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Generalizing 2J  flow theory:  Fundamental issues in strain gradient plasticity  

John W. Hutchinson* 
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Abstract  It has not been a simple matter to obtain a sound extension of the classical 2J  flow 

theory of plasticity that incorporates a dependence on plastic strain gradients and that is capable of 

capturing size-dependent behaviour of metals at the micron scale.  Two classes of basic extensions 

of classical 2J  theory have been proposed: one with increments in higher order stresses related to 

increments of strain gradients and the other characterized by the higher order stresses themselves 

expressed in terms of increments of strain gradients.  The theories proposed by Muhlhaus and 

Aifantis in 1991 and Fleck and Hutchinson in 2001 are in the first class, and, as formulated, these 

do not always satisfy thermodynamic requirements on plastic dissipation. On the other hand, 

theories of the second class proposed by Gudmundson in 2004 and Gurtin and Anand in 2009 

have the physical deficiency that the higher order stress quantities can change discontinuously 

for bodies subject to arbitrarily small load changes. The present paper lays out this background to 

the quest for a sound phenomenological extension of the rate-independent 2J  flow theory of 

plasticity to include a dependence on gradients of plastic strain.  A modification of the Fleck-

Hutchinson formulation that ensures its thermodynamic integrity is presented and contrasted 

with a comparable formulation of the second class wherein the higher order stresses are 

expressed in terms of the plastic strain rate.   Both versions are constructed to reduce to the 

classical 2J flow theory of plasticity when the gradients can be neglected and to coincide with 

the simpler and more readily formulated 2J deformation theory of gradient plasticity for 

deformation histories characterized by proportional straining. 
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1 Introduction  

A wide array of micron scale experiments have revealed strong size-dependent 

strengthening associated with plastic deformations involving gradients of strain.  In parallel, a 

large theoretical literature has appeared seeking to encapsulate strain gradient effects into a 

theory of micron scale plasticity.  Some of theory has been conducted within the context of a 

single crystal framework, but, equally, there has been interest in developing simple 

phenomenological extensions of the classical 2J  flow theory of plasticity. Indeed, many of the 

relevant experiments have been conducted on small grained polycrystalline materials, and most 

of the attempts to correlate theory with these experiments have been made using 

phenomenological isotropic theories. It is now generally accepted that these theories must be 

higher order, not only by incorporation strain gradients but also in having higher order stresses 

that are work conjugate to the strain gradients.  Such theories open up the possibility of 

modelling extra boundary conditions outside the scope of conventional theory.  An insightful 

critical overview of the status of these theories as of 2004 was given by Gudmundson [1] 

One of the most widely used phenomenological extensions of rate-independent 2J  theory 

is that of Fleck and Hutchinson [2] which has features in common with an earlier version 

proposed by Muhlhaus and Aifantis [3]. The simplest version introduces only a single new 

material length parameter.  Moreover, the form of the theory lends itself nicely to numerical 

implementation.  However, Gudmundson [1] and Gurtin and Anand [4] noted that there exist 

strain histories for which this theory, as formulated, does meet thermodynamic restrictions 

related to the requirement of non-negative plastic dissipation—clearly unacceptable for a basic 

theory.  A second class of basic phenomenological theories free of this thermodynamic 

deficiency was proposed by Gudmundson [1] and Gurtin and Anand [5].  These authors 

circumvented the dissipation problem by expressing the higher order stresses in terms of the 

increments of plastic strain and its gradient.  An unintended consequence of this new formulation 

has been highlighted by the work of Fleck and Willis [6], who formulated variational principles 

for incremental boundary value problems based on this class of theories.  The expression of 

higher order stresses in terms of increments of strain and strain gradients leads to the possibility 

of discontinuous temporal changes in the higher order stresses.  Specifically, a change in the 

direction of loading on a body will generally give rise to finite changes in the higher order 

stresses within the body, i.e., finite stress changes due to infinitesimally small loading changes. 
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While the current understanding of the connection between higher order stresses and dislocation 

distributions is incomplete, finite changes in stress due to infinitesimal changes in strains are not 

likely to be acceptable from a physical point of view.  Thus, as will be argued later in this paper, 

it is likely that this second class of theories will need to be modified in some manner to rectify 

this physical deficiency. 

In Section 3, a relatively simple modification of the theory of Fleck and Hutchinson [2] is 

proposed to correct the thermodynamic deficiency noted above.  Section 4 presents and discusses 

the corresponding generalization of 2J  flow theory for the second class of theories.  This paper 

limits attention to the simplest extensions of 2J  plasticity, in part, because of the ubiquitous role 

that classical 2J  theory plays in describing bulk plasticity of solids and, in part, to expose in the 

clearest possible manner the issues that arise in creating the extensions.  The issues are not 

confined to the phenomenological theories.  They arise as well in the continuum formulations of 

single crystal plasticity that depend of gradients of plastic slip.  

The objectives in generalizing the 2J  theory are as follows.   

1) To construct a phenomenological isotropic theory of plasticity that incorporates a 

dependence on the gradients of plastic strain in a simple meaningful manner and that 

reduces to the classical 2J  flow theory in the limit the gradients are sufficiently small. 

2) To have as inputs the isotropic moduli, Young’s modulus E  and Poisson’s ratio  , 

the uniaxial tensile relation between stress and plastic strain, 0 ( )P  , and one or 

more material length parameters,  ,  characterizing the gradient dependence.  The 

tensile relation, 0 ( )P  , is arbitrary but monotonically increasing representing a 

hardening solid. 

3) To coincide with the 2J  deformation theory with the same inputs for proportional 

straining based on the reasoning given in Section 2. 

Similar objectives have been pursued in formulating lower order strain gradient plasticity 

theories that employ only the Cauchy stress by Acharya and Bassani [7], Chen and Wang [8], 

and Huang et al. [9]. 

 

2  Strain gradient version of 2J  deformation theory 
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 Deformation, or total, theories of plasticity are a special class of path-independent 

nonlinear elasticity theories, while flow theories are incremental and inherently path-dependent.  

Classical 2J  deformation theory and 2J  flow theory are linked by the fact that they coincide 

when the deformation involves proportional straining, given that both theories have been fit to 

the same tensile stress-strain data.  Here, following Fleck and Hutchinson [2,10], a strain 

gradient version of deformation theory will be introduced at the start.  It will be used as a 

template for the flow theory in the sense that the flow theory will be constructed to coincide with 

the deformation theory for proportional straining histories.  Deformation theory can be used to 

play this fundamental role, as it does in conventional plasticity theory, because for proportional 

straining histories the material can be modelled as being nonlinear elastic.  The clarity provided 

by that framework can be brought to bear on the incorporation of strain gradient effects.   

The theories in this paper will be restricted to small strain, rate-independent behaviour.  

As noted above, the material inputs are the isotropic elastic properties, the uniaxial relation, 

0 ( )P  , and, in this paper, a single material length parameter,  .  The length parameter is the 

only parameter not present in the classical theory.  For all these theories, iu  is the displacement 

vector, , ,( ) / 2ij i j j iu u    is the strain, ij   is its deviator, ij  is the symmetric Cauchy stress, ijs  

is its deviator, and the effective stress is 3 / 2e ij ijs s  .  Throughout, 3 / (2 )ij ij em s   is a 

dimensionless deviator tensor co-directional with the deviator stress.   

For the deformation theory, the “plastic strain” is given by P
ij P ijm   where P  is the 

magnitude, 2 / 3P P
P ij ij   .  The Cauchy stress is given by 

2 ,e e e P
ij ij kk ij ij ij ij                (1) 

with e
ij   as the deviator of the “elastic strain” e

ij   and with / [2(1 )],E   / [3(1 2 )]E    

and ij  as the Kronecker delta.  In the simplest strain gradient deformation theory of plasticity of 

the various versions considered in [2], the spatial gradient, ,P i , is used as the measure of the 

plastic strain gradients.  A gradient enhanced effective plastic strain, 

 2 2
, ,P P P i P iE      ,        (2) 
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is introduced to capture the combined effect of the plastic strain and strain gradients with   

ensuring dimensional consistency.  The strain energy density of the solid is taken to be 

 2
,

1
( , , ) ( )

2
e e e e P
ij P P i ij ij kk PU U E                (3) 

where ( )P
PU E  is defined in terms of the tensile stress-plastic strain curve of the material by 

 00
( ) ( )

PEP
P P PU E d            (4) 

The replacement of P  by PE  in ( )P
PU   above reveals the essence of the role of the plastic 

strain gradient in this phenomenological theory.  In words, the plastic work needed to deform the 

material element in the presence of strain gradients under proportional straining as measured by 

PE  is taken equal to that at the same strain, P PE  , in the absence of gradients, consistent with 

the notion that the gradient contribution to PE  accounts for the additional stored geometrically 

necessary dislocations. 

The stress quantities that are work conjugate to the strain quantities follow as [2] 

 , , ,
,

( , , )e e e
ij P P i ij P P i ij ij P i P ie

ij P P i

U U U
U Q          

  
  

     
  

          (5) 

with ij given by (1) and 

 ,2
0 0( ) , ( ) P iP

P i P
P P

Q E E
E E

            (6) 

The incremental form of (6) will be important in the sequel: 

 , ,&P j P j i i P ij P jQ C C C C                  (7) 

with 

 
22

0 0
2

( ) ( )P
P P P

P P P P p

E EU d
C

E dE E E

  


  
        

  

 
2

,2 0

,

( )P
P j PP

j
P P j P P P

EU d
C

dE E E

 
 

 
      

       (8) 

 
2

, ,2 20 0

, ,

( ) ( )P
P i P jP P

ij ji ij
P i P j P P P P

E EU d
C C

E dE E E
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In the limit 0 , corresponding to no gradient dependence, this constitutive model reduces to 

classical 2J  deformation theory with eQ  . 

Within regions with non-zero P , the principle of virtual work for a body with volume V  

and surface S  is  

   ,
e

ij ij P i P i i i PV S
Q dV T u t dS                (9) 

with iT  as the surface traction and t  is the higher order traction that works through P  at the 

surface.  Body forces are omitted.  The equations of equilibrium are 

 , 0ij j    and  ,e i iQ           (10) 

and, on the boundary with in  as the outward unit normal, 

 i ij jT n  and   j jt n         (11) 

If plastic deformation begins at zero stress, i.e., 0 (0) 0  , then (9)-(11) apply throughout the 

body.  However, if 0 (0) 0  , Q , i  and t  all vanish within any elastic region for which 0P  .  

At an internal boundary between an elastic region and a plastic region, 0P   as the boundary 

is approached from the plastic side with , 0P i  .  As a result, by (6), 0Q   at the boundary but 

t  will generally not vanish at the plastic side of the boundary.  It is assumed that the elastic 

region can support the non-zero t  acting across the boundary, analogous to what one would 

assume for a boundary between a plastically deforming region and a rigid material or an elastic 

material with higher yield strength.    

The potential energy functional for a deformation theory solid with volume V  and 

surface S  is 

  ,( , ) ( , , )
T

e
P ij P P i i i PV S

PE U dV Tu t dS       u      (12) 

where iT  and t  are prescribed on the portion of the surface TS .  Among all admissible fields, 

( , )i Pu  , with 0P  , the potential energy is minimized by the solution, assuming the tensile 

input, 0 ( )P  , is monotonically increasing.  If P  is unconstrained on the portion of the 

boundary, then 0t   on that boundary, while, if P  is constrained to be zero, t  will generally be 

non-zero at the boundary.  An internal elastic-plastic boundary in a homogeneous material must 

be located as part of the minimization process, and the condition that P  vanish as the boundary 
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is approached on the plastic side must be imposed.  This principle reduces to the corresponding 

minimum principle for the classical theory 2J  deformation theory in the limit , ,P i P i P   . 

 

2.1 Proportional straining 

 Consider the highly restricted set of fields, referred to as proportional straining, which 

increase according to 

 , ,, ,ij ij P P P i P i                  (13) 

with   as a load parameter which increases monotonically from zero.  The barred quantities 

may vary in space but they are independent of  .  For proportional straining, Q  and i  are 

given by (6) and it is readily shown that the increments in (7) satisfy 

 20 0
,

( ) ( )
,P P

P i P i
P P

d E d E
Q

dE dE

              (14) 

with 2 2
, ,P P P P i P iE E        .  

 The flow theories constructed below will be required to coincide with this deformation 

theory for proportional straining.  The rationale for this requirement is similar to that for the 

coincidence of the conventional versions of  2J  flow and deformation theory.  Using the 

invariants chosen to formulate the theories (in this paper, e e
ij ij   , P  and , ,P i P i  ), one can model 

the solid as a small strain, nonlinear elastic solid if the straining histories are proportional.  The 

straightforward and unambiguous derivation above which uncovers the new stress quantities, Q  

and i , provides a valuable constraint and template for the flow theory version for proportional 

straining.  As noted in the Introduction the versions of the theories discussed in this paper are 

based on the simplest choice of invariant of the gradient of plastic strain.  The process given 

below for constructing the flow theories can be extended to other choices of invariants, such as 

those detailed in [2]. 

 

 3  Strain gradient version of 2J  flow theory #1—increments of higher order stresses 

dependent on increments of strain gradients 
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In this section a constitutive relation is proposed relating increments of the Cauchy stress 

and increments of the new stresses, Q  and i , to increments of strain, plastic strain and strain 

gradient.  The relation will be constructed such that it coincides with the deformation version in 

the previous section under situations in which the straining is proportional.  An alternative 

version will be presented in the next section in which the stresses themselves, Q  and i , are 

specified in terms of the increments of the plastic strain gradient, following the construction 

suggested by Gudmundson [1] and Gurtin and Anand [5].  Both of these versions employ P  and 

,P i  as the measures of plastic strain and strain gradient, along with the additional stress 

quantities, Q  and i .  

In both flow theories, the plastic strain rate (not the plastic strain) is constrained to be co-

directional to ijs , 

 P
ij P ijm   ,          (15) 

 where 3 / (2 )ij ij em s  , as before, with 2 / 3P P
P ij ij     .  The effective plastic strain is updated 

as an integral over the history of deformation, P Pdt    ,  with  , ,
,

P i P P i
i

dt dt      . 

The principle of virtual work (9) applied to the incremental problem is 

   
   ,

elastic regions

plastic regions
i

e
ij ij i iV S

e
ij ij P i P i i PV S

dV T u dS

Q dV T u t dS

  

      

 


    

 
 

 

       
  (16) 

The associated incremental equilibrium conditions require , 0ij j   throughout the body and 

,e i iQ     within the plastic regions.  Boundary conditions involve specification of i ij jT n   

or iu  on all boundaries and i it n   or P  on boundaries bordering plastically deforming regions. 

 The relation between the Cauchy stress and the elastic strains in (1) also continues to 

apply with incremental form 

 2 e e
ij ij kk ij               (17) 

where e P
ij ij ij       and , ,( ) / 2ij i j j iu u     . 

 The version of the incremental higher order stress theory proposed by Fleck and 

Hutchinson [2] employs (14) together with (17) as the incremental constitutive relation for 
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plastic loading.  The resulting theory coincides with the version of the 2J  deformation 

prescribed in the previous section for proportional straining, but, as noted by Gudmundson [1] 

and Gurtin and Anand [4], it can violate thermodynamic restrictions on non-negative plastic 

dissipation.  Specifically, in the formulation in [2],
 ,P i P iQ     is regarded as the plastic 

dissipation, but the requirement, 

 , 0P i P iQ     ,         (18) 

will be violated for certain non-proportional strain histories.  For the special case for which the 

input tensile curve has a constant tangent modulus (as considered, for example, by Muhlhaus and 

Aifantis [3]), the requirement of positive plastic dissipation can be met by interpreting the 

gradient contributions as recoverable, or energetic in the terminology of Gurtin and Anand [4], 

and not dissipative.  However, a constant tangent modulus is not a realistic restriction for a 

general plasticity model.  

 In what follows, an incremental constitutive relation is proposed which meets 

thermodynamic restrictions and retains the property that it coincides with the deformation theory 

for proportional straining.  For plastic loading, the construction includes two types of 

contributions to the higher order stress quantities: recoverable and dissipative according to 

 ( , ) ( , )rec dis rec dis
i i iQ Q Q                (19) 

The recoverable contributions, together with the Cauchy stress, are derived from a free energy 

taken as 

 , ,( , , ) ( ) ( , )e e e p
ij P P i ij P P i                 (20) 

with  

21
( )

2
e e e e e

ij ij ij kk         and  ,( , ) ( ) ( )p P P
P P i P PU E U        (21) 

where PE  is again defined by (2) and PU  is given by (4).  For this definition, the plasticity 

contribution to the free energy vanishes in the absence of a gradient of the plastic strain as 

measured by ,P i .  Thus, p  models the energy associated with the plastic strain gradients as 

recoverable.  The model is consistent with the notion that ,P i  is employed as the measure of 

stored geometrically necessary dislocations whose energy, in principle, can be released by 

eliminating the gradients.  For formulations which include the strain gradients as a quadratic 
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contribution to the energy, such as those of Muhlhaus and Aifantis[3] and Bittencourt et al.[11] 

for  single crystal slip, P  is simply that contribution, i.e., , ,
P P P

i i    in the present variables. 

By (21), /e e
ij ij     , giving (1), and 

 0 ,20
0

,

( )( )
( ),

P P
P P irec recP P

P i
P P P i P

EE
Q

E E

     
 

 
    
 

    (22) 

The incremental form of these relations have (17) for the Cauchy stress rate and 

  

2 2
0

, ,2
,

( )P P
rec P

P P i P i P i
P P P i P

d
Q C C

d

     
   

  
         

          (23) 

 
2 2

, ,
, , ,

P P
rec
i P P j i P ij P j

P P i P i P j

C C
     

   
 

   
   

         (24) 

where C , iC , and ijC  are given in (8). 

The dissipative contribution is taken as 

 0 ( )
, 0dis disP

P i
P

d
Q

d

   


            (25) 

The higher order stresses are updated according to rec recQ Q dt   , rec rec
i i dt    , or, 

equivalently, in integrated form by (22) in terms of P  and ,P i , and by 0 ( )dis dis
PQ Q dt      

and 0dis  .  Prior to any plastic deformation, 0recQ  , 0 (0)disQ  , the initial yield stress, and 

0rec
i  .  The Cauchy stress is given by (1) with the plastic strains integrated according to 

P P
ij ij P ijdt m dt      .  In general, 2 / 3P P

P ij ij    except for proportional straining.  It is 

easily verified that the incremental relation coincides with (14) for the 2J  deformation theory for 

proportional straining.  In addition, it is straightforward to see that the theory reduces to the 

classical 2J  flow theory in the limit when gradients effects are unimportant.  In that limit, the 

above constitutive relation produces the classical relation: 0( ( ) / )e P P PQ d d        and 

0i  . 

 Conditions for plastic loading and elastic unloading will be introduced in the next sub-

section.  Anticipating that plastic loading requires 0P  , it follows that disQ  is positive and 

monotonically increasing because 0 ( ) / 0P Pd d    , by assumption.  Thus, the plastic 
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dissipation rate, dis
PQ  , is never negative.  Although not a thermodynamic requirement, 

( ) 0rec dis
P PQ Q Q      is also always met because Q  is also positive.  The contribution, 

,
rec
i P i  , is positive for proportional straining but it can be negative for strongly non-proportional 

histories when the stored energy associated with the plastic gradients is being released. 

 

3.1 Conditions for plastic loading and elastic unloading 

 Insufficient attention has been given to conditions for plastic yielding and elastic 

unloading for the strain gradient theories.  It is useful to begin by reviewing these conditions for 

the classical 2J  flow theory.  The condition for yield is e Y  , where during plastic loading 

the yield stress, Y , evolves according to Y e   .  For elastic increments, Y  remains 

unchanged and e  must satisfy e Y  .  The initial yield stress is (0)Y e  .  Given yield is 

satisfied, i.e., e Y  , the conditions for plastic loading and elastic unloading for the next 

incremental step are 

 0P   &  0ij ijm      (loading),     0P   &  2 0e ij ijm       (unloading) (26) 

 Now consider the strain gradient version.  The two branches of the incremental 

constitutive model are specified by (17), (23)-(25) for plastic loading and by (17) (with 0P  , 

, 0P i  , 0Q   and 0i  ) for elastic unloading.  A criterion for switching from one branch to 

the other is required with the constraint that it reduces to the classical criterion (26) when strain 

gradients play no role.  It is important to note that, of all the stress quantities, only ij  changes 

when the solid is deforming elastically—Q  and i  change only when plastic straining occurs.  

Thus, only the Cauchy stress, ij , can be used to characterize whether the state of stress lies 

inside the yield surface and whether the stress re-attains yield following an elastic excursion.  For 

the generalization of 2J  flow theory proposed above, a criterion consistent with the formulation 

and with the observations just noted is the criterion for the conventional theory specified by the 

same yield condition and (26).  Thus, initial yield requires 0 (0)e Y     and yield following 

plastic straining requires e Y  , where the yield stress evolves according to Y e    during 

plastic yielding.  As in the conventional theory, the plastic strain increment, P
ij , is normal to the 
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current yield surface specified by e Y  .  For the conventional 2J  flow theory the evolution of 

yield stress can be integrated to give ( )Y e P   .  For the gradient version, the yield stress can 

be integrated to give 

 ,2
, 0 0

,

( ) ( ) P iP
Y i i P P

P P i

Q E E
E E

   
 

    
 
       (27) 

In a numerical implementation of the theory it will generally be preferable to use Y e    when 

plastic loading occurs to update Y  because this requires evaluation of only the first gradients of 

P . For the gradient theory, e  can be negative for plastic loading and, thus, for some 

deformation histories Y  can undergo a decrease. 

It can be noted in passing that one can show that the higher order stress quantities 

introduced above always satisfy the equation  

 2 2
0 ( )i i PQ E            (28) 

It might be tempting to regard this as a yield condition, but it is not.  This equation is a 

consequence of the postulated constitutive relation, and it remains in force even when the solid 

has unloaded elastically and is not at yield.  As already noted, only the Cauchy stress changes 

when the straining is elastic and only it can be used to characterize the elastic region. 

The yield condition and the associated criteria for loading/unloading (26) are compatible 

with the equilibrium equations relating the stress quantities.  Specifically, in regions of plastic 

loading in the incremental boundary value problem, satisfaction of ,e i iQ    is ensured given 

that ,e i iQ     and given the previously stipulation for updating the stress quantities.  

Furthermore, prior to any plastic deformation, (0)Y eQ     and 0i   such that at initial 

yield e YQ   .  In elastic regions of the incremental boundary value problem, the second 

equilibrium equation (8), ,e i iQ   , will generally not be satisfied, but re-activation of this 

equation occurs continuously with reloading for the yield condition chosen because Q  and i  do 

not change for elastic deformations and because e  reassumes e Y   when yielding last 

occurred. 
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3.2  Summary of incremental equations, convexity, minimum principles and uniqueness 
 
     The constitutive relation is summarized as follows.  With yield satisfied, i.e., e Y  , plastic 

loading requires 0ij ijm    and 0P   with P
ij P ijm    and 3 / (2 )ij ij em s  .   The stress 

increments for plastic loading are 

 2 e e
ij ij kk ij      ,  ,P i P iQ C C     ,   ,i i P ij P jC C         (29) 

with C , iC , and ijC  given by (8), and where the recoverable and dissipative stresses have been 

combined.  For plastic loading the yield stress evolves as Y e    with P Pdt     and PE  

defined in (2).  If e Y   or, if e Y  , with 0ij ijm    and 0P  , the incremental response is 

elastic with 2 e e
ij ij kk ij      .  For elastic increments, 0Y  . 

The incremental equations for Q  and i  for plastic loading are identical to those of the 

deformation theory (7).  It follows that Q  and i  can be integrated and expressed in terms of P  

and ,P i  by (6);  (28) also holds.  Just as in conventional 2J  flow theory, history dependence in 

this theory arises through P
ij  and ij  which are strongly path-dependent owing to the normality 

condition, P
ij P ijm   ,  and the constraint 0P  .  Thus, while Q  and i  are given in integrated 

form by (6), they are nevertheless path-dependent through the path-dependence of P  and ,P i . 

 Next consider the incremental boundary value problem.  Let 

 
 

   

, ,

*2 2
, , ,

1
( , , )

2
1 1

2 2
2 2

e
e P P i ij ij P i P i

e e e
ij ij kk P i P i P ij P i P j

Q

C C C

      

       

   

     

ε       

       
  

(30) 

where e
ij ij P ijm      .  The terms in the brackets *( ) are set to zero with 0P   if e Y  , or if  

e Y   and 0ij ijm   ; otherwise they are included with 0P  .  With the set of strain 

increments denoted by ,( , , )e P P i Ε ε    and the stress increments denoted by ( , , )iQ S σ   ,  

/ 2  S E   and /  S Ε  .  One can prove that   is convex.  That is, for all pairs generated 

by (30), (1) (1)( , )Ε S  and (2) (2)( , )Ε S , we have shown that  

(2) (1) (1) (2) (1)( ) ( ) ( ) 0    Ε Ε S Ε Ε          (31) 
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where the equality holds if and only if (2) (1)Ε Ε  . 

 For a body with volume V  and surface S , define a functional F  of the incremental 

displacement fields, iu  and ( )P x , with , ,( ) / 2ij i j j iu u     , by 

  ,( , ) ( , , )
T

P e P P i i i PV S
F dV Tu t dS       u ε             (32) 

where iT  and t are prescribed on the portion of the surface TS  and the dependence on ,P i  in 

is evaluated as the gradient of ( )P x .  It follows directly from the convexity of   that any 

solution to the incremental boundary value problem minimizes F  among all admissible fields 

satisfying prescribed iu  and P  on the portions of the surface other than TS .  Moreover, if a 

solution exists, it is unique.  Existence of a solution has not been established.  

 As in any incremental plasticity problem, the location of the boundary between the 

regions which undergo elastic and plastic increments is unknown and depends on the current 

state and the imposed incremental boundary conditions.  For the incremental problem for a 

homogeneous material, P  is not constrained at the elastic-plastic boundary, assuming 

dislocations can flow through the boundary.  Thus, by the incremental principle of virtual work 

(16), 0i it n    on the plastic side of the boundary with in  as its normal.  This implies that a 

plastic region encroaching into a virgin elastic region has 0t   and 0 (0)Q   at the boundary 

and, therefore, Q  and t  are continuous across the boundary.  The situation is different at the 

boundary between two materials with differing yield strengths, one deforming plastically and the 

other deforming only elastically.  On the plastic side of the boundary the constraining effect of 

the abutting higher strength material can be modelled by taking 0P   at the boundary.   Then, 

generally, i it n  will not vanish at the boundary on the plastic side as plastic deformation 

proceeds.  In this theory, it is assumed that the abutting elastic material can support the higher 

order traction, t , exerted on it. 

 
4 Strain gradient version of 2J  flow theory #2—higher order stresses dependent on 

increments of strain gradients 
 
 The alternative version of the theory given in this section follows the procedure used by 

Gundmunsen [1] and Gurtin and Anand [5] to construct the constitutive model ensuring that the 
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plastic deformation is entirely dissipative.  The theory in this section employs the same measures 

introduced for the other flow theory in Section 3, i.e., P , ,P i   with P
ij P ijm    and 0P  .  The 

increments of the Cauchy stress increments are again given by (17) with 0P   for plastic 

loading and 0P   for elastic unloading. 

For plastic loading, let  1, iQ Σ  ,  ,,P P i PE    and note the following  

,P i P iQ   PΣ E   ,  2 2
i iQ     Σ  , 2 2

, ,P P P i P iE     PE       (33) 

In this version, P PE E dt    is different from the definition (2) used in Section 3; the two 

definitions only coincide for proportional straining.  The crucial step in constructing the class of 

constitutive relations of Gudmundson [1] and Gurtin and Anand [5] is to choose Σ  co-

directional with PE so as to ensure that the plastic work rate, PΣ E , is always positive.  Here the 

specific choice of Fleck and Willis [6] is adopted because it has been formulated to coincide with 

the 2J  deformation theory in Section 2: 

 0 ( )P
P

E
E

 PE
Σ


 ,    or    0 ( ) P

P
P

Q E
E



   and   

,2
0 ( ) P i

i P
P

E
E


 


     (34) 

It follows immediately that 0 ( ) 0P PE E PΣ E   and, also, that 0 ( )PE  .  Constitutive 

models of this class have also been considered by Reddy [12]. 

 Unlike the theories in Section 3, the stress quantities, Q  and i , in this class of theories 

are not known in the current state; only the Cauchy stress, ij , is known.  Here, Q  and i  

depend on the solution to the incremental boundary value conditions imposed on current state of 

a body.  Thus, Q  and i , will, in general, change discontinuously when the boundary conditions 

for the incremental problem change the direction of loading.  Specifically, if changes are made to 

the prescribed traction increments, iT  and t, on TS , and/or to prescribed values of iu  and P  on 

the remaining portion of the boundary, then Q  and i  will usually change discontinuously 

throughout the body.  Physical implications of such discontinuous behaviour will be discussed 

later.   

Owing to the fact that the higher order stresses are expressed in term of the increments of 

strain and strain gradient, the incremental boundary value is not standard.  Fleck and Willis [6] 
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have formulated minimum principles for the incremental boundary value problem for this class 

of theories which determine the distribution of PE and Σ  throughout the body in terms of 

prescribed increments of boundary loads or displacements.  They have called attention to the fact 

that this class of formulation has parallels to the classical theory of rigid-plasticity in the sense it 

too has the feature that the stress is a function of the plastic strain increment and, therefore, 

depends on the solution to the incremental boundary value problem itself.  

 A full description of conditions for plastic yield, plastic loading and elastic unloading has 

not yet been presented for this class of theories.  For the version specified by (34), Fleck and 

Willis [6] have noted that  

 2 2
0 ( )i i PQ E              (35) 

has the appearance of a yield condition in the sense that it is satisfied for any plastic loading 

increment.  Moreover, PE  is normal to the surface specified by 0 ( )PE  .  The correct way to 

think of (35) is that the stress, Σ , locates its position on the surface such that PE  is aligned with 

the normal and not vice versa.  

As a yield condition, (35) is incomplete. Similarly to condition (28) for the other flow 

theory, (35) is a consequence of (34) and not an extra equation.  Moreover, for the same reasons 

described for the other theory, (35) cannot characterize the elastic region within the yield surface 

or the condition for plastic re-loading if the solid has undergone excursions within the elastic 

region.  As noted in Section 3, only the Cauchy stress changes when the solid deforms elastically 

and, consequently, the Cauchy stress must enter into any criterion characterizing elastic 

responses.  The yield condition, together with the conditions for plastic loading and elastic 

unloading (26), proposed for the other flow theory can also be invoked for this version.  The 

equation for the evolution of the yield stress under plastic loading, Y e   , again allows for the 

possibility that Y  may undergo a decrease for certain deformation histories. 

 

4.1 Are discontinuous stress changes due to infinitesimal changes in boundary tractions 

physically acceptable? 

 As noted, one consequence of the constitutive equation (34) is a discontinuous change in 

the direction of the stress quantities, Q  and i , with a change in the “direction” of prescribed 
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surface traction increments or displacement increments on the boundary of the solid body.  A 

simple illustration would be a bar or tube stretched into the plastic range in tension and then 

subject to an increment of both tension and torsion. Fleck and Willis [6] have formulated 

minimum principles for the incremental boundary value problems for the class of theories of 

which (34) is perhaps the simplest example.  Their work shows that the distributions of P  and 

,P i , depend on the boundary conditions posed for the incremental problem.  If the incremental 

boundary conditions are changed, the distributions of /P PE   and , /P i PE   on the right hand side 

of (34) will generally change.  In other words, infinitesimal changes in prescribed boundary 

tractions or displacement can result in finite changes in Q  and i .   

 Discontinuous stresses due to infinitesimal changes in strain are unusual for solids, 

although, as noted in [6], such discontinuous stress behaviour is characteristic of rigid-plastic 

solids for which elastic strains are neglected.  Rigid-plasticity theory cannot be used to evaluate 

elastic strains or even plastic strain changes on the order of elastic strains under non-proportional 

straining.  It has not been the intention of the developers of either class of gradient plasticity 

considered in this paper to neglect elastic strains.  Indeed, incompatibility associated with 

gradients of plastic strain must be offset by gradients of elastic strains.  Thus, one must ask if it is 

physically acceptable for the higher order stresses to undergo discontinuous changes in the 

manner described by (34).   

At this stage in the development of higher order theories, a definitive answer to this 

question may not be possible because a widely accepted physical intuition of higher order 

stresses is not yet in place.  Nevertheless, physical arguments for continuous changes in the 

higher order stress can be put forward.  If an internal or external boundary in the solid has unit 

normal, n , it is generally held that i it n  constitutes a measure of local traction on the 

boundary associated with the local plastic strain gradient.  Recent efforts to model transmission 

of plastic straining across boundaries have made use of this interpretation (Aifantis, et al. [13]).  

If this interpretation is correct, it is hardly acceptable that infinitesimal changes in boundary 

tractions or displacements could result in finite changes in local boundary tractions within the 

body.  In addition, higher order stresses are believed to be directly related to the current 

dislocation distribution.  Challenging as the problem is, efforts to quantitatively characterize this 

connection have been pursued (e.g., Groma, et al. [14] ).  From a physical standpoint, it seems 
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highly unlikely that dislocation distributions would routinely undergo finite changes due to 

infinitesimal changes in boundary tractions or displacements.  Thus, the existence of a 

connection between the higher order stress and the current dislocation distribution would also 

suggest that discontinuous changes in stress with infinitesimal changes in boundary loads are 

physically suspect. 

 

5  Summary of the current status of a basic 2J  flow theory of strain gradient plasticity 

Two simple extensions of the classical 2J  flow theory have been given.  The inputs to 

these two versions, and to the 2J  deformation theory version to which they have been tied, are 

the same: the isotropic elastic moduli, the tensile stress-strain curve in the plastic range and a 

single material length parameter that sets the scale of the gradient effects.  Both flow theory 

versions have been constructed to coincide with the deformation theory for proportional straining 

and both reduce to the classical 2J  flow theory when gradient effects become negligible.  The 

two versions differ for non-proportional straining.  Version #1 in Section 3 specifies increments 

of stress in terms of increments of strain, while Version #2 in Section 4 specifies the higher order 

stresses themselves in terms of increments of strain.   

Nearly all the micron scale plasticity tests to date have been tests with monotonic loading 

and straining conditions that do not depart significantly from proportional straining.  By the same 

token, the theoretical efforts employed to interpret and fit the existing experimental data have 

invoked solutions with monotonic loading and near-proportional straining.  For such problems, 

little difference between the two flow theory versions in this paper should be expected.  Indeed, 

for the same reasons, it has been justified to use 2J  deformation theory solutions in a number of 

these cases to compare theory and experiment.  Apart from an effort to measure the Bauschinger 

effect under reversed loading in thin films (Xiang and Vlassak [15]), we are unaware of any 

micron scale experiments carried out to explicitly explore non-proportional straining effects. 

Thus, at this time, it is not possible to make use of experimental data to settle the issues related to 

stress continuity and non-proportionality raised in Section 4 in connection with version #2.  

In Section 4.1 it has been argued that there are physical grounds for requiring any 

constitutive law to give rise to continuous temporal variations of the higher order stress even if 

the incremental boundary conditions undergo an abrupt change in loading direction. If this 
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argument survives further scrutiny, it would mean that the type of constitutive relation 

represented in its simplest form by (34) is not physically acceptable.  The inclusion of a rate-

dependence in this class of theories, as in Gurtin and Anand [5] and Lele and Anand [16], can 

eliminate temporal stress discontinuities.  However, at any abrupt change in direction of the 

boundary conditions for which the rate-independent limit undergoes stress jumps, the 

dependence on the parameter setting the rate-dependence will be exceptionally strong and 

difficult to justify physically.  Thus, the incorporation of rate-dependence side steps the problem 

without resolving the fundamental physical issue.  Lele and Anand [16] have explored the 

sensitivity of this class of strain gradient formulations to the level of rate-dependence for 

problems without abrupt changes in boundary conditions. 

 The formulation in Section 3 in which increments of stress are related to increments of 

strain can be extended to more complicated versions which make use of other invariants of the 

plastic strain rate such as those identified in [2].  Nevertheless, there is need for a more 

systematic approach to construct incremental constitutive relations for gradient plasticity theories 

which satisfy thermodynamic constraints.  The modified version of the earlier Fleck-Hutchinson 

constitutive model presented in Section 3 meets these constraints by partitioning the rate of 

plastic work into recoverable and dissipative components.  In the version put forward, the work 

associated with the higher order stress i  is taken to be recoverable.  From a physical standpoint 

it seems likely that some of the work associated with i  should be non-recoverable.  To our 

knowledge, a general systematic method to construct incremental constitutive relations for 

dissipative or non-recoverable gradient contributions is not available. 
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