-stretch.   

The separated solution (8) applies to the semi-infinite substrate with  

s  2 1/s s sr r    , k k  and 3 4 0c c  .  It is straightforward to show that the 

relation between 21 22( , )N N  and 1 2( , )U U  on the top of the substrate ( 2 0x  ) is 
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       (16) 

The last step is to enforce continuity of traction and displacement increments across the 

interface, (14) and (15), using (13), (16) and (1); this requires 

1 2 1 2 1 2( , ) ( , ) ( , )U U U U U U     and 
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The eigenvalue problem governing bifurcation is 0E  .  The eigenvalue associated with 

the critical compressive strain must be minimized over all values of kh .  The solution to 

the eigenvalue problem is carried out numerically.   

Effect of substrate pre-stretch on wrinkling bifurcation of stiff films.  The extension 

(2) of Allen’s result [1] employs the relation (16) between the increments of traction and 

displacement as the elastic foundation onto which a compressed thin stiff plate is 

attached.  With incremental normal and tangential displacements to the plate/substrate  

interface given by 1 2 1 0 2 0( , ) ( sin( ), cos( ))u u U k x U k x , the resisting traction increments of 

the foundation are 1 2 1 0 2 0( , ) ( sin( ), cos( ))t t T k x T k x  where, by (16),  

 1 10
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2 23

S

s

T Uk
D

T U




   
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        (18) 

Here, the traction increments have been transformed to force per unit area of the plate in 

the current compressed state; D  is given in (16) with 0 0
2 1/s s sr   .  The separated 

equations governing the incremental deformation of the compressed plate are

 
 

2
0 1 1

3 4 2
0 0 2 2 1 0( /12) / 2

f

f

E hk U T

E h k hk U T T k h 
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    (19) 

where 2/ (1 )f f fE E   ,   is the compressive stress in the plate, h  is its thickness, and 

1   with the interface at the bottom of the plate and 0   if one imagines (as an 

approximation) that the mid-surface of the plate is attached to the top of the substrate.  

Here, we will be content in using the same approximations implicit in Allen’s analysis by 

ignoring the coupling between the two equations in (19), i.e., by focusing on the second 

equation with 0   and neglecting the contribution of 1U .  The result after minimizing 

  with respect to 0k  is (2).  The fully coupled equations (19) with 1   can be used to 

generate more accurate predictions than the extension in (2), as illustrated in [14] for the 

case of no substrate pre-stretch. 
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Fig. 1  Geometry of the film/substrate system and illustrations of wrinkling modes 

involving interaction between the film and substrate and a shallow surface mode.  The 

cases considered in this paper all correspond to incremental plane strain bifurcations in 

the ( 1 2,x x ) plane.



 

 

Fig. 2  Compressive strain in the film at wrinkling, W , as a function of the film/substrate 

modulus ratio of the two neo-Hookean materials for plane strain compression with no 

substrate pre-stretch.  The prediction, 0 , of the simple formula (5) for wrinkling of a 

stiff linear elastic film on a compliant linear substrate is also shown. 

 

 



 

Fig. 3  Compressive strain in the film at wrinkling, W , as a function of the film/substrate 

modulus ratio of the two neo-Hookean materials for plane strain compression showing 

the influence of plane strain substrate pre-stretch, 0
1s .  The prediction, 0 , of the simple 

formula (5) for wrinkling of a stiff linear elastic film on a compliant pre-stretched 

substrate is also shown.  The range 1 / 5f s    is magnified in Fig. 4. 



 

 

Fig. 4  Compressive strain in the film at wrinkling, W , as a function of the film/substrate 

modulus ratio of the two neo-Hookean materials for plane strain compression showing 

the influence of plane strain substrate pre-stretch, 0
1s , in the range in which the ratio of 

the film to substrate modulus is not large. 

 



 

 

Fig. 5  Compressive strain in the film at wrinkling, W , for plane strain compression 

showing the influence of plane strain substrate pre-stretch, 0
1s , for neo-Hookean films 

and substrates that have the same ground state modulus ( / 1f s   ).  In the range of pre-

stretch, 0
11 5s  , the critical mode is not the short wavelength surface mode but rather a 

mode with wavelength that is long compared to film thickness. 

 



 

 

Fig. 6  Dimensionless wave number of the wrinkling mode as a function of the 

film/substrate modulus ratio of the two neo-Hookean materials for plane strain 

compression including the influence of plane strain substrate pre-stretch.  The prediction, 

0k h , from the simple formula (5) for wrinkling of a stiff linear elastic film on a compliant 

pre-stretched substrate is also shown in the range of large stiffness ratio.  The normal 

deflection of the top surface of the film has the form 2 1cos( )u kx  where 1x  identifies 

material point locations in the undeformed film.  Other than the limit for / 1f s    with 

0
1 1s  which is not plotted, the critical mode has a wavelength that is large compared to 

the film thickness. 



 

 

Fig. 7  Compressive strain in the film at wrinkling, W , as a function of the film/substrate 

modulus ratio of the two neo-Hookean materials for uniaxial compression showing the 

influence of substrate pre-stretch under uniaxial tension.  The prediction, 0 , of the 

simple formula (6) for wrinkling of a stiff linear elastic film on a compliant pre-stretched 

substrate is also shown. 



 

 

Fig. 8  Post-bifurcation behavior in the neo-Hookean bilayer under plane strain 

compression with no substrate pre-stretch computed using the finite element model.  The 

critical compressive strain at the onset of wrinkling, W , is the theoretical result of 

Section 3.1.  The compressive strain at the onset of two distinct post-bifurcation modes is 

also indicated.   For  / 10f s   , period-doubling (see Fig. 9) is the first post-

bifurcation mode encountered at strain PD .  For / 10f s   , the post-bifurcation mode 

is a fold that occurs at a strain denoted by F  that is only slightly greater than W .  It 

subsequently develops a local crease (see Fig. 10) 



 

 

Fig. 9  Plane strain compression with / 30f s   and no substrate pre-stretch.  

Bifurcation first occurs as a sinusoidal wrinkling mode ( 0.055  ).  The sinusiodal 

mode is stable to much larger strains (e.g. 0.18  ).  At a compressive strain of 

approximately 0.2   a secondary bifurcation occurs corresponding to the onset of 

period doubling.  With a slight further increase of compression to 0.226   the period-

doubling mode is firmly established.  This behavior is representative of bilayers with 

/ 10f s    if there is no pre-stretch. 



 

 

Fig. 10  Plane strain compression with / 5f s    and no substrate pre-stretch.  

Bifurcation into the sinusoidal wrinkling mode occurs at 0.175  .  Already at a strain 

slightly above the onset of bifurcation ( 0.182  ) the deflection is showing signs that it 

is evolving away from the sinusoidal mode.  At 0.195   the film deflection has 

localized into two side-by-side incipient folds.   With a slight additional increase in strain 

( 0.1954  ) the fold on the left becomes dominant and a crease has begun to form in the 

film at the point of maximum local compression.  This behavior is representative of 

bilayers with / 10f s    and no pre-stretch. 



 

 

Fig. 11  Numerical simulations of the post-bifurcation modes for plane strain 

compression with a relatively small plane strain pre-stretch of the substrate, 0
1 1.3s  .  

The curve for the bifurcation strain, W , at the onset of sinusoidal wrinkling is that from 

the theoretical calculation in Section 3.2.  The post-bifurcation behavior with small pre-

stretch is qualitatively similar to the case with no pre-stretch, although the secondary 

modes are delayed to larger overall compressive strains.  Period-doubling occurs when 

/ 20f s    (see Fig. 12) with folding at smaller values of the modulus ratio. 

 



 

 

Fig. 12  Evolution of wrinkling mode under plane strain compression with a plane strain 
substrate pre-stretch 0

1 1.3s   for / 186f S   .  The sinusoidal wrinkling mode 

associated with bifurcation at 0.019W   is stable to much larger strains (e.g., 0.278   

above).  The onset of period-doubling is evident at 0.314   and is fully developed at 
0.367  . 

 



 
 
Fig. 13  Numerical simulations of the post-bifurcation modes for plane strain 

compression with a plane strain pre-stretch of the substrate, 0
1 2s  .  The curve for the 

bifurcation strain, W , at the onset of sinusoidal wrinkling is that from the theoretical 

calculation in Section 3.2.  For this level of pre-stretch the secondary post-bifurcation 

mode is the mountain ridge mode (see Fig. 14) at all values of /f S   plotted.  The 

compressive strain at its onset is denoted by MR .  In the range where /f S   is not large, 

mountain ridges form with relatively small additional compression after bifurcation.  

When /f S   is large, mountain ridges form at compressive strains that are small and 

roughly twice W . 



 
 
 
Fig. 14  Evolution of wrinkling mode under plane strain compression with a plane strain 
substrate pre-stretch 0

1 2s   for / 836f S   .  The sinusoidal wrinkling mode 

associated with bifurcation at 0.01W   is stable to 0.036   but at 0.0367   a 

mountain ridge has formed at the right end of the model and the amplitude of the 
undulations near the ridge have been reduced.  By 0.054   a second mountain ridge is 
clearly forming near the left end, and by 0.099   this ridge is fully developed with a 
third ridge beginning to emerge near the center.  At 0.116   three fully developed 
mountain ridges have formed and have relaxed the undulation amplitudes between the 
ridges.  The ridges are a form of localization under compression.  
 
 


