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Abstract.   Thin stiff films on compliant elastic substrates subject to equi-biaxial 

compressive stress states are observed to buckle into various periodic mode patterns 

including checkerboard, hexagonal and herringbone.  An experimental setting in which 

these modes are observed and evolve is described.  The modes are characterized and 

ranked by the extent to which they reduce the elastic energy of the film-substrate system 

relative to that of the unbuckled state over a wide range of overstress.  A new mode is 

identified and analyzed having nodal lines coincident with an equilateral triangular 

pattern.  Two methods are employed to ascertain the energy in the buckled state: an 

analytical upper-bound method and a full numerical analysis.  The upper-bound is shown 

to be reasonably accurate to large levels of overstress.  For flat films, except at small 

states of overstress where the checkerboard is preferred, the herringbone mode has the 

lowest energy, followed by the checkerboard, with the hexagonal, triangular and one-

dimensional modes lowering the energy the least.  At low overstress, the hexagonal mode 

is observed in the experiments not the square mode.  It is proposed that a slight initial 

curvature of the film may play role in selecting the hexagonal pattern accompanied by a 

detailed analysis.   An intriguing finding is that the hexagonal and triangular modes have 

the same energy in the buckled state and, moreover, a continuous transition between 

these modes exists involving a linear combination of the two modes with no change in 

energy.  Experimental observations of various periodic modes are discussed with 

reference to the energy landscape.  Discrepancies between observations and theory are 

identified and open issues are highlighted. 

 

Keywords: Thin films, compliant substrates, buckling, wrinkling, mode transitions 
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1. Introduction 

Due to processing, thermal expansion mismatch, or differential expansion due 

moisture changes, thin metal or ceramic films on elastomer or polymer substrates often 

experience equi-biaxial in-plane compression and buckle into intriguing periodic mode 

patterns (e.g., Bowden et al., 1998; Huck et al., 2000; Breid and Crosby, 2009).  

Examples of one-dimensional, square checkerboard, hexagonal, triangular and 

herringbone modes are depicted in Fig. 1, and experimental observations of several 

modes from the work of Breid and Crosby (2009, 2010) are shown in Fig. 2.  Motivated 

by experimental observations presented in the next section, this paper builds on the 

theoretical studies of Chen and Hutchinson (2004) and Audoly and Boudaoud (2008 

a,b,c) that have elucidated nonlinear aspects of the buckling behavior of some of the 

periodic modes.  In the range of moderate to large overstress, Chen and Hutchinson 

(2004) showed that, among one-dimensional (straight-sided), square checkerboard and 

herringbone modes, the herringbone mode has the lowest energy in the buckled state 

while the one-dimensional mode has the greatest.  Audoly and Boudaoud (2008a) 

examined further details of the post-buckling behavior of these modes, including the 

range in which the one-dimensional mode is stable and its transition to the herringbone 

mode under stress states which are not equi-biaxial.  They also considered the hexagonal 

mode and they showed that the square mode has the lowest energy in the range of small 

overstress.  In companion papers, Audoly and Boudaoud (2008 b,c) used asymptotic 

methods to explore aspects of behavior expected in the range of very large overstress 

with emphasis on the herringbone mode.  

In this paper, we employ an analytical upper-bound calculation and numerical finite 

element analysis to explore further aspects of the nonlinear post-buckling behavior of the 

film/substrate system with the aim of shedding light on the relation between observed 

periodic patterns and the level of overstress noted in the next section.  Behavior over a 

wide range of stress from the onset of buckling to advanced post-buckling at large 

overstress is investigated for films under equi-biaxial stress in the unbuckled state.  The 

problem in which the pre-buckling stress state is equi-biaxial compression is unusual in 

that there are a multiplicity of periodic modes associated with the critical buckling stress, 

including one-dimensional (1D), checkerboard and hexagonal modes and a newly 
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identified triangular mode.  The initial and advanced post-buckling behavior of all these 

modes and the relations among them are studied here.   In addition, results are obtained 

for a herringbone mode which has the lowest energy of all the modes considered at 

sufficiently large overstress. Because the herringbone mode is not one of the modes 

associated with the onset of buckling, it is not favored at small overstress.  

The model investigated analytically is a nonlinear von Karman plate bonded to a 

linear elastic foundation; it is introduced in Section 3.  A three-dimensional model of the 

film and the substrate is employed in the numerical finite element simulations.  For the 

analytical model, the issue of the most appropriate traction conditions linking the plate to 

the foundation, which was addressed by Audoly and Boudaoud (2008a), is considered 

here in more detail.  The various modes are introduced in Section 4.  Upper-bounds to the 

energy states are obtained in Section 5, supplemented by results from a finite element 

analysis of the three-dimensional model given in Section 7.  The role of an initial 

spherical curvature of the film is addressed in Section 6 in an effort to explain some of 

the apparent conflicts between theory and experimental observation identified in the next 

section.  

 

2.  Experimental observations of mode patterns motivating theoretical issues 

 The relation between the buckling modes and overstress  has been studied 

experimentally for crosslinked polydimethylsiloxane (PDMS) substrates ( 1SE MPa , 

0.5S  , thickness ~ 3mm) whose surfaces have been modified using an ultraviolet-

ozone (UVO) oxidation process to produce surface layers, or films, with increased 

stiffness relative to the underlying non-modified elastomer substrate (Breid and Crosby, 

2009; Breid and Crosby, 2010).   Although the film modulus and thickness are not known 

precisely, approximate values have been estimated by wrinkle wavelength measurements 

(Chan and Crosby, 2006) and compared with published reflectivity measurements on 

similar materials (Efimenko et al  2002; Mills et al 2008).    The film thickness lies in the 

range from 100 to 200 nm  (Efimenko et al  2002, Mills et al 2008), while its modulus is 

of order 10GPa  (Chan and Crosby, 2006). 

 To induce wrinkling, the PDMS samples are placed in a sealed chamber 

containing a reservoir of ethanol, which does not contact the samples. The ethanol vapor 
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is absorbed into the oxidized film to a greater extent than the underlying non-modified 

elastomer, thus differential swelling between the two layers leads to the development of 

an equi-biaxial compressive stress in the film.  An increase in the UVO exposure time 

results in a thicker oxide layer with a greater swelling extent, effectively increasing the 

applied overstress.  The applied swelling stress can be controlled alternatively by 

changing the vapor pressure of ethanol (Breid and Crosby, 2010).  For both cases, the 

magnitude of the applied overstress is determined by measuring the curvature of 

cantilever beams of the same composition exposed to the same vapor swelling conditions. 

Conventional bi-layer beam bending mechanical models provide the values of the 

average overstress in the film by relating the measured curvature of the beams to the 

curvature measured at the critical buckling point. The magnitude of the applied strains 

can be estimated by measuring the applied strain at the critical buckling point for 

uniaxially compressed samples. Using these measurements, we estimate the total strains 

to range from 0-10%, with a critical strain around 2-3%. 

  Fig. 3 collects observations from several experiments displaying the progression 

of observed patterns for increasing levels of overstress.  Throughout the paper, 0  

denotes the equi-biaxial stress in the film in the unbuckled state, C  is the critical value 

of this stress at the onset of buckling, and the extent to which 0 / C   exceeds unity is 

referred to as the overstress.  A pattern emerges in Fig. 3 at 0 / 1C    with an almost 

random array of low-amplitude undulations. We identify the lowest ethanol vapor 

fraction at which these undulations are observed for a given UVO treatment time as the 

critical buckling point, from which the following overstress values are calculated. At 

slightly larger overstress, 0 / 1.3C   , a distinct hexagonal pattern is evident with 

central regions of all the hexagons deflected into the substrate.  For 0 / 1.7C    the 

herringbone pattern is dominant with occasional defects.  An exceptionally well 

organized herringbone pattern is observed for the highest overstress shown, 0 / 4.1C   , 

corresponding to the longest UVO treatment of 60 minutes. 

 The preference of our experimental system to assume the hexagonal mode at low 

overstress is overwhelming, despite the fact that the square mode has been shown here 

and previously to have lower energy in this range when the film/substrate system is flat.  
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Furthermore, we have only observed hexagonal patterns for which the regions inside the 

hexagons buckle into the substrate (e.g. Figs. 2-4), while the theory developed later in the 

paper for flat films/substrate systems predicts that buckling of the hexagonal regions into 

or out of the substrate should be equally likely.  One possible artifact of our experimental 

system is the presence of low amplitude, laterally extensive curvature of the surface of 

the system that exists initially or develops upon swelling in the “flat” UVO-PDMS 

samples.  This clue has been pursued theoretically in the paper.  It will be seen that initial 

spherical curvature of the film is likely to explain the two experimental observations cited 

above that are otherwise inexplicable when the films are taken to be flat.   

 As the applied overstress increases beyond the formation of the hexagonal mode, 

a transition point to more energetically favorable herringbone patterns is observed. 

However, experimentally there is a tendency to maintain the hexagonal lattice of the 

original pattern, perhaps due to kinetic considerations of forming an entirely new pattern 

with different periodic wavelengths.  The mechanism by which the hexagonal mode 

transitions to a more energy-minimizing pattern is seen in Fig. 4.  Starting from a pure 

hexagonal pattern, slight increases in the overstress cause isolated hexagons to coalesce 

with neighbors producing an extended local groove. The coalescing of a pair of hexagons 

tends to also trigger the coalescing of a neighboring pair. These triggered pairs are 

usually situated along a lattice line that is not parallel to that of the original pair, in order 

to accommodate the local stress in an equi-biaxial manner.  In some cases, these 

coalesced grooves link to form even longer grooves, but in general they tend to remain 

the product of just two or three hexagons.  The overall result is a pattern that locally 

resembles a “segmented labyrinth”, or a herringbone pattern with no global orientation, 

analogous to the labyrinth pattern reported for homogeneously initiated wrinkling at high 

overstress (Huang, Hong and Suo, 2005;  Lin and Yang, 2007).  In contrast, well-ordered 

herringbone patterns develop for systems that bypass the lower energy buckling modes or 

“jump” to high overstress values.  

The experimental observations noted here have motivated us to look for a 

theoretical explanation of why the square mode is never observed for our experimental 

system even though under equi-biaxial stressing it has lower energy than the hexagonal 

mode, assuming flat films.  Moreover, a new triangular mode will be identified that has 
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precisely the same energy in the buckled state as the hexagonal mode, and this mode has 

not been observed either.  We also wish to explain why the hexagonal mode has always 

been observed to buckle with the hexagonal regions directed into the substrate, while the 

theory suggests there should be no such preference.  These discrepancies between theory 

and experiment have motivated other avenues of exploration in the theory, including the 

roles of initial film curvature and nonlinearity of the substrate.   Embedded within the 

paper are several auxiliary findings:  (i) The only modes whose nodal lines coincide with 

a pattern formed by regular polygons are the equilateral triangle mode and square 

mode—the so called “hexagonal mode” is formed from a mixture of hexagons and 

triangles in the manner of a Kagome pattern.  (ii) Among all rectangular checkerboard 

modes, the square mode has the lowest energy.  (iii)  The hexagonal mode and triangular 

mode have identical energy in the buckled state, to the order obtained here, and a 

continuous transition exists from one to the other at constant energy. (iv) Within the 

range of overstress considered in this paper, nonlinearity of the substrate has essentially 

no influence on the buckling patterns. (v) A slight curvature of the film is likely to be 

playing a critical role in the mode selection observed experimentally and in determining 

the sign of the hexagonal deflection. 

 

3.  The analytical model 

The film is described by the von Karman plate equations, and the infinitely deep 

substrate under the film is characterized by linear elasticity.  Both the film and the 

substrate are taken to be isotropic and homogeneous.  The process that produces the stiff 

film in our experimental system almost certainly results in a modulus variation through 

its thickness, maintaining in-plane isotropy.  An inhomogeneous film of this type can be 

replaced by a homogeneous film whose modulus and thickness are chosen to reproduce 

the bending and stretching stiffness of the inhomogeneous film.   This section begins by 

listing the governing equations and by recording what are now well known results for the 

critical stress and associated eigenmodes associated with the onset of buckling for 

conditions in which the film is stressed in equi-biaxial compression.  Such conditions 

would arise, for example, if the substrates coefficient of thermal expansion were greater 

than that of the film and a reduction in temperature took place or if the film were to 
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attempt to swell relative to the substrate under ingress of moisture or solvent, as in the 

case of the experiments discussed in Section 2.  There is some latitude in the formulation 

of the model in the choice of conditions used to attach the film to the substrate and this 

issue is investigated. 

 

(3.1) The governing equations 

 Let t  be the thickness of the film with fE and f  as its modulus and Poisson’s 

ratio.  The substrate is taken to be infinitely deep with modulus and Poisson’s ratio, 

SE and S .  In Cartesian coordinates, 1 2( , )x x , the von Karman plate equations 

representing the film are 

 4
11 ,11 22 ,22 12 ,12( 2 )f SD w N w N w N w p           (3.1) 

 4 2
,12 ,11 ,22

1

f

F w w w
E t

          (3.2) 

Here, 3 2/ [12(1 )]f f fD E t    is the film bending stiffness, 1 2( , )w x x  is the vertical 

displacement of the film middle surface, and 4 ( )  is the bi-harmonic operator.  The 

resultant in-plane stresses in the film are given in terms of the airy stress function, F ,  by 

11 ,22N F , 22 ,11N F  and 12 ,12N F  .   

The downward vertical traction exerted by the substrate on the deflected film 

is Sp .  As is customary in this model, horizontal tractions exerted on the film by the 

substrate are neglected.  For vertical deflections, 1 1 2 2ˆ cos( ) cos( )w w k x k x ,  

1 1 2 2ˆ cos( ) cos( )Sp p k x k x  with   * 2 2
1 2ˆ ˆ / 2 Sp w E k k  .  Within the framework 

described by (3.1) and (3.2), two choices of *
SE  have been made in nearly all earlier 

studies: *
S SE E  (with 2/ (1 )S S SE E   ) if tangential tractions on the substrate 

interface are taken to be zero (Allen (1969) and many others following his work), while 

* 2[4(1 ) / (3 4 )]S S S SE E     if tangential displacements at the substrate interface are 

taken to be zero (Huang, 2005; Audoly & Boudaoud, 2008).  The actual conditions (i.e. 

continuity of both tangential tractions and displacements across the film/substrate 

interface) require tangential tractions to be taken into account in the film which leads to a 
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more complex formulation than that described by (3.1) and (3.2).  This issue was 

addressed by Audoly & Boudaoud (2008a) and will be discussed and further clarified at 

the end of this section.  As noted by Chen and Hutchinson (2004), the spread between 

these two estimates vanishes if the substrate is incompressible (i.e., 

2[4(1 ) / (3 4 )] 1S S    , if 1/ 2S  ) and is still very small if 1/ 3S   (i.e., 

2[4(1 ) / (3 4 )] 16 /15S S    ).  For the analytic upper-bound results presented later in 

Section 4, the choice for *
SE  is left open.  A three dimensional formulation is adopted for 

the numerical calculations and full continuity will be imposed across the film/substrate 

interface. 

Denote the equi-biaxial compressive stress in the unbuckled film by 0  such that 

 2 2
0 1 2 / 2F t x x   .  With 1L  and 2L  as the periodicity lengths in the 1x  and 2x  

directions, supplementary compatibility conditions that ensure that the average 

displacements tangent to the film are the same as those in the unbuckled state are 

 

 

 

1 1

2 2

2
,1

11 22 1 0 1 10 0

2
,2

22 11 2 0 2 20 0

(1 )1

2

(1 )1

2

L Lf
f

f f

L Lf
f

f f

w
N N dx L dx

E t E

w
N N dx L dx

E t E


 


 


   


   

 

 
   (3.3) 

 

(3.2) The critical stress and associated buckling modes 

 The critical film stress, C , characterizing the onset of buckling is (Allen, 1969) 

  

2/3
*

3
4

f S
C

f

E E

E


 
   

 
       (3.4) 

where 2/ (1 )f f fE E    and *
SE  was introduced above.  All modes satisfying  

 1 1 2 2

1 1 2 2

sin( ) sin( )

cos( ) cos( )

k x k x
w

k x k x

   
    
   

   with    1/32 2 1 *
1 2 3 /S fk k k t E E    (3.5) 

are eigenmodes associated with C  (Chen and Hutchinson, 2004).   

 

(3.3) The critical buckling stress and the choice of *
SE  
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 We digress to present other estimates of C , including results of an exact 

calculation, with the purpose of guiding the choice of *
SE  for the formulation laid out in 

Section (3.1).  For plane strain buckling in the 1 2( , )x x  plane, three results are presented: 

  Case (I) Full continuity of tractions and displacements applied at the mid-plane of 

the von Karman plate. 

 Case (II) Full continuity of tractions and displacements applied at the bottom 

surface of the von Karman plate. 

 Case (III) The exact plane strain solution in which the film is treated as a pre-

stressed elastic layer of finite thickness with full continuity of tractions and displacements 

applied at the interface between the film layer and the substrate. 

Selected details underlying the calculations in these cases are presented in the Appendix. 

 The two possible choices of *
SE  noted Section (3.1), one based on zero tangential 

tractions acting on the substrate and the other based on zero tangential displacements 

imposed on the substrate, might be expected to predict critical stresses that bracket the 

actual critical stress.  This would indeed be true if Case (I) were a correct description.  

This is seen in Fig. 5 for 1/ 3S   where C  from Case (I) falls just below the estimate 

based on * 2[4(1 ) / (3 4 )]S S S SE E    .  However, Case (II) provides a more realistic 

description, and the critical stress based on Case (II) lies above the estimate based on 

* 2[4(1 ) / (3 4 )]S S S SE E    .   The result of the exact calculation, Case (III), is the 

uppermost curve in Fig. 5. 

 Case (III), detailed in the Appendix, makes use of the exact formulation of Biot 

(1965)  and Hill and Hutchinson (1975) for the plane strain bifurcation analysis for an 

incompressible pre-stressed layer of finite thickness which is coupled to the compliant 

linear substrate through continuity of tractions and displacements.  The exact results are 

limited to 1/ 2f   for the film, but this restriction should not be significant for the 

comparisons in Fig. 5 because f  does not play a role in any of the other estimates other 

than through 2/ (1 )f f fE E   .  Fig. 6 displays the dependence of the exact predictions 

for various substrate Poisson ratios.  As 1/ 2S  , all the estimates based on the plate 
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model approach 2/3( / 4)(3 / )C f S fE E E  , and the exact result is only slightly greater.  

Many recent experiments employ elastomeric substrates which are nearly incompressible.  

For such systems the issue of the choice of *
SE  vanishes.  Otherwise, within the 

framework of the model Section (3.1) wherein only the normal traction exerted on the 

film by the substrate is taken into account, it is clearly best to choose 

* 2[4(1 ) / (3 4 )]S S S SE E    , as concluded by Audoly and Boudaoud  (2008a).  As seen 

in Fig. 5, this approximation will only underestimate the critical stress by several percent 

for compliant substrates with 1/ 3S   and / 0.001S fE E  .  These conclusions apply to 

all of the critical modes satisfying (3.5) because each of them can be expressed as a 

superposition of 1D plane strain modes. 

 

4. The buckling modes  

This paper will focus on four modes associated with the critical stress:   

 1D mode:  1cos( )w t kx        (4.1) 

 Square checkerboard mode:  1 2

1 1
cos( ) cos( )

2 2
w t kx kx   (4.2) 

 Hexagonal mode: 1 1 2

1 3
cos( ) 2cos( ) cos( )

2 2
w t kx kx kx

 
   

 
  (4.3) 

 Equilateral triangular mode:  1 1 2

1 3
sin( ) 2sin( ) cos( )

2 2
w t kx kx kx

 
    

 
  (4.4)  

Aspects of the last three modes are depicted in Fig. 7.  Each of these modes can be 

expressed as a superposition of critical 1D modes.  In coordinates 1 2( , )x x   rotated 45o  

from 1 2( , )x x , the checkerboard mode (4.2) can be re-expressed as 

 1 1 2cos( ) cos( ) / 2w t kx kx    .1  With 1 2( 3 ) / 2x x x    and 1 2( 3 ) / 2x x x   , the 

hexagonal mode (4.3) is 1(cos( ) cos( ) cos( ))w t kx kx kx     .  As noted in Fig. 7, the so-

                                                 
1 Audoly and Boudaoud (2008a) use the superposition of the two 1D modes in their analysis of the square 
checkerboard mode.  They incorrectly assert that Chen and Hutchinson (2004) did not consider the critical 
checkerboard mode, evidently due to the difference in the periodicity wavelengths in the two sets of axes. 
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called “hexagonal mode” is a periodic mix of hexagons and triangles in the form of a 

Kagome pattern. 

An alternative expression for (4.4) that more clearly reveals the triangular pattern is 

 1

1 1 1
4 sin sin sin

2 2 2
w t kx kx kx             

     
     (4.5) 

with 1 2( 3 ) / 2x x x    and 1 2( 3 ) / 2x x x   .  The three sets of nodal lines in (4.5) 

form the triangular grid in Fig. 7.  Eq. (4.5) and (4.4) are identical, as readily shown by 

trigonometric identities.  Furthermore, they can be expressed as the sum of three critical 

1D modes as 1( sin( ) sin( ) sin( ))w t kx kx kx      . 

 When a flat film forms a pattern of wrinkles, a network of lines exists separating 

regions where the film deflects up or down.  These lines are known as the nodal lines.  In 

passing, it can be noted that the only periodic patterns of same-sized, regular polygons 

that can form the nodal lines for periodic buckle modes are squares and equilateral 

triangles.  This assertion follows from the fact that these two shapes and the hexagon are 

the only same-sized regular polygons that can tessellate a plane.  Note from Fig. 7 that 

the square and the triangular modes have alternating signs in neighboring cells, consistent 

with the pattern edges being nodal lines.  This is not possible for a pattern made up 

entirely of hexagons because three hexagons come together at each corner.  The 

deflection in the “hexagonal” pattern (4.3) depicted in Fig. 7 has the same sign at the 

center of all the hexagons and the opposite sign in all the triangles.  The nodal lines are 

closed loops within each of the hexagons.  The importance of the asymmetry in the 

deflection of the hexagonal mode (4.3) was noted in connection with the experiments. 

 A herringbone, or zigzag, mode will also be considered here.  This pattern is not 

associated with the critical stress.  To motivate the mode shape employed, consider 

vertical deflections of the film in a herringbone pattern having a wavy ridgeline with 

uniform height, t , and wavelength, 22 / k  , in the 2x  direction: 

 
 

       
1 1 2 2

1 1 2 2 1 1 2 2

cos cos( )

( / 2) cos cos cos( ) sin sin cos( )

w t kx a kx

t kx a kx kx a kx

  

    

 

   
 (4.6) 

For 1a  , this deflection is well approximated by 
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 Herringbone mode:  1 1 1 2 1 1 2 2cos( ) sin( )cos( )w t kx kx kx        (4.7) 

with 1 / 2   and 2 / 2a  .  In the upper-bound analysis in the next section, the 

vertical film deflection is taken as (4.7) with 1 , 2 , 1  and 2  treated a free variables; 

k  is specified by (3.5).  With 2 0   and 1 1  , Eq. (4.7) coincides with the 1D mode, 

and with 1 0   and 1 2 1/ 2   , it coincides with the checkerboard mode.  In 

general, however, (4.7) is not a combination of critical modes. 

 

 

 

5.  Upper-bound analysis of energy in buckled state 

The exact finite amplitude solution for the 1D mode will be quoted and used as a 

reference.  This is followed by the upper-bound analysis of the energy in the buckled 

state for the hexagonal pattern, which is given in sufficient detail to reveal all the 

essentials of the analysis.  Then the results of the upper-bound analyses for the other 

modes identified in Section 4 will presented and discussed.   

 

(5.1) The exact 1D solution 

 The nonlinear equations, (3.1)-(3.3), admit an exact solution (Chen & Hutchinson, 

2004) for 1D modes of the form 1cos( )w t kx   with   as a wavelength factor which 

is unity for the critical eigenmode.  With 0  as the stress of the unbuckled film, the 

elastic energy/area of the film/substrate system in the unbuckled state is  

 2
0 0

1 f

f

U t
E





          (5.1) 

The amplitude of the buckling deflection is 

 01
1

C


 

          (5.2) 

and the normalized elastic energy/area of the system in the buckled state, U , (evaluated 

over one full buckle wavelength), is 
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2

2 1 0

0 0

1 1 2
1 2 1

2 1 3
f f C

f C

U

U

    
  


                         

   (5.3)2 

As can be seen immediately, the minimum energy in the buckled state for the 1D mode is 

given by 1  , corresponding to the critical mode at the onset of buckling, at all values 

of overstress, 0 / 1C   .  The normalized energy with 1   is plotted in Figs. 8 and 9. 

 

(5.2) Upper-bound analysis for the hexagonal mode 

 The analysis of the energy in the buckled state will be presented in enough detail 

to bring out the essential analytical features.  The approach was first used by von Karman 

and Tsien (1941) in their attempt to expose the nonlinear buckling behavior of cylindrical 

shells under axial compression.  The analysis is similar in some respects to that employed 

by Audoly & Boudaoud (2009a) but differs in that it makes no truncation in the 

evaluation of energy.  In particular, emphasis here is placed on the upper-bound character 

of the results, and it will be shown that these estimates can be accurate to surprisingly 

large overstress. 

 As the starting point, consider the generalization of the hexagonal mode (4.3): 

  1 1 2 1 2cos( ) cos( / 2)cos( 3 / 2)w t kx kx kx         (5.4) 

where 1  and 2  are independent amplitude factors and   scales the size of the pattern. 

(It will be seen that minimizing the energy of the system gives 2 12   and 1   for all 

0 , thereby establishing that the critical hexagonal mode (4.3) is indeed preferred among 

all modes of the form (5.4).)  The first step is to solve the compatibility equation (3.2) for 

F  exactly in terms of w  in (5.4).3  This ensures that in-plane displacements exist 

associated with the resultant in-plane stresses, and it provides the basis for arguing that 

the elastic energy of the system will be an upper-bound, i.e., the energy is computed from 

admissible displacement fields.  The result is 

                                                 
2  This equation is obtained from Eq. (12) of Chen and Hutchinson (2004).  Eq. (13) of that paper, which 

has been specialized to 1  , has a misprint: (1 )f  in the last term should be (1 )f . 
3 Audoly and Boudaoud (2008a) work directly with the in-plane displacements of the plate rather than the 
stress function.  By doing so, they do not need to enforce the compatibility conditions on the average in-
plane displacements (3.3).  However, use of the stress function significantly simplifies the calculations by 
reducing algebraic complication especially when all the contributions are retained in evaluating the energy. 
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(5.5) 

The terms 1  and 2  are the reduction in the average in-plane stresses in the buckled 

state; they are obtained from conditions (3.3) as 
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 The three contributions to the average energy/area of the system (plate bending 

and stretching, and substrate deformation, respectively) are 
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   (5.7) 

where S  is the area of  the periodic cell.  The contribution from the substrate is valid for 

any combination of modes of the form ( ) ( )
1 1 2 2cos( ) cos( )i i

iw k x k x .  For the results in 

(5.4)-(5.6), the energy/area can be evaluated without approximation as 
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   (5.8) 

Here, 2 2 2
1 1(1 )f     , 2 2 2

2 2(1 )f     , 1 1 2/ ( / 8) / (1 )C f         and 

2 2/ 3 / [8(1 )]C f      .  Minimizing the energy with respect to 1 2( , , )    is 

equivalent to minimizing with respect to 1 2( , , )   .  One sees immediately that the 

minimum of U  requires 1   for all 0 .  It is then straightforward to show that the 

equations for the minimum of U  with respect to 1  and 2  are linear with solution 

2 14    and    01 2
1

5
1

4C C C

  
  
 

          (5.9) 
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It follows from (5.6) (with 1  ) that 
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   (5.10) 

The normalized energy/area evaluated using (5.9) and (5.10) with 1   is 
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   (5.11) 

As emphasized previously, (5.11) provides an upper-bound to the energy in the buckled 

state for all hexagonal patterns by virtue of the fact that the energy is evaluated without 

approximation using admissible displacement fields.  Among the hexagonal modes, the 

critical mode with 1   gives the minimum energy at all overstresses (Figs. 8 and 9).  

 

(5.3) Upper-bound for the checkerboard mode 

 The upper-bound to the energy/area for any rectangular checkerboard modes of 

the form (3.5) is a special case of the analysis of the herringbone mode given in the next 

subsection.  The following findings emerge.  First, among all the critical rectangular 

modes of the form (3.5) the square checkerboard mode has the lowest energy in the 

buckled state.  Secondly, among all sizes of square checkerboard patterns, the critical 

mode (4.2) is found to give the lowest energy/area for all 0 .  For this mode, 

 02
2 1

(3 )(1 )f f C


  

 
     

   (5.12) 

and 
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3
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   (5.13) 

with the latter included in Figs. 8 and 9. 

 

(5.4)  Upper-bound for equilateral triangular modes 

 The upper-bound analysis carried out using (4.4) for the critical triangular mode 

gives precisely the same result for the energy in the buckled state, (5.11), as for the 

hexagonal mode.  The buckling amplitude is related to the overstress by 
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     (5.14) 

In addition, one can extend the analysis by considering equilateral triangular patterns of 

any size and show that the upper-bound analysis predicts that the critical mode (4.4) 

gives the lowest energy in the buckled state.  Interaction of triangular and hexagonal 

modes will be discussed in Section 6. 

 

(5.5) Behavior of critical modes at small overstress 

 It is useful to compare the expansion of 0/U U  for each the four critical modes for 

small overstress with 0 / C   slightly above 1: 
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  (hexagonal and triangular modes)     

To order 2
0( / 1)C   , these results are exact for the model.  This follows for the 1D 

mode because (5.3) is exact for the entire range of overstress.  For the other modes, the 

exactness of these expansions to this order follows from the fact that the upper-bound 

solution procedure is equivalent to a rigorous initial post-buckling analysis to this order 

as laid out by Koiter (1945, 2009).  We have independently verified that Koiter’s initial 

post-buckling analysis yields the above results. 

 As established by Audoly and Boudaoud (2008a), the checkerboard mode has the 

lowest energy in the range of small overstress.  The other three modes having nearly 

equal energies—the 1D mode has slightly lower energy than the hexagonal and triangular 

modes if 1/ 5f   and vise versa.  Fig. 8 suggests that the same ordering of the energies 

in the buckled state persists to large overstresses.   The full numerical simulations in 
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Section 8 bear this out with the exception that the 1D mode has the highest energy for 

0 / 3C   . 

 Accompanying the asymptotic expression for the energy in the buckled state is the 

asymptotic relation between the mode amplitude and 0 / C  : 

 2
0 / 1Cb         (5.16) 

where b  can be identified from (5.2), (5.10), (5.12) and (5.14): 

 1b    (1D mode)  
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(5.6) Upper-bound for herringbone modes 

 The solution procedure based on the herringbone mode (4.7) is the same as that 

presented for the hexagonal mode.  The stress function is obtained exactly from (3.2) in 

terms of (4.7) as 
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   (5.17) 

Conditions (3.3) give 
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 (5.18) 

The elastic energy in the buckled state is evaluated without approximation using w  and 

F  with the result 
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now with 2 2
1 1(1 )f    , 2 2

2 2(1 )f     and  

    2 2 2 21 2
1 1 2 2 2 1 1 2 2 22

1
, 2 , 2

2(1 ) f f
C C f

             
  

            
 

 As remarked earlier, this result specializes to the exact 1D solution (5.3) when 

minimized with respect to 1  and 1  with 2 0  .  It has been used to generate the upper-

bound (5.10) for the square checkerboard mode by taking 1 0   and 2 1     

followed by minimization of U with respect to 2  and  .  While U  is quadratic in 1  

and 2 , its dependence on 1  and 2  is too complicated to facilitate a closed form 

solution for the minimum of U  when both 1  and 2  are permitted to be nonzero.  

Nevertheless, it is straightforward to generate a minimum for specified values of 0 / C   

using standard numerical minimization algorithms, as has been done for the upper-

bounds to 0/U U  for the herringbone mode plotted in Figs. 8 and 9.   

 

6. Mode transitions and equi-energy mode combinations 

 According to the upper-bound results presented in Fig. 8, the herringbone mode 

has the lowest energy of all the periodic modes considered in this paper at sufficiently 

large overstresses.  This will be borne out by the numerical analysis present in Section 8.  

Nevertheless, because the herringbone mode (3.9) (with both 1  and 2  nonzero) is not a 

combination of the critical eigenmodes, there must be some range of 0 / C   near unity 

where the critical modes have lower energy.  This is brought out most clearly in Fig. 9 

which is restricted to small to moderate overstress.  With 1/ 3f  ,  the herringbone 
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mode has the lowest energy when 0 / 1.476C    but in the range, 01 / 1.476C   , 

the square checkerboard mode has the lowest energy of all the modes considered. 

 The herringbone mode arises as a bifurcation from the square checkerboard mode. 

With 1 2 1/ 2    and minimizing the energy in (5.19) with respect to 1  and 2 , one 

finds that bifurcation from the square mode ( 1 0   and 2
2 0 / 1Cb     from (5.16)) 

into the herringbone mode with 1 0   occurs when 

  0
25(3 ) 2(26 )1

1 4 2
23(1 ) 6 25(3 )

f f

C f f

 
  

  
   

   
   (6.1) 

which gives 0 / 1.357C    for 0fv  ; 0 / 1.476C    for 1/ 3fv  ; and 

0 / 1.595C    for 1/ 2fv  .  This bifurcation stress is not exact because the solution for 

the square mode is only exact to order 2
1 .  However, it should be reasonably accurate 

because the upper-bound analysis for the square mode is accurate to relatively large 

values of the buckling amplitude, as the numerical analysis in Section 8 reveals. 

 An exact bifurcation analysis from the 1D mode was presented by Audoly and 

Boudaoud (2008 a).  The 1D mode is never the mode with the lowest energy when the 

fundamental stress state is equi-biaxial compression.  However, for fundamental stress 

states that are not equi-biaxial, Audoly and Boudaoud present a map that defines the 

domain of states wherein the 1D mode is the preferred mode with stress limits defining 

the bifurcation transitions to other modes including the herringbone mode. 

 It has been noted in the previous section that the triangular mode and the 

hexagonal mode have precisely the same energy in the buckled state at all values of 

0 / C  , according to the upper-bound analysis.  With this in mind, we have investigated 

whether linear combinations of these two critical modes exist, i.e. 
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   (6.2) 

with the same energy.  Here, to produce the correct coupling between the modes, the 1x  

coordinate in the triangular mode in (4.4) has been shifted: 1 1 /x x k  .  The upper-

bound analysis can be carried out exactly with only slightly more algebraic complication 
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than that for the individual modes; the details will not be presented here.  Remarkably, 

one finds that all mode combinations satisfying  

 2 2 0
2

4
1

11 6 5T H
f f C

 
  

 
      

   (6.3) 

have the same energy, (5.11), while all other combinations have higher energy.  

According to the upper-bound analysis, at all levels of overstress, there exists a 

continuous mode transition connecting the triangular and hexagonal modes along which 

the energy is constant.  The transitional mode shapes along this path are displayed in Fig. 

10 plotted as contour plots using (6.2) for pairs ( , )T H   satisfying (6.3).  Another 

example of a continuous mode transition under increasing overstress will be presented in 

Section 8. 

 

7.  Role of initial film curvature on the sign of the deflection and mode selection 

 As anticipated earlier, several aspects of the results obtained so far appear to be at 

odds with the experimental observations in Section 2.  In particular, the hexagonal pattern 

is much more likely to be observed than the square checkerboard pattern in the range of 

low overstress even though the square pattern has a lower energy.  To our knowledge, the 

triangular pattern has never been observed even though it has identical energy to the 

hexagonal pattern, to the accuracy determined in this paper.  In addition, in all instances 

in which the hexagonal pattern has been observed by us, the regions interior to the 

hexagons always deflect into the substrate (i.e. 0   in (4.3)). 

 It is straightforward to show that model specified in Section 3 implies that the 

solutions are independent of the sign of the normal deflection.  That is, if ( , )w F  is a 

solution to the governing equations, then so is ( , )w F .  The numerical finite element 

results of the 3D model with full coupling to the substrate presented in the next section 

also reflect this symmetry, if not exactly, at least to high approximation.  As described in 

Section 2, the swelling of the film/substrate system produces a slight initial curvature of 

the film such that the substrate is on the concave side of the surface.  In this section, the 

analysis presented in Section 5 will be extended to account for an initial curvature of the 

film by modeling it as a shallow spherical shell.   
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 Let R  be the radius of curvature of the shallow spherical shell segment 

representing the film defined positive with the concave side down.  The model in Section 

3 is modified by accounting for the curvature of the film.  The effect of the curvature of 

the substrate on the restoring force on the film, Sp , is ignored under the assumption that 

the shell effect is dominant.  The modified nonlinear equations are known as the Donnell-

Mushtari-Vlassov shell equations and are equivalent to the shallow shell equations; they 

reduce to the Karman plate equations as R  .  The equations are modified as follows:  

1 2R F   is added to the left hand side of Eq. (3.1),   1 2R w   is added to the right hand 

side of Eq. (3.2), and 1R w  is added to the integrand of the integral on right hand side of 

both equations of (3.3).  The expression for the energy of the system in (5.7) still holds. 

 Consider modes of the form 

    1 1 2 2cos cosw t kx kx       (7.1) 

with 1  and 2  as free variables and  1/31 *3 /Sk t E E  as before.  These modes are 

restricted to a shallow segment of the shell, consistent with the fact that the wavelengths 

are very small compared to R .  The coordinates 1 2( , )x x  are local orthogonal coordinates 

in the middle surface of the shallow shell segment.   

 The bifurcation analysis gives the following equations for the critical stress, R
C : 

  2 1 2 21
2 3
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f
   


        with  4 23 0        (7.2) 

and 2 2
1 2    .4  Here, C  is still (3.4), and the dimensionless curvature parameter 

is 
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    (7.3) 

                                                 
4  A nonlinear analysis of buckling of an unsupported spherical shell subject to external pressure was 
carried out by Hutchinson (1967) based on the same equations.  The normalizations in (7.1) and (7.2) break 

down in the limit when * 0SE  , but one finds the critical stress  2( / [ 3(1 ) ])R
C f fE t R    

associated with a similar family of short wavelength modes.  The hexagonal pattern is the most unstable.  A 
recent review of buckle patterns on curved compliant substrates of various shapes has been given by Chen 
and Yin (2010). 
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As in the case of the flat film, all modes of the form (7.1) with 2 2
1 2     are 

associated with the critical stress.  For 1  , as is the case for the experiments in 

Section 2, the above equations give 2/ 1R
C C     and 21    to order 2 . 

 In the remainder of this section, the upper-bound analysis for the hexagonal mode, 

  1 1 2

1 3
cos 2cos cos

2 2
w t kx kx kx   

              
,   (7.4) 

is presented based on an analysis similar to that in Section 5.  In this analysis,   is fixed 

at the value given in (7.2).  The stress function is 
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 (7.5) 

with 2 2(3 / 2)(1 )f C       .    The strain energy from (5.7) is 

 

2

2 1 2 2 2 2 20
2

2 3/2 2 3 2 2 4 4

3
(1 ) (1 ) 3(1 )

/ 2

9 15
(1 ) (1 )

2 8

f f fR
C f C

f f

U
f f f

t E

      
 

     

 
      

 

    

  (7.6) 

As in the upper-bound analysis of the flat films, no approximation has been made in 

arriving at (7.6) given (7.4) as the starting point. 

 Minimizing U  with respect to   gives 
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       (7.7) 

which coincides with (5.10) when the curvature vanishes.  The curvature introduces 

asymmetry in the buckling response as is evident in the plot of (7.7) in Fig. 11.  With 

0  , the applied stress, 0 , initially diminishes after bifurcation when the buckling 

mode amplitude,  , is negative.  The bifurcation point is unstable, and the system is 

highly sensitive to imperfections that “push” it towards negative   (Koiter, 1945; 2009).  

This asymmetry is due to shell curvature not the placement of the substrate.  The 
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implication of (7.7) is that there is a preference for hexagonal regions to buckle towards 

the concave side of the film—“inward” as opposed to “outward” in the following 

discussion.  According to the model, this would still be true if the substrate were attached 

to the convex side of the film.   

 The normalized energy in the buckled state, 0/U U , computed as function of 

overstress, 0 / R
C  , using (7.6) and (7.7), is plotted in Fig. 12.   The energy associated 

with inward buckling of the hexagonal regions is significantly lower than that associated 

with outward buckling.  It should be noted that the plot in Fig. 12 has been limited to 

states with 0 / 1R
C   .  The energy for 0 / 1R

C    when 0   is only very slightly 

below unity for the values of   considered in Fig. 12, as can be inferred from the 

intercepts at 0 / 1R
C   .  

 The asymmetry in buckling response with respect to the amplitude of the 

hexagonal mode does not occur for either the triangular mode or the square checkerboard 

mode because the opposite-signed regions of these bifurcation modes are identical.  More 

importantly, the upper-bound calculation for the square mode (details omitted) reveals 

that the normalized relationship, 0/U U  versus 0 / R
C  , is independent of  .  For the 

square mode, 1 2cos( / 2) cos( / 2)w t kx kx   , (7.2) applies and 0/U U  is given by 

(5.13) with 0 / C   replaced by 0 / R
C  . 

 The question of whether a slight curvature can account for the preference for the 

hexagonal mode over the square mode in the range of small overstress can now be 

addressed based on the assumption that the mode with the lowest energy is the most 

likely to be observed.  For specified a value of 0 / R
C  ,  Fig. 13 plots the value of   for 

which the energy of the hexagonal mode (buckling inward) equals that of the square 

mode.  For   to the left of the curve the square mode is preferred while to the right of 

the curve the hexagonal mode is preferred.  The value of   required to favor the 

hexagonal mode over the square mode is very small for very small overstress, 

approaching zero in the limit of zero overstress.  Thus, any initial curvature would tend to 

select the hexagonal mode for a perfect system subject to increasing stress such that 

0 / R
C   exceeds unity from below.  Initial imperfections will play some role in promoting 
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individual modes.  Imperfections are also likely to favor hexagonal over square patterns 

in the presence of curvature because buckling inward in the hexagonal mode is unstable 

and strongly imperfection-sensitive, whereas the square mode is not imperfection-

sensitive.  Imperfection-sensitivity causes the amplitude of the hexagonal mode to be 

amplified more than the others, assuming there exists an imperfection component in the 

shape of the mode.   

 The observed hexagonal mode in Fig. 3 is fully developed at 0 / 1.3R
C   .  It is 

reasonable to assume that this mode has been “selected” for 0 / 1.1R
C   .  Based on Fig. 

13, curvature would ensure the selection of the hexagonal mode under this circumstance 

if  0.025  .  To estimate the implication for the experimental system described in 

Section 2, re-express   using the wavelength of the hexagonal mode, 4 / ( 3 )L k : 
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    (7.8) 

With 0.025  , 50L m  (c.f. Fig. 2) and 100t nm , one finds 40R mm .  For a 

specimen width 10mm , this curvature would imply a rise of 0.3mm  at the center of the 

specimen relative to its edges.  If, instead, one assumed the hexagonal mode was selected 

at 0 / 1.01R
C    such that 0.01  , then (7.8) gives 100R mm  and the relative rise at 

the center of the specimen would be 0.13mm .  Direct measurements of the initial 

curvature of the specimens have not been made, however, the above curvature estimates 

are not inconsistent with observations made by eye.  Thus, tentatively, we have 

concluded that curvature is the source of the preference for the hexagonal mode to buckle 

inward and for the hexagonal mode to be favored over the square mode.  Initial curvature 

of the system would also explain why the triangular mode has not been observed. 

 

8.  Numerical analysis of nonlinear buckling of periodic patterns 

           The finite element code, ABAQUS (www.simulia.com), has been used to carry out 

three dimensional analyses for all the patterns described in the Section 4 for films that are 

flat in the unbuckled state.  For each of the patterns, a periodic cell is identified.  Both the 

film and the substrate are meshed with 8 node linear block elements with reduced 

integration.  The film is represented by 8 layers of elements with approximately 1,500 
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elements in each layer of the cell. The substrate has depth d  which is taken to be five 

times the largest periodicity wavelength and its bottom surface is prescribed to have zero 

displacement.  The substrate is represented by approximately 120,000 elements uniformly 

distributed in 100 layers.    The material for film and substrate are taken to be described 

by linear isotropic elasticity, except for a few simulations for the hexagonal pattern where 

a neo-Hookean substrate has been assumed to explore whether substrate nonlinearity is 

important.  The nonlinear geometric updating option of ABAQUS is employed.  Stress in 

the film is induced by a thermal expansion mismatch with the substrate by imposing a 

temperature drop T  starting from the unstressed state.  For this purpose, the film is 

assigned a thermal expansion coefficient   while the substrate is assumed to have zero 

thermal expansion.  For all calculations, / 3465f SE E   with 1/ 3f   and 0.48S  .   

 For each mode, periodic boundary conditions are imposed on the edges of the 

film/substrate cell.  In all cases, the cell dimensions are set by the wavelengths associated 

with the critical modes introduced in Section 4, consistent with the fact that the upper-

bound analysis suggests these produce the lowest energy states even at finite deflection.  

A very small initial geometric imperfection in the form of a stress-free out-of-flatness in 

the shape of the buckling mode is used to promote the mode.  Specifically, with any 

mode in Section 4 denoted by 1 2( , )w t f x x , the initial imperfection for that mode is 

taken as 1 2( , )w t f x x  with   set at 0.01. 

 The 1D mode was simulated as a check on accuracy given the availability of the 

exact solution of the model problem for this case.  A rectangular parallelepiped unit cell 

of dimension L L d   was employed with 2 /L k  and 5d L .  As the initial 

imperfection has variation in only one direction, the induced mode varies only in that 

direction.  The mode shape is projected over many cells and plotted in Fig. 1a.  The 

normalized energy in the buckled state is plotted in Fig. 14.  It agrees with the exact 

solution for the model in (5.3) (with 1  ) to within one or, at most, two percent over 

the entire range plotted.   

 The square checkerboard mode uses the same unit cell as the 1D mode except 

that 2 2 /L k  and the imperfection is in the shape of the square mode.  In this case 

the square mode is generated (Fig. 1b) and the normalized energy is plotted in Fig. 14.  
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The numerical result is very close to the upper-bound prediction for 0/U U in Fig. 8 for 

0 / 4C    and falls no more than 3% below the upper-bound for 0 / C   as large as 10. 

 The unit cells for the hexagonal mode and the equilateral triangular mode are 

hexagonal prisms as depicted in outline in Fig. 7.  For the hexagonal mode the distance 

across the cell from face to face is 4 / 3k  while the face to face distance of the cell for 

the triangular mode is 4 / k .  An imperfection in the shape of the mode is introduced for 

each calculation as described above.  In addition, for the hexagonal mode, calculations 

with both positive (hexagon centers deflecting outwards, 0  ) and negative ( 0  ) 

imperfections are preformed.  The mode shapes are shown in Fig. 1 and the results for 

0/U U  are plotted in Fig. 14.  There is virtually no difference between the energy in the 

buckled state for inward and outward deflections of the hexagons, although there are 

slight differences in the deflections themselves when 0 / C   is large.  Unlike the plate 

model, the 3D model of the system is not strictly independent of the sign of the normal 

deflection of the film, but it is evident from Fig. 14 that the difference is extremely small 

for the overstress range considered.  Similarly, as the upper-bounds for the plate model 

predict, Fig. 14 reveals that there is virtually no difference between 0/U U  for the 

triangular and hexagonal modes.  The upper-bound is quite accurate for 0 / 3C    and 

then begins to diverge for larger overstress; it becomes increasingly inaccurate for larger 

overstress with 0/ 0.40U U   from the numerical analysis and 0/ 0.48U U   from the 

bound at 0 / 10C   .  Nevertheless, it is quite remarkable that the bound is highly 

accurate to overstresses as large as three times the critical stress. 

 An intriguing mode transition occurred in the numerical simulation for the 

triangular mode which is displayed in Fig. 15.  As expected, the deflection initially 

assumes the shape of the triangular pattern as the overstress is increased due to the 

assumed initial imperfection, but at a certain level of overstress ( 0 / 2.4C    in Fig. 15) 

the mode begins to develop an asymmetry not present in the initial mode.  When 

0 / 3.4C    the transition to a three-lobed asymmetric pattern is fully developed, and 

new mode persists as the overstress is further increased.  A transition from the triangular 

mode to the hexagonal mode did not occur in these simulations because the size of the 



 27

computational cell for the triangular mode was larger by a factor 3  than that for the 

hexagonal cell. 

 One other set of finite element calculations for the hexagonal mode was carried 

out to gain further insight into the observed preference for this mode to buckle into the 

substrate at the centers of the hexagons.  Recent work (Brau et al., 2010; Sun et al., 2010) 

has shown that the nonlinearity of the substrate affects the mode shape at very large 

overstress when the slopes of the film become large.  In the present calculations, the neo-

Hookean material is used to represent the substrate.  Positive and negative imperfections 

were considered so as to promote both inward and outward deflections of the hexagonal 

model.  The substrate material (the neo-Hookean option in ABAQUS) was taken to have 

the same slight compressibility ( 0.48S  ) and modulus ( / 3465f SE E  ) in the ground 

state as the linear material used in all the other calculations.  The results of these 

calculations are shown in Fig. 16 where it is seen that they are essentially 

indistinguishable from the predictions based on the linear substrate.  Even at 0 / 10C    

the deflection of the film is still too small to push the substrate into the nonlinear range.  

If / 1000f SE E  , it is easy to show that the maximum slopes of the film are only on the 

order of 1/10  for 0 / 10C   .  Thus, the period doubling seen by Brau et al. (2010) and 

Sun et al. (2010) and the hierarchical wrinkling seen by Efimenko et al. (2005) are not 

expected in the range of overstress considered in this paper. 

 An extensive numerical analysis of the herringbone mode for a 3D model which 

uses plate theory to model the film was conducted by Chen and Hutchinson (2004).  The 

reader is referred to that study for details of the cell geometry and how that geometry was 

varied to produce herringbone modes with minimum energy in the buckled state.  Here 

we have employed the parameters of the cell found by Chen and Hutchinson to give the 

minimum, or near-minimum, energy—a cell with width 2 /L k  perpendicular to the 

ridge lines and with a ridge kink angle of 90o .  The pattern is displayed in Fig. 1e, and 

0/U U  is plotted in Fig. 14.  As the upper-bound analysis had predicted, the herringbone 

mode has the lowest energy in the buckled state among all the modes considered for all 

0 / C   greater than about 1.5.  The upper-bound is less accurate for the herringbone 
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mode than the other modes, no doubt due to the fact that the assumed deflection in (4.7) 

is itself an approximation to a herringbone mode.  Thus, at 0 / 3C    the bound is about 

10% higher than the numerical result and at 0 / 10C    it is more than 30% too high. 

 In summary, the numerical analysis of the 3D model of the film/substrate system 

indicates:  (i) The present results for the square and herringbone modes are almost 

identical as those found by Chen and Hutchinson (2004) for a 3D model in which the film 

is modeled by plate theory. (ii) With the exception of the herringbone mode, the upper-

bound results in Section 4 are reasonably accurate to surprisingly large overstresses as 

large as three or four times C . (iii) The models for initially flat films, including the 

incorporation of nonlinearity in the substrate, do not indicate any appreciable difference 

between inward and outward buckling of the hexagonal mode, nor is substrate 

nonlinearity important for the range of overstress considered in this paper. 

 

9.  Concluding remarks 

 Many details of the energy landscape in the buckled state of the periodic modes 

considered here have been revealed by making use of the analytical upper-bound method 

in combination with the 3D finite element analysis for systems that are flat in the 

unbuckled state.   The upper-bound retains its accuracy to surprisingly large overstresses 

for the critical modes.  Based on the notion that the mode with the minimum energy is the 

most likely to be observed, the square mode should be the dominant mode for 

overstresses, 0 / C  ,  below about 1.5 and the herringbone mode should emerge at 

overstresses above that.  The herringbone mode does begin to emerge in our experiments 

for 0 / 1.5C   , but the observed mode below this is the hexagonal mode not the square 

mode.  Moreover, in all cases in which we have observed the hexagonal mode, it buckles 

with the hexagonal regions pushing into the substrate whereas theory suggests there 

should be no preference.  We have established that a slight initial curvature of the film 

could explain the two discrepancies just noted and the fact that the triangular mode has 

not been observed in our experiments even though it has the same energy as the 

hexagonal mode when the system is initially flat.  The magnitude of the initial curvature 

observed in our system appears to be consistent with the curvature level needed to 
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explain the discrepancies but quantitative measurements necessary to establish this as a 

certainty have not been made. 

 As just noted, for flat film/substrate systems, theory suggests that the square mode 

should be observed in the range of low overstress and it should give way to the 

herringbone mode with increasing overstress.  However, in the range of low overstress 

there is a rich array of competing modes with energies that are only slightly separated.  

Mode selection based on minimum energy considerations has its limitations.  The attempt 

initiated by von Karman and Tsien (1941) to understand the post-buckling and collapse 

of cylindrical shells under axial compression provides an illustration of the limitations.  

Following the work of von Karman and Tsien, many papers were written aimed at more 

and more accurate evaluation of the energy in the collapsed state.  Nevertheless, no clear 

understanding emerged as to the relevance of minimum energy states to the load carrying 

capacity and collapse behavior of the shell.  It was not until Koiter (1945) emphasized the 

importance of initial imperfections and included them in his approach that the highly 

unstable buckling behavior of cylindrical shells under axial compression was related to 

the strong imperfection-sensitivity of the maximum load carrying capacity.  Unlike 

cylindrical shells, the film wrinkling problem for flat films has a stable buckling behavior 

and is not imperfection-sensitive in the way the shell is.  Nevertheless, initial 

imperfections may be playing a role in mode selection given the small difference in 

energy between the modes when the overstress is small.  If imperfections are included in 

the analysis, as Koiter (1945, 2009) has done in his general theory, the development of a 

specific mode is promoted by imperfections in the shape of that mode.   

 Once a periodic mode pattern develops there is a barrier to its evolving to another 

periodic mode with different wavelengths even if the other mode has lower energy.  

Several examples where transitions from one mode to another occur continuously without 

a “jump” in wavelengths were presented in the paper, including the transition from the 

triangular to the hexagonal mode and the experimental observation of the hexagonal 

mode evolving into a herringbone mode.  Bifurcation from the square mode into the 

herringbone mode is another example.  In conclusion, this paper has shed further light on 

the wrinkling behavior of films under equal biaxial stress states.  It has also exposed a 

number of open questions highlighting the richness of the nonlinear buckling phenomena. 
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Appendix:  Three plane strain analyses of the critical stress  
 In linear elasticity the plane strain relation between sinusoidal tractions applied on 

the upper surface of a semi-infinite half-space, 22 12 1 1
ˆˆ( , ) ( cos( ), sin( ))p cx t cx   , and the 

associated displacements, 2 1 1 1ˆ ˆ( , ) ( cos( ), sin( ))u u w cx u cx , is 
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von Karman plate representation of the film including tangential tractions 

 Next consider a flat plate which in the unbuckled state is subject to an in-plane 

compressive stress 11 0   .  The von Karman strain-displacement relations and the 

Principle of Virtual Work are invoked, including downward normal and leftward 

tangential applied tractions, 1 1
ˆˆ( cos( ), sin( ))p cx t cx .  The linearized equations for 

perturbations of the middle surface displacements about the unbuckled state, 

1 1ˆ ˆ( cos( ), sin( ))w cx u cx ,  are 
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where 0   if the tractions are imagined to be applied along the plate middle surface 

and 1   if they are applied along the bottom surface of the plate.  The eigenvalue 

problem for the critical value of 0  is obtained by eliminating p̂  and t̂  by coupling 

(A.1) and (A.2).  With c k  where here 1/3(3 / )S fkt E E , one obtains 
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The critical value of 0 , obtained as the minimum with respect to  , has been plotted in 

Fig. 5 for 1/ 3S   for both 0   and 1  .  Note that for these results, as for the other 

two estimates quoted in Section 2, the film moduli appear only through fE . 
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The exact solution for the critical stress 

 In this analysis, the film is taken to be a uniformly pre-stressed layer of thickness 

t  that is attached along its bottom surface to the compliant substrate along the interface at 

2 0x  .  The film layer is taken to be incompressible and undergoes incremental plane 

strain deformations.  Incompressibility facilitates the exact bifurcation analysis of the 

system using the formulation of Biot (1965) and Hill and Hutchinson (1975).  As noted 

earlier, the assumption of an incompressible film layer is not expected to reduce the 

applicability of the results since for all the other estimates only the plane strain modulus 

of the film, fE , appears in the results.  The film layer is coupled to the substrate which 

has no pre-stress and is governed by (A.1).  The reader is referred to Hill and Hutchinson 

(1975) for the general formulation.  Here only an outline of the results will be presented. 

 A displacement potential, 1 2 2 1( , ) (1/ ) ( )sin( )x x c W x cx    is used to represent the 

perturbations of the displacements from the uniform pre-buckling state within the layer 

 1 2 1 2 1(1/ ) / sin( ), cos( )u c dW dx cx u W cx      (A.4) 

The general solution to the governing field equation for   is 

 2 2 2 2
2 1 2 3 4( ) cx cx dcx dcxW x a e a e a e a e        (A.5) 

with    0 01 2 / / 1 2 /f fd E E    .  The perturbed tractions vanish on the upper 

surface of the layer at 2x t  if 
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where 
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Both (A.6) and 2 1 1 1ˆ ˆ( , ) ( cos( ), sin( ))u u w cx u cx  along 2 0x   will be satisfied if 
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 In the notation of Hill and Hutchinson (1975), denote the nominal traction 

increments along the lower surface of the film layer by 22 21 1 1
ˆˆ( , ) ( cos( ), sin( ))n n p cx t cx  .  

These are the vertical and horizontal components of the force per pre-bifurcated area 

following the surface as it deflects.  It is these nominal traction increments that must be 

continuous across the interface.  They are connected to the displacement perturbations by 
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Finally, the film layer is coupled to the substrate by imposing continuity of the 

increments of displacement and tractions using (A.1) and (A.8): 
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As in the previous analysis, one can let c k  with k  given by (3.5).  The equation for 

0 / fE  is  det 0f SB B   which, other than  , depends only on two dimensionless 

parameters, /S fE E  and S ;   must be varied to produce the lowest value of 0 / fE .  

The matrix inversion and multiplication giving fB  in (A.8) can be performed 

analytically; the results in Figs. 5 and 6 have been computed based on  det 0f SB B  .  

It is worth noting that the exact result for the critical stress lies above the prediction (A.3) 

with 1   because the von Karman plate equations neglect elastic energy stored in 

transverse (out-of-plane) shear, which is fully accounted for in the exact formulation. 
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(a)                                                           (b) 

 
   (c)                                                                        (d)                        

        
   (e) 
 
Fig.1 Schematics of mode shapes: (a) 1 D mode, (b) Square checkerboard mode, (c) 
Hexagonal mode, (d) Triangular mode,  (e) Herringbone mode.   
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Fig. 2 Experimental observations of four buckling modes of films on PDMS substrates: a) 

1D mode, observed when one principal in-plane stress dominates; b) square checkerboard 

mode; c) hexagonal mode (inset: fast Fourier transform of a selected "grain" of 

depressions, showing the hexagonal ordering); and d) herringbone mode.  Images a, c, 

and d are optical micrographs of wrinkles generated via the swelling process outlined in 

Section 2. Image b depicts the surface profile of a flat polystyrene film on a PDMS 

substrate, wrinkled due to thermal mismatch stresses.  The checkerboard pattern in image 

b is not readily observed. In this case it occured within a relatively small region 

surrounded by other wrinkle patterns.  

 

a) 

c) 

b)

d)
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Fig. 3  Progression of modes observed experimentally for the UVO-treated PDMS system 

with increasing overstress as described in the text. The UVO treatment times from left to 

right are 10, 15, 20, 30, 45, and 60 minutes. 

 

 

 

 

 

 

Fig. 4  A sequence of pictures depicting the transition of the hexagonal mode to a 

“segmented labyrinth” (disorganized herringbone) pattern with increasing overstress.  
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Fig. 5  Critical stress for plane strain deformation of the film/substrate system with 

1/ 3S  .  The reference is 2/3( ) ( / 4)(3 / )C A f S fE E E  ; * 2/3( ) ( / 4)(3 / )C B f S fE E E   

with * 24(1 ) / (3 4 )S S S SE E    .  Cases (I), (II) and (III) are described in the text; 

( )C III  is exact. 
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Fig. 6  The exact critical stress, ( )C III  for plane strain deformation of the film/substrate 

system for various Poisson ratios of the substrate with 2/3( ) ( / 4)(3 / )C A f S fE E E  .  The 

film layer is incompressible. 
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Fig. 7  Three of the four critical buckling modes as defined in (4.2)-(4.4).  The top view 

of the computational cell for the hexagonal and triangular modes is outlined by heavy 

dashed lines.  
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Fig. 8  Normalized energies for the various modes in the buckled state according to the 

upper-bound analysis with 1/ 3f  . 
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Fig. 9  Normalized energies in the buckled state in the range of small to moderate 

overstress according the upper-bound analysis with 1/ 3f  . 
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Fig. 10  Linear combinations of the triangular and hexagonal modes that have precisely 

the same energy according to the upper-bound analysis.  This property holds for all 

values of overstress, 0 / C  .  
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Fig. 11  Effect of spherical curvature on the relation between the applied stress and the 

buckling amplitude for the hexagonal mode.  The centers of the hexagon prefer to buckle 

towards the concave (inward) side of the curved film.  
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Fig. 12  Effect of curvature on the energy in the buckled states of the hexagonal mode.   
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Fig. 13  For a given f the curve gives the value of   for which the energy of the 

hexagonal mode (buckling inward) equals that of the square mode.  A mode-selection 

criterion based on minimum energy favors the hexagonal mode to the right of the curve 

and the square mode to the left of the curve.  
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Fig. 14  Normalized energy in the buckled state for the various modes as determined from 

the numerical analysis of the 3D models. 
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Fig. 15  Transition from a triangular mode to a asymmetric three lobed mode under 

increasing overstress.  The result was computed with the three-dimensional finite element 

model using the computational cell for the triangular mode. 
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Fig. 16  Demonstration that the energy states of the full 3D model are independent of the 
buckling deflection of the hexagonal mode, to a very good approximation.  This is true 
for the linear substrate and for the neo-Hookean substrate.  Moreover, over the range of 
overstress plotted, these results demonstrate that the nonlinearity of the neo-Hookean 
substrate has essentially no influence on the behavior. 
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