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OBJECTIVE—It is important to identify modifiable factors that may lower gestational diabetes
mellitus (GDM) risk. Dietary iron is of particular interest given that iron is a strong prooxidant,
and high body iron levels can damage pancreatic b-cell function and impair glucose metabolism.
The current study is to determine if prepregnancy dietary and supplemental iron intakes are
associated with the risk of GDM.

RESEARCH DESIGN AND METHODS—A prospective study was conducted among
13,475 women who reported a singleton pregnancy between 1991 and 2001 in the Nurses’
Health Study II. A total of 867 incident GDM cases were reported. Pooled logistic regression was
used to estimate the relative risk (RR) of GDM by quintiles of iron intake controlling for dietary
and nondietary risk factors.

RESULTS—Dietary heme iron intake was positively and significantly associated with GDM
risk. After adjusting for age, BMI, and other risk factors, RRs (95%CIs) across increasing quintiles
of heme iron were 1.0 (reference), 1.11 (0.87–1.43), 1.31 (1.03–1.68), 1.51 (1.17–1.93), and
1.58 (1.21–2.08), respectively (P for linear trend 0.0001). Themultivariate adjusted RR for GDM
associated with every 0.5-mg per day of increase in intake was 1.22 (1.10–1.36). No significant
associations were observed between total dietary, nonheme, or supplemental iron intake and
GDM risk.

CONCLUSIONS—These findings suggest that higher prepregnancy intake of dietary heme
iron is associated with an increased GDM risk.

Diabetes Care 34:1557–1563, 2011

Gestational diabetes mellitus (GDM)
is one of the most common preg-
nancy complications affecting ap-

proximately 7% of all pregnancies and
up to 14% of pregnancies in high-risk
populations (1). Overweight and obesity
are the major modifiable risk factors of
GDM. However, the overall population
attributable fraction among the general
U.S. population because of overweight
and obesity is estimated to be less than

50% (2), implying the need to identify
additional risk factors, particularly modi-
fiable risk factors, that may help lower
GDM risk.

Although the underlying mechanism
remains unclear, available evidence sug-
gests that the main defect in the patho-
genesis of GDM is relatively diminished
insulin secretion coupled with pregnancy-
induced insulin resistance (3). Iron, a
redox-active transitional metal, is a strong

prooxidant. Accumulating evidence from
experimental studies has demonstrated
that iron overload can lead tob-cell toxicity,
b-cell dysfunction, and impaired glucose
metabolism (4).Moreover, several epidemi-
ological studies have documented a positive
association of circulating levels of ferritin
(a marker of body iron stores) with circu-
lating levels of glucose and insulin, and risk
of type 2 diabetes melletus (T2DM) (5) and
GDM (6–9). The major source of body iron
is from the diet. Dietary iron exists as heme
(mainly from meat and meat products) or
nonheme iron. A positive association has
been observed between dietary heme iron
intake and T2DM (10). However, to our
knowledge, there are no published studies
evaluating dietary iron intake and GDM
risk. Studies of supplemental iron and
GDM risk are also scarce, and findings are
inconsistent (11,12). The aim of this study
was to evaluate the association between iron
intake, including varying sources of iron
(heme, nonheme, and supplemental) and
GDM risk in a large prospective cohort.

RESEARCH DESIGN AND
METHODS—TheNurses’Health Study
II (NHSII) is a prospective cohort study
of 116,671 female U.S. nurses recruited
between 22 and 44 years of age begin-
ning in 1989. The cohort is followed by
biennial mailed questionnaires to update
data on health-related behaviors and to
identify incident disease. Food frequency
questionnaires (FFQs) were mailed every
4 years. The follow-up rate has been ap-
proximately 90% for every 2-year pe-
riod. Women reporting a pregnancy
lasting at least 6 months between 1991
and 2001 were included in the study.
Women were excluded from the present
analyses if they reported a multiple ges-
tation, an implausible total energy intake
(,500 or .3,500 kcal/day), a diagnosis
of diabetes, GDM, cancer, cardiovascular
disease, were peri-menopausal at base-
line, or were missing information on
age, iron intake, or vital status. The final
sample included 13,475 eligible women.

Ascertainment of GDM
GDM cases were identified based on self-
reported information in the biennial
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questionnaire. The validity of self-reported
diagnosis of GDM has been demonstrated
against a medical record review. Briefly,
of 114 women who reported their first
diagnosis of GDM in a singleton pregnancy
between 1989 and 1991 on a supplemental
questionnaire, 94% were confirmed to
have a physician diagnosis. Supplemen-
tary questionnaires were also sent to 100
women reporting a pregnancy uncompli-
cated by GDM during the same interval.
Of 93 responders who confirmed a sin-
gleton pregnancy during this period, 83%
reported a glucose loading test, and 100%
reported frequent urine screening in preg-
nancy (13).

Assessment of nutrient intake
Dietary information was collected by a
133-item semiquantitative food fre-
quency questionnaire (SFFQ) every 4
years. Information on the average fre-
quency of consumption of selected foods
and beverages during the previous year
was reported. The food composition data-
base used to calculate nutrient values is
based primarily on U.S. Department of
Agriculture data and is supplemented
with data from manufacturers. Partici-
pants reported the use and dose of mul-
tivitamin and iron supplements. Total
iron intake was calculated as the sum of
all dietary and supplemental intakes. All
food-derived nutrient intakes (except
supplemental iron and alcohol intake)
were energy adjusted by the residual
method. The validity and reliability of
the SFFQ to assess nutrient intake were
measured in a similar cohort (NHSI). The
Pearson correlation coefficient for total
iron intake between the SFFQ and four
1-week diet records administered 3months
apart in a subset of 150 women from NHSI
was 0.55 (14). In addition to total, dietary,
and supplemental iron, we estimated in-
takes of heme (mainly derived from animal
meat sources) and nonheme iron (calcu-
lated as the difference between total iron
and heme iron).

Assessment of nondietary covariates
Information on sociodemographic, clini-
cal, and lifestyle factors was collected at
baseline and was updated every 2 years.
BMI was calculated from self-reported
weight and height (weight in kilograms
divided by the square of height inmeters).
In a similar cohort (NHSI), self-reported
body weight was highly correlated (r =
0.96) with technician-measured weight
(15,16). Physical activity was assessed
in 1989, 1991, and 1997 in which

participants were asked to report weekly
activities. From this information, weekly
energy expenditure in MET hours was
calculated. We calculated the cumulative
average of total recreational physical ac-
tivity in the analyses. Family history of
diabetes and other diseases were reported
on the initial questionnaire (1989).

Statistical analysis
All statistical analyses were performed
with SAS software (SAS Institute, Cary,
NC). Means with SD for continuous base-
line characteristics and proportions for
categorical characteristics were calculated
by quintile of total iron and heme iron
intake. Analyses of dietary intake of total,
total dietary, heme, nonheme, and sup-
plemental iron were conducted in the full
cohort of women (n = 13,475) using a cu-
mulative average measurement of iron in-
take prior toGDMdiagnosis. For example,
the 1991 intakewas used for the follow-up
between 1991 and 1995, and the average
of the 1991 and the 1995 intake was used
for the follow-up between 1995 and 1999
to reduce within-person variation as well
as to represent habitual intake of dietary
factors (17). Iron intake was assessed as a
categorical (quintiles of cumulative aver-
age intake) and continuous variable. The
significance of linear trends across cate-
gories of dietary intake was evaluated
using the median value for each category
of dietary intake analyzed as a continuous
variable in multivariate models.

Pooled logistic regression was used to
estimate the relative risk (RR) of incident
GDM for each iron category. All models
were adjusted for age, parity, BMI, phys-
ical activity, glycemic load, cereal fiber,
polyunsaturated fat, current smoking,
alcohol, total calories, and family history
of diabetes. In addition, we used re-
stricted cubic spline regressions to model
the association between continuous di-
etary heme iron intake and GDM risk.

By conducting stratified analyses and
evaluating interaction terms, we evalu-
ated whether associations between die-
tary iron intakes and GDM risk were
modified by other risk factors of GDM
associated with iron storage, oxidative
stress, and/or insulin resistance. These
factors included BMI (,25, 25–29.9, or
$30 kg/m2), physical activity (highest 2
quintiles vs. lowest 3), family history of
diabetes (yes or no), current cigarette
smoking (yes or no), and dietary vitamin
C (high vs. low). All statistical analyses
were performed by using SAS statistical
software (version 8.2; SAS Institute,

Cary, NC). (Fig. 2 was created using Stata
9.0 [StataCorp. 2005, Stata Statistical
Software: Release 9; StataCorp LP, College
Station, TX].)

RESULTS—During 10 years of follow-
up (1991–2001), 867 women reported a
first diagnosis of GDM. Women in the
highest quintile of heme iron had a higher
glycemic load and had higher intakes of
meat and fish (Table 1). In addition,
women in the highest quintile of intake
were more likely to smoke and consume
more caffeine and alcohol. In age-adjusted
models, total iron intake was inversely as-
sociated with GDM; however this associa-
tion attenuated and was not significant
after adjustment for both dietary and non-
dietary confounding factors (Table 2).
Heme iron intake was significantly and
positively associated with incident GDM
in both age- and fully adjusted models
(Table 2). The age-adjusted RR between
extreme quintiles of cumulative heme
iron intake was 2.13 (95% CI 1.70–2.67;
Ptrend, 0.0001), which was attenuated to
1.58 (1.21–2.08; Ptrend = 0.0001) in the
fully adjusted model. When heme iron
was modeled as a continuous variable,
the multivariate RR for every 0.5-mg per
day of increase in intake was 1.22 (1.10–
1.36). The regression splines demon-
strated linear associations between heme
iron (P = 0.22 for curvature) and the risk
for GDM (Fig. 1).

Because red meat is one of the pri-
mary sources of heme iron and its intake
was positively associated with GDM in
this cohort, other components of red meat
may confound the heme iron and GDM
association. When we further adjusted for
other components of red meat that could
be related toglucosemetabolism—including
saturated fat and dietary cholesterol—by
adding these variables to the fully adjusted
models, the RR was slightly attenuated but
remained significant (RR 1.55 [95% CI
1.13–2.13] for the highest quintile vs. the
lowest quintile; Ptrend = 0.002) (data not
shown). When we additionally adjusted
for red meat, the RR was further attenuated
(1.29 [0.95–1.75]; Ptrend = 0.02) (data not
shown).

In stratified analyses, the association
of heme iron with GDM risk appeared to
be stronger among current cigarette
smokers than nonsmokers although the
test for interaction was not significant
(P value for interaction = 0.26). For exam-
ple, the RR comparing the extreme quin-
tiles was 3.98 (95% CI 1.55–10.23;
Ptrend = 0.0008) among current smokers
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and 1.43 (1.17–1.91; Ptrend = 0.003)
among current nonsmokers (Fig. 2). The
association did not vary by BMI, physical
activity, family history of diabetes, or
vitamin C intake (data not shown).

CONCLUSIONS—In this large pros-
pective cohort study, we identified a sig-
nificant and positive association between
prepregnancy dietary heme iron intake and
GDM. The association remained significant
even after adjustment for other dietary and
nondietary risk factors of GDM. We ob-
served no significant association of total,
nonheme, and supplemental iron intakes
with GDM risk.

Accumulating evidence suggests that
themain defect in the pathogenesis of GDM

is relatively diminished insulin secretion
coupled with pregnancy-induced insulin
resistance, although the underlying mo-
lecular mechanism remains unclear (3).
Pregnancy-related metabolic challenges
unmask a predisposition to glucose meta-
bolic disorders in some women. Therefore,
factors that contribute to insulin resistance
or impaired insulin secretion before preg-
nancy and in early pregnancy can have a
deleterious effect during pregnancy and
may be risk factors for GDM. Iron, a
redox-active transitional metal, is a power-
ful prooxidant that promotes the formation
of hydroxyl radicals and increases oxidative
stress. The pancreatic b-cell is particularly
susceptible to oxidative stress because of a
weak antioxidant defense (3). Since little

iron is excreted from the body, iron sur-
plus is a potential consequence of dietary
and supplemental intake (3). Therefore, it
is plausible that the observed association
of dietary iron intakes with GDM risk is
mediated through the impact of iron on
b-cell toxicity (18).

A role of iron in diabetic pathogenesis
was first suggested by the increased rates
of diabetes among individuals with iron-
related disorders. Frequent blood dona-
tions, which reduce iron stores, were
associated with a decreased prevalence
of diabetes (19), and a lower incidence
of GDM was observed in women with
versus women without anemia (20).
Emerging data from some, though not all,
studies (6–9) also support the significant

Table 2—Prepregnancy dietary iron intakes and RRs of GDM among 13,475 women

Quintiles of iron intake
(median, mg/day)

Total (n) Cases (n) Age-adjusted Multivariate-adjusted
13,475 867 RR (95% CI) P value RR (95% CI)* P value

Heme iron
Q1 (0.66) 2,581 122 1.00 (ref) n/a 1.00 (ref) n/a
Q2 (0.90) 2,987 168 1.20 (0.95–1.52) 0.13 1.11 (0.87–1.43) 0.40
Q3 (1.10) 2,933 171 1.42 (1.13–1.78) 0.003 1.31 (1.03–1.68) 0.03
Q4 (1.30) 2,779 201 1.74 (1.39–2.19) ,0.0001 1.51 (1.17–1.93) 0.001
Q5 (1.60) 2,195 205 2.13 (1.70–2.67) ,0.0001 1.58 (1.21–2.08) 0.001

Trend ,0.0001 0.0001
Total iron
Q1 (10.70) 2,380 180 1.00 (ref) n/a 1.00 (ref) n/a
Q2 (13.00) 2,128 161 0.85 (0.68–1.07) 0.17 0.86 (0.68–1.10) 0.24
Q3 (16.13) 2,376 144 0.80 (0.64–1.00) 0.05 0.85 (0.67–1.09) 0.20
Q4 (24.15) 2,673 154 0.72 (0.58–0.90) 0.004 0.84 (0.66–1.07) 0.15
Q5 (49.80) 3,918 228 0.78 (0.64–0.96) 0.02 0.90 (0.72–1.12) 0.33

Trend 0.12 0.95
Dietary total iron
Q1 (10.30) 2,708 183 1.00 (ref) n/a 1.00 (ref) n/a
Q2 (11.90) 2,695 211 1.00 (0.82–1.23) 0.99 0.99 (0.80–1.24) 0.96
Q3 (13.30) 2,506 148 0.77 (0.62–0.95) 0.02 0.83 (0.66–1.06) 0.14
Q4 (15.00) 2,684 163 0.84 (0.68–1.04) 0.11 0.97 (0.77–1.24) 0.83
Q5 (18.90) 2,882 162 0.83 (0.68–1.02) 0.08 1.12 (0.87–1.45) 0.38

Trend 0.05 0.26
Supplemental iron
Q1 (0) 7,949 544 1.00 (ref) n/a 1.00 (ref) n/a
Q2 (5.10) 603 40 0.96 (0.76–1.22) 0.76 0.98 (0.76–1.25) 0.84
Q3 (15.00) 1,654 95 0.89 (0.72–1.11) 0.30 0.95 (0.76–1.19) 0.66
Q4 (30.00) 1,134 59 0.80 (0.64–1.01) 0.07 0.86 (0.68–1.10) 0.23
Q5 (60.00) 2,135 129 0.99 (0.81–1.20) 0.89 1.04 (0.84–1.28) 0.72

Trend 0.56 0.97
Nonheme iron
Q1 (7.58) 2,324 184 1.00 (ref) n/a 1.00 (ref) n/a
Q2 (10.55) 2,189 153 0.86 (0.69–1.08) 0.20 0.95 (0.74–1.22) 0.68
Q3 (13.39) 2,381 150 0.80 (0.64–1.00) 0.05 0.92 (0.71–1.19) 0.52
Q4 (21.03) 2,648 147 0.69 (0.55–0.86) 0.001 0.85 (0.67–1.10) 0.21
Q5 (45.33) 3,933 233 0.79 (0.65–0.96) 0.02 0.97 (0.78–1.20) 0.75

Trend 0.15 0.86
*Covariates include age, parity, BMI, physical activity, glycemic load, polyunsaturated fat intake, cereal fiber, smoking, alcohol, total calories, and family history
of diabetes. n/a, not applicable.
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associations between measures of body
iron stores and T2DM and GDM. Serum
ferritin, the most frequently studied mea-
sure of iron stores, was significantly and
positively associated with GDM risk in
several studies (6–9). For example, Chen
et al. (21) identified and multivariate ad-
justed RR = 1.84 (95% CI 0.95–3.58),
comparing the 5th quintile of serum

ferritin to all other quintiles in a prospec-
tive cohort of 1,456 Caucasian women.
However, it should be noted that the spec-
ificity of serum ferritin as a measure for
body iron store is questioned as other fac-
tors, such as chronic inflammation, can
affect its levels as well.

Dietary intake of iron is a critical
determinant of body iron stores. Despite

accumulating evidence from both experi-
mental and epidemiological studies sup-
porting potential links between iron and
GDM risk, studies on the association of
dietary iron and specific forms of iron
with GDM risk are sparse. The positive
association between heme, but not non-
heme, iron intake and GDM risk ob-
served in the current study is consistent
with findings from studies on T2DM in
men (19) and women (10). For example,
Rajpathak et al. (10), in a prospective study
of women accumulating 1,578,982 person-
years and 4,599 T2DM cases, found a 28%
increased risk for T2DM for the highest
compared with the lowest quintile of heme
iron intake, but no increased risk for total
iron.

Dietary iron exists as heme (mainly
from meat and meat products) or non-
heme iron. Iron supplements are pri-
marily nonheme iron. Previous studies
focusing on supplementary iron intakes
during pregnancy and GDM risk have
produced inconsistent findings (11,12,22).
Similar to the current study, no significant
association was observed between iron
supplementation and GDM risk in a recent
clinical trial (12). Although precise molec-
ular mechanisms are unclear, the different
bioavailability of the two forms of iron
could explain the discrepancy in their asso-
ciation with diabetes risk. Absorption of
heme iron is more efficient and not signif-
icantly affected by other components of the
meal, whereas the absorption of nonheme
iron is well regulated and affected substan-
tially by accompanying dietary factors (23).
It has been observed that the absorption of
heme iron is 10–15 times higher than non-
heme iron. Therefore, it is plausible that
chronically high intake of heme iron is
more likely to lead to higher body iron
stores and thus is more likely to be associ-
ated with increased risk of GDM. It is also
plausible that women who used iron sup-
plementsmay have had amuch lower base-
line iron status, such that their subsequent
increase in iron stores resulting from sup-
plemental iron intakes may not have raised
their iron levels enough to be pathologic.
Future studies integrating measures of
body iron store status are warranted.

In the current study, the positive
association of heme iron and GDM risk
was suggested to be stronger among
current cigarette smokers than nonsmok-
ers. Among smokers, the risk of GDM
comparing extreme quintiles of heme iron
intake was fourfold, while the risk was
only 1.5-fold for nonsmokers. Cigarette
smoke contains multiple oxidants and

Figure 1—Smoothed histogram and spline plot displaying the RRs of GDM according to dietary
heme iron intake (mg/day, continuous). RRs adjusted for age, parity, BMI, physical activity,
glycemic load, polyunsaturated fat intake, cereal fiber, smoking, alcohol, total calories, and
family history of diabetes. The solid lines represent point estimates; the dashed lines illustrate
95% CIs.
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may, therefore, exacerbate a prooxidant
effect of iron. In rats and human tissue,
cigarette smoke has been shown to cause
iron accumulation, altering systematic
iron homeostasis and inducing oxidative
stress (24). If confirmed in other studies,
these results may suggest that women
who smoke may be particularly suscepti-
ble to the adverse effect on GDM associ-
ated with greater heme iron intakes.

There are several unique strengths to
the study including the large sample size,
prospective study design, repeated dietary
assessments, and a high rate of follow-up
and comprehensive information on cova-
riates, which together minimize sources of
measurement error and bias. However,
several potential limitations merit discus-
sion. Because of the observational nature
of the study, we cannot rule out the possi-
bility of unmeasured and unknown con-
founders leading to residual confounding.
Heme iron intake may be affected by
other lifestyle variables that also increase
the risk of GDM. However, the associa-
tion persisted after we adjusted for major
dietary and nondietary risk factors of
GDM. As in other observational studies,
dietary data measured by FFQs are subject
to measurement error; however, due the
prospective design, misclassification is
likely to be nondifferential, which is likely
to bias results toward the null. In addi-
tion, this FFQ has been validated, and the

three repeated assessments over 8 years of
follow-up help reduce the extent of this
error. Dietary intakes specifically dur-
ing pregnancy were not measured in the
current study. Rather, dietary iron mea-
surements in the present analyses repre-
sent long-term or habitual intakes. It
should be noted that iron deficiency
in early pregnancy was associated with
adverse pregnancy outcomes such as a
greater risk of preterm delivery (25), and
therefore further studies are needed to
examine associations between dietary
iron intakes before and during pregnancy
and other pregnancy outcomes, including
fetal growth and development.

In summary, findings from the large
prospective study suggest that greater
dietary heme iron intake is associated
with an elevated risk for GDM. The results
present another potential modifiable risk
factor for GDM and suggest that the
reduction in prepregnancy intake of
heme iron may potentially reduce GDM
risk. Future metabolic and clinical studies
with data on dietary iron intakes and
measures of body iron stores are warranted
to confirm these findings and to decipher
underlying molecular mechanisms.
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