Reading the Secrets of Biological Fluctuations

Carl Boettiger

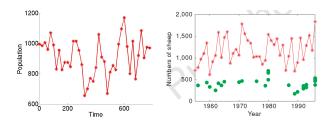
UC Davis

June 27, 2008

Precedings: doi:10.1038/npre.2010.4949.1: Posted 3

Noisy Biology

Fluctuation Regimes


Model Choice

Macroscopic Phenomena

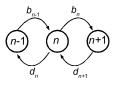
Fluctuation Dominance

Why study fluctuations?

- Biology is noisy and we want to understand it.
- Stochasticity can drive phenomena we would miss in deterministic models.
- Fluctuations hold the key to deeper biological understanding?

Grenfell et al. (1998) Nature

Variables at the Macroscopic and Individual Levels


- Deterministic models describe macroscopic behavior
- Individual based model are described by transition rates between states a *Markov process*
- Macroscopic variable ϕ is independent of details of system (intensive), i.e. *population density*
- Individual-based variable *n* depends on system size (extensive), i.e. *population number*
- In a given area Ω with a macroscopic density ϕ , we'd expect to find $\langle n \rangle = \phi \Omega$ on average, which is more accurate with larger Ω .

Macroscopic Phenomena

Theory of Fluctuations

Markov process

Linear Noise Approximation

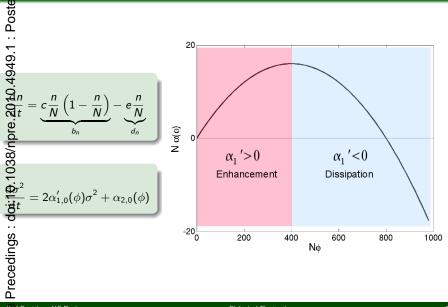
Fundamental Equations

$$\frac{\mathrm{d}\phi}{\mathrm{d}t} = \alpha_{1,0}(\phi) + \alpha_{1,0}^{\prime\prime}(\phi)\sigma^2 \tag{1}$$

$$\frac{d\sigma^2}{dt} = 2\alpha'_{1,0}(\phi)\sigma^2 + \alpha_{2,0}(\phi)$$
(2)

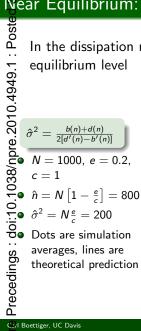
 $\alpha_{1,0}(\phi) = b(\phi) - d(\phi), \quad \alpha_{2,0} = b(\phi) + d(\phi)$

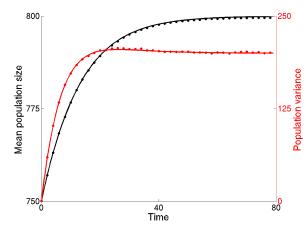
 $\implies n = \Omega \phi + \Omega^{1/2} \xi \Longrightarrow$


Fluctuation Regimes

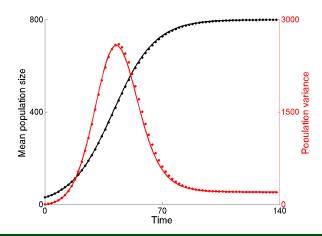
Model Choice

Macroscopic Phenomena




Distinct Fluctuation Regimes

Near Equilibrium: Fluctuation Dissipation Regime


In the dissipation regime, fluctuations exponentially relax to the equilibrium level

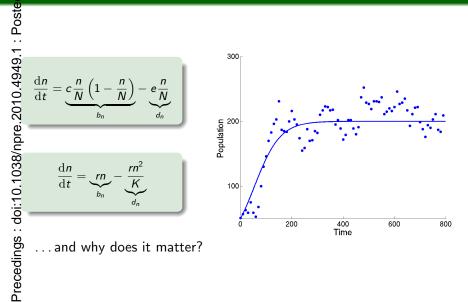
Fluctuation Enhancement

With an initial condition starting deep in the enhancement regime, fluctuations grow exponentially. At N = 400, dissipation takes over and fluctuations return to the same equilibrium as before.

Precedings: doi:10.1038/npre.2010.4949.1: Posted 3

Noisy Biology

Fluctuation Regime


3 Model Choice

Macroscopic Phenomena

Fluctuation Dominance

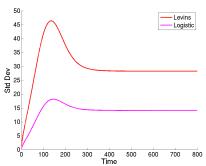
Fluctuation Dominance

Which model best describes this data?

Precedings: doi:40.1038/ngre.2040.4949.1 - Poste

Fluctuation Dominance

Using the Information Hidden in the Fluctuations


Independently parameterize birth & death rates, see which is density dependent

Works with single realization at equilibrium

With replicates: The dynamic equations can determine functions b(n) and d(n)

Uses more information to inform model choice

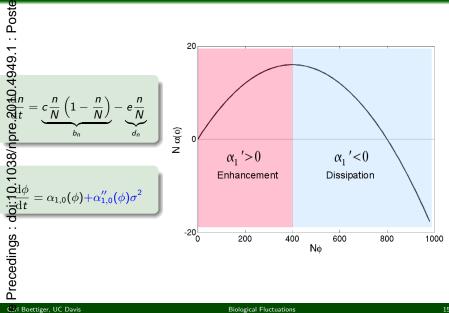
Can discount weights of points from high-variance regions when model-fitting

Predicted fluctuations

Fluctuation Regime

Model Choice

4 Macroscopic Phenomena


Fluctuation Dominance

Stochastic Corrections: Deflation and Inflation

Stochastic Corrections: De $\alpha_{1,0}''(\phi) < 0 \implies$ Fluctuations suppress the average relative to the deterministic approximation Our theory accurately predicts the extent of this effect. Recall $\alpha_{2,0} = b_n + d_n$ controls the magnitude of this effect. Ecological and evolutionary consequences for when $\alpha_{2,0}$ and $\alpha_{2,0} = b_n + d_n$ controls the magnitude of this effect. the deterministic approximation. Sovariability is favorable?

$$\frac{\mathrm{d}\phi}{\mathrm{d}t} = \alpha_{1,0}(\phi) + \alpha_{1,0}''(\phi)\sigma^2$$

Fluctuation Phenomena: Deflation

Precedings : doi:10.1038/npre.2010.4949.1 : Posted 3

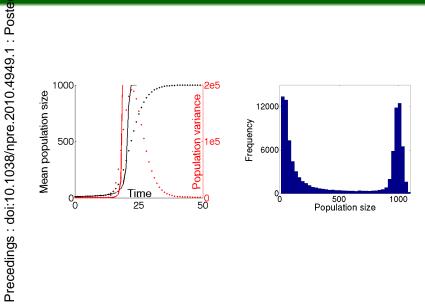
Noisy Biology

Fluctuation Regime

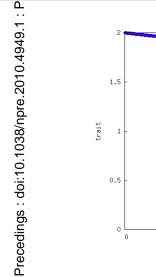
Model Choice

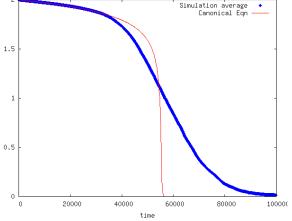
Macroscopic Phenomena

5 Fluctuation Dominance


Fluctuation Dominance

Far from equilibrium, enhancement can expand the fluctuations until they reach the macroscopic scale.


- Variance equation fails dramatically
- Mean trajectory need not follow the deterministic trajectory
- Bimodal distribution of trajectories can emerge
- Conjecture: occurs when neighborhood exists for which $\alpha_{1,0} \approx 0$ and $\alpha'_{1,0} \approx 0$


Breakdown of the approximation

Breakdown of the Canonical Equation of Adaptive Bynamics

Coll Boettiger, UC Davis

Further Topics

This approach can be applied to a variety of stochastic processes in biology...

- The multivariate theory: multiple species or age structured populations. Predicts covariances as well.
- Macroevolutionary theory: inferring speciation and extinction rates from phylogenetic trees
- Adaptive dynamics: quantifying uncertainty in the canonical equation, correcting for fluctuations.

Macroscopic Phenomena

Fluctuation Dominance

Acknowledgments

- Advisors & Advice
 - Alan Hastings
 - Joshua Weitz
 - Many here for helpful discussions!
- Funding
 - DOE CSGF
 - UC Davis Population Biology Graduate Group

