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Human survival from injury requires an appropriate inflammatory and immune response. We 
describe the circulating leukocyte transcriptome after severe trauma and burn injury, as well as 
in healthy subjects receiving low-dose bacterial endotoxin, and show that these severe stresses 
produce a global reprioritization affecting >80% of the cellular functions and pathways, a truly 
unexpected “genomic storm.” In severe blunt trauma, the early leukocyte genomic response is 
consistent with simultaneously increased expression of genes involved in the systemic inflamma-
tory, innate immune, and compensatory antiinflammatory responses, as well as in the suppres-
sion of genes involved in adaptive immunity. Furthermore, complications like nosocomial 
infections and organ failure are not associated with any genomic evidence of a second hit and 
differ only in the magnitude and duration of this genomic reprioritization. The similarities in 
gene expression patterns between different injuries reveal an apparently fundamental human 
response to severe inflammatory stress, with genomic signatures that are surprisingly far more 
common than different. Based on these transcriptional data, we propose a new paradigm for the 
human immunological response to severe injury.

© 2011 Xiao et al. This article is distributed under the terms of an Attribution–
Noncommercial–Share Alike–No Mirror Sites license for the first six months after 
the publication date (see http://www.rupress.org/terms). After six months it is 
available under a Creative Commons License (Attribution–Noncommercial–Share 
Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/
by-nc-sa/3.0/).

Dr. Lowry died on 4 June 2011.
W. Xiao, M.N. Mindrinos, J. Seok, and J. Cuschieri contrib-
uted equally to this paper.
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We isolated whole blood leukocytes and performed 
genome-wide expression analysis from the Affymetrix U133 
GeneChip using a cohort of 167 patients between the ages of 
18 and 55 yr who consented to blood sampling from 1,637 
adult severe blunt trauma patients who developed hypoten-
sion or acidosis and required resuscitation with blood prod-
ucts from seven US hospitals. Blood was sampled within 12 h 
and at 1, 4, 7, 14, 21, and 28 d after the injury. Genome-
wide expression from patients with trauma was compared 
with age-, sex-, and ethnicity-matched healthy subjects and 
with 133 adult patients after severe burn injury (>20% of the 
body surface area) or 4 healthy adult subjects administered 
low-dose bacterial endotoxin.

There were multiple objectives of the present study. The 
first objective was to determine whether the multiple-organ 
dysfunction syndrome (MODS) phenotypes observed agreed 
with the current paradigm that explains whether the MODS 
seen after injury is the result of excessive proinflammatory 
responses (systemic inflammatory response syndrome [SIRS]) 
followed temporally by compensatory antiinflammatory re-
sponse syndrome (CARS) and suppression of adaptive im-
munity. In those with MODS, this period of recovery from 
organ failure varied from a few days, nonrecovery at 28 d, or 
death. Unexpectedly, there were no clinical outcomes con-
sistent with MODS followed by recovery and subsequently 
severe MODS that might be predicted as a second hit (Sauaia 
et al., 1994; Keel and Trentz, 2005).

The second objective was to determine whether there 
were recognizable gene expression changes in the blood leu-
kocytes after severe blunt trauma. Our data indicate that se-
vere trauma altered the expression of >80% of the leukocyte 
transcriptome during the first 28 d after injury, and these 
changes were highly reproducible within at least 30 discern-
able gene expression patterns. Of the most significantly reg-
ulated pathways, injury produced early activation of those 
involving innate and simultaneous suppression of those in-
volving adaptive immunity. Interestingly, severity of injury, 
magnitude of physiological derangement, and volume of trans-
fused blood minimally affected these patterns.

The third objective was to determine whether there were 
patterns of gene expression associated with two extremes of 
clinical recovery (uncomplicated versus complicated). Surpris-
ingly, gene expression patterns were highly comparable be-
tween these two recovery extremes with selective differences 
in only magnitude and duration. Our data support a new para-
digm for the host immunological response to injury.

RESULTS AND DISCUSSION
Trauma patients versus healthy subjects
The characteristics of the trauma patients and healthy subjects 
and the patient clinical outcomes are shown in Table I and 
Fig. 1 A. As seen in Fig. 1 A, the majority of trauma patients 
presented with mild to severe MODS but recovered before 
28 d. There was only a small fraction of patients who either did 
not develop MODS or developed severe MODS and did not 
recover before 28 d. There were no patients who developed 

Traumatic injury with its potential for infection was likely a 
common cause of death for our human ancestors. Even today, 
massive injury remains the most common cause of death for 
those under the age of 45 yr in developed countries (Sasser 
et al., 2006; Probst et al., 2009). Only recently has the human 
injury response been studied systematically at the genomic 
level and only now is it beginning to become better under-
stood. Unfortunately, billions of dollars worldwide have been 
invested on new biological therapeutics for severe injury, as 
well as for its sequelae, sepsis and septic shock, with disap-
pointing, if not harmful, results. The current immune, inflam-
matory paradigm, based on an incomplete understanding of 
the functional integration of the complex host response, re-
mains a major impediment to the development of effective 
innovative therapies.

Prior work has focused on the role of individual media-
tors (e.g., TNF or IL-1; Giannoudis, 2003; DeLong and 
Born, 2004; Giannoudis et al., 2004; Keel and Trentz, 2005) 
or processes such as apoptosis and cellular death in noso-
comial infections and organ injury after trauma (Hotchkiss 
et al., 2009). Rather than using a reductionist approach, we 
examined the genome-wide expression patterns of blood 
leukocytes in the immediate postinjury period to better  
understand the overall priorities and patterns of gene expres-
sion underlying not only the initial injury response, but also 
the development of complications and delayed clinical recov-
ery (Flohé et al., 2008). We have compared the genomic re-
sponse by blood leukocytes to trauma with the changes in 
gene expression produced by major burns (>20% of body 
surface area), as well as the response by healthy subjects to 
the administration of low-dose bacterial endotoxin (Calvano 
et al., 2005). The results of this systems-wide approach to the 
study of severe human injury challenge several current clini-
cal dogmas regarding the nature of the host response to se-
vere injury. In addition, the datasets described in this report 
of our large clinical study are an important resource that will 
enable important future analyses like mathematical modeling 
and predicting patient outcomes.

Circulating blood leukocytes have the capacity to seek out, 
recognize, and mount an appropriate inflammatory response at 
the earliest sign of injury. Innate immune cells initially recog-
nize and are activated by pathogen-associated molecular pat-
terns (PAMPs) or endogenous alarmins and danger signals 
(Xu et al., 2009; Puneet et al., 2010; Zhang et al., 2010). Blood 
neutrophils, monocytes, and NK cells are implicated as pri-
mary effectors during the initial inflammation and activation of 
innate immunity. Severe trauma has also been characterized by 
immunosuppression, primarily seen on the adaptive immune 
system with T lymphocyte populations being the most mark-
edly affected cell population (Hotchkiss and Karl, 2003; Keel 
and Trentz, 2005). Although antiinflammatory processes and 
reduced effector T cell function are necessary to limit or  
localize the response to severe trauma, a prolonged or exagger-
ated period of immune suppression or defective immune  
response leads to increased susceptibility to secondary infec-
tions (Hotchkiss and Karl, 2003).
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of 16,820 out of 20,720 Entrez genes on the microarrays, 
representing >80% of the human genome over the first  
28 d (using a false discovery rate [FDR] adjusted probability 
<0.001; Fig. 1 B; Storey et al., 2005). The term “genomic 

MODS initially, partially recovered, but went on to develop 
severe MODS.

Our data showed that severe blunt trauma produced sig-
nificant changes in the leukocyte messenger RNA abundance 

Table I. Characteristics and outcomes in the 167 trauma patients and 37 healthy control subjects

Parameter Controls  
(n = 37)

Total cohort  
(n = 167)

Uncomplicated  
recovery patient  
(<5 d; n = 55)

Complicated recovery 
patient (14 d, no recovery 
by 28 d, or death; n = 41)

Probability

Demographics
Age (yr) 30 ± 8 34 ± 1 (33, 25–44) 33 ± 2 (32, 21–43) 34 ± 2 (34, 26–42) P = 0.466a

Sex (male/female) 22/15 106/61 30/25 30/11 P = 0.090c

APACHE II ND 27.3 ± 0.5 (28, 24–32) 24.4 ± 0.8 (25, 21–29) 29.4 ± 0.8 (29, 26–33) P < 0.001a

Maximum abbreviated injury 
scale (AIS)

ND 4.0 ± 0.1 (4, 3–5) 3.8 ± 0.1 (4, 3–5) 4.2 ± 0.1 (4, 4–5) P = 0.050b

Head AIS ND 3.0 ± 0.1 (3, 2–4) 2.9 ± 0.3 (3, 2–4) 3.1 ± 0.3 (3, 2–4) P = 0.659b

Face/neck AIS ND 1.7 ± 0.1 (2, 1–2) 1.6 ± 0.2 (2, 1–2) 1.6 ± 0.2 (1, 1–2) P = 0.586b

Thorax AIS ND 3.4 ± 0.1 (3, 3–4) 3.1 ± 0.2 (3, 3–4) 3.3 ± 0.2 (3, 3–4) P = 0.497b

Abdomen AIS ND 3.2 ± 0.1 (3, 2–4) 3.4 ± 0.2 (4, 2–4) 3.6 ± 0.2 (4, 3–4) P = 0.561b

Spine AIS ND 2.1 ± 0.1 (2) 2.0 ± 0.0 (2) 2.0 ± 0.0 (2) P = 1.000b

Upper extremity/lower 
extremity AIS

ND 3.3 ± 0.1 (3, 3–4) 3.1 ± 0.2 (3) 3.4 ± 0.2 (3, 3–5) P = 0.233b

ISS ND 31.3 ± 1.0 (33, 22–41) 26.2 ± 1.8 (24, 17–35) 35.7 ± 2.0 (38, 27–42) P < 0.001a

New ISS ND 36.3 ± 1.0 (34, 27–43) 32.6 ± 1.8 (29, 22–40) 39.8 ± 1.9 (41, 29–44) P = 0.004b

Total transfusion (ml) 
administered within the 
fist 24 h

0 2,425 ± 158 (1,900, 
1,050–3,000)

1,705 ± 172 (1,400, 
700–2,229)

2,952 ± 423 (2,150,  
1,050–3,500)

P = 0.005b

Total crystalloid (ml) 
administered within the 
fist 24 h

0 12,891 ± 557 (10,800, 
8,276–15,800)

10,544 ± 765 (9,070, 
7,409–12,163)

15,226 ± 1,530 (12,935, 
8,728–18,683)

P = 0.003b

Worst base deficit ND 9.8 ± 0.4 (9.1,  
12.0 to 6.4)

9.2 ± 0.4 (8.9,  
11.6 to 6.4)

10.6 ± 0.8 (10.3,  
13.8 to 6.0)

P = 0.133a

Lowest systolic blood 
pressure (mm Hg)

ND 89.4 ± 1.5  
(86, 78–103)

92.3 ± 3.0  
(88, 80–108)

86.6 ± 3.0 (84, 77–97) P = 0.121b

Outcomes
Survival ND 96% (160/7) 100% 83% (34/7) NA
Maximum modified Marshall 

score
ND 5.5 ± 0.2 (5, 3–7) 3.0 ± 0.1 (3, 2–4) 8.8 ± 0.4 (8, 7–10) NA

Hospital length of stay (d) 0 24.8 ± 1.4 (21, 12–32) 15.2 ± 1.7 (12, 9–18) 35.8 ± 3.6 (30, 23–42) NA
Intensive care unit length of 

stay (d)
0 13.0 ± 0.9 (9, 5–18) 4.8 ± 0.4 (5, 3–6) 25.1 ± 2.3 (21, 18–30) NA

Time to recovery (d) 0 10.2 ± 0.6 (7, 4–15) 2.9 ± 0.1 (3, 2–4) 22.0 ± 0.9 (20, 18–28) NA
Integral of MOF over days 0 46.8 ± 3.4 (32, 14–69) 10.8 ± 0.9 (11, 6–15) 97.0 ± 6.6 (87, 67–113) NA
Complications
Noninfectious complications 0 51.5% (86/81) 5.5% (3/52) 90.2% (37/4) P < 0.001c

Nosocomial infections 0 54.5% (91/76) 20.0% (11/44) 85.4% (35/6) P < 0.001c

Surgical site infections 0 22.2% (37/130) 7.3% (4/51) 41.5% (17/24) P < 0.001c

Ventilator-associated 
pneumonia (cases/1,000 
ICU days)

0 24.0 3.8 25.3 P = 0.030d

MOF, multiple organ failure; NA, not applicable. Values represent the mean ± SEM, with median and middle quartiles indicated in parentheses. Significance was designated at 
the P < 0.05 level of confidence.
aData were analyzed by the Student’s t test.
bData were analyzed by the Mann-Whitney signed rank test.
cData were analyzed by the Fisher’s exact text.
dData were analyzed by the exact binomial test.
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whose expression decreased (n = 3,051; clusters 17–30) was 
greater than the number of genes whose expression increased 
(n = 2,085; clusters 1–16). At the first sampling time period 
(within 12 h after injury), which represented 167 samples 
(Fig. 1 B), 37 samples were drawn within 4 h after injury, 55 
between 5 and 8 h and 75 between 9 and 12 h (Fig. S1). 
Sampling densely in the first 12 h allowed substantial preci-
sion to characterize the early genomic response. Additional 
plots for all 30 clusters are shown in Fig. S2 (A–C).

Not surprisingly, the genes whose expression increased 
the most were those involved in innate immunity and the in-
flammatory response, including NB1 (CD177), MMP8 (neu-
trophil collagenase), LTF (lactotransferrin), and HP (haptoglobin), 
which all reached maximum expression within 12 h. As 
shown in Fig. 1 C, 8 of the 10 gene families most increased 
after injury in leukocytes were directly involved in innate 

storm” has been coined to capture the magnitude and rapid-
ity with which the leukocyte transcriptome reorganized 
and reprioritized its expression patterns. To our knowledge, 
the magnitude and the extent of the change in expression 
represent the only examples of such a severe perturbation of 
the human genome after extreme stress. However, given the 
multitude of stressors to the body after injury, this observa-
tion is not entirely unexpected. In model systems, nearly all of 
the organism’s genes have been shown to be involved in the 
response to diverse internal or external stimuli (Arbeitman 
et al., 2002; Hillenmeyer et al., 2008).

Of the significant genes, 5,136 genes exhibited at least a 
twofold change in expression over the time course compared 
with healthy subjects (Fig. 1 B). The greatest changes in cir-
culating leukocyte gene expression were seen at the earliest 
time point (<12 h from injury), and the number of genes 

Figure 1. Organ injury and genomic changes associated with severe blunt trauma. (A) Whole blood was taken from severe blunt trauma patients, 
leukocytes were isolated, and total cellular RNA was extracted and hybridized onto an HU133 Plus 2.0 GeneChip. The continuum of clinical responses to 
severe blunt trauma in the 1,637 total patients from which the 167 sampling trauma patients were drawn is shown graphically. Each row represents an 
individual patient ordered by time to recovery (TTR), and the x axis represents time from injury in days. Patients are sorted from least to most severe  
organ injury and mortality. The presence and severity of organ injury is represented by colors from blue (least severe) to red (most severe). Black indicates 
death. (B) K-means clustering of the genes into 30 clusters based on patterns of expression over time. Red indicates increased and blue indicates de-
creased expression relative to the mean (white). 5,136 genes were differentially expressed between patients and controls (ctrl; FDR <0.001 and at least 
twofold change). (C and D) Summary of the canonical pathways most affected by trauma. The graph shows the log10 (p value) of the enrichment of 
the pathway.

http://www.jem.org/cgi/content/full/jem.20111354/DC1
http://www.jem.org/cgi/content/full/jem.20111354/DC1
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the response. Of the 5,136 genes shown in Fig. 1 A that 
change twofold after severe trauma, 98% (all but 83) had the 
same direction of change after burns (Fig. 2 A), and 88% 
(4,533) changed similarly in endotoxemia (Fig. 2 B). Scatter 
plots of the fold changes of significant genes in trauma, burns, 
or endotoxemia showed that the Pearson correlation coeffi-
cient (r) between trauma and burns was 0.95 and between 
trauma and endotoxemia was 0.64 (Fig. 2 C). On a genome-
wide scale, these findings demonstrate a common response 
pattern reflective of the large overlap in upstream receptors 
and signaling intermediates activated by each condition 
(i.e., TLR4; Baccala et al., 2009).

Despite markedly different clinical presentation of severe 
blunt trauma, burn injury, and endotoxemia, the early ge-
nomic changes were highly comparable particularly between 
the stressors, burns, or blunt trauma. These common response 
patterns likely resulted from their in vivo activation either 
through primarily a single TLR4 agonist in the case of endo-
toxemia or through the release of PAMPs, DAMPs (danger-
associated molecular patterns), or alarmins in the case of 
burns or trauma. As previously mentioned, mitochondrial 
DNA (Zhang et al., 2010), histones (Xu et al., 2009), and 
pathogens (Calvano et al., 2005; Puneet et al., 2010) are stimuli 
that are available in the plasma to trigger multiple receptors 
like TLRs, PAMPs, and alarmins in burns and injury. Given 
the massive cellular necrosis and apoptosis associated with 
injury and trauma, intracellular proteins and cellular debris 
can be readily seen in the plasma. In another study (Liu et al., 
2006), we also showed that the largest number (up to 70%) of 
unique proteins measured in blood plasma from humans after 
trauma were intracellular components. Certainly, these mol-
ecules also are readily available to serve as alarmins and trigger 
these pattern recognition receptors.

Our findings also suggest that not only is the genomic re-
sponse to severe trauma dramatic, but the changes in gene 

immunity, pathogen recognition, or inflammation. For ex-
ample, the expression of all of the Toll-like receptor (TLR) 
genes (TLR1, TLR2, TLR4, TLR5, TLR8, TLR9, and 
TLR10), with the exception of TLR3 and TLR7, was signif-
icantly increased after injury, as was the expression of other 
pattern recognition receptors, NOD1 (nucleotide-binding oligo-
merization domain containing 1), NOD2 , NALP1 (NLR family, 
pyrin domain containing 1), and NALP3.

Also not surprising, 9 of the 10 gene families most sup-
pressed after injury were involved in antigen presentation and 
T cell activation (Fig. 1 D). The genes whose expression de-
creased the greatest included S100A8 (calgranulin), MYBL1 
(myeloblastosis viral homologue, v-myb), KLRF1 (Killer cell lectin 
like receptor subfamily F, member 1), TGFBR3 (TGF- receptor III  
subunit), and TCRA (T cell receptor  subunit).

The pattern of gene expression points to the simultaneous 
initiation of a myriad of innate and adaptive immunological 
processes. The vast majority of the gene ontologies, whose 
expression was predominantly increased, were those involved 
in innate immunity, microbial recognition, inflammation, or, 
much later, B cell proliferation and immunoglobulin syn-
thesis. Conversely, the gene ontologies whose expression 
was most decreased were those involved in T cell function 
and antigen presentation.

Because the cytokine milieu might be of interest in the 
human response to injury, quantitation of 17 immunity-
related cytokines was performed (Fig. S3). Although there 
was substantial patient to patient variation within a sampling 
time point, four cytokines (IL-6, IL-1ra, IL-8, and MCP1) 
showed significant temporal variation over the 28-d period. 
Not surprisingly, these cytokines have been associated with 
the injury response in many other studies (DeLong and Born, 
2004; Giannoudis et al., 2004).

Contribution of clinical parameters
We show that clinical parameters associated with poor clini-
cal recovery, increased injury severity score (ISS), massive 
volumes of blood transfused, and increased degree of shock 
(base deficit; Sauaia et al., 1994), have a surprisingly limited 
effect on gene expression. A univariate analysis demonstrated 
minimal contributions with the expression of only 200 
genes altered by blood transfusion in the first day after injury; 
no gene expression changes were associated with ISS and 
only 8 with base deficit within the first 12 h (Fig. S4 A). To 
control for several cofactors, a propensity analysis identified 
only 400 genes whose expression was dependent on the 
volume of transfused blood (Fig. S4 B). Similarly, the early 
genomic changes were not caused by differences in the pat-
terns of blood leukocytes between the complicated and un-
complicated recovery patients (Fig. S5).

Severe trauma compared with burns or endotoxemia
We show that the genomic response to trauma is remarkably 
similar to the changes in gene expression caused by severe 
burn injury or infusion of low-dose bacterial endotoxin (pro-
ducing endotoxemia), differing primarily in the duration of 

Figure 2. Validation of the genomic response to trauma in burn 
patients and healthy adults challenged with low-dose bacterial  
endotoxin. (A and B) Comparison of direction of changes among the genes 
identified in Fig. 1 B, between trauma and burns (A) and trauma and  
endotoxemia (B). (C) Scatter plots of log2 fold changes (x and y axes) of 
5,855 genes (FDR <0.001 and at least twofold change) in trauma, burns, 
or endotoxemia (bottom left) and corresponding Pearson correlation  
coefficient (r). The axes in C represent fold changes.

http://www.jem.org/cgi/content/full/jem.20111354/DC1
http://www.jem.org/cgi/content/full/jem.20111354/DC1
http://www.jem.org/cgi/content/full/jem.20111354/DC1
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MAPK signaling, whereas among the most down-regulated 
pathways were antigen presentation and T cell regulation 
(Fig. S6, A and B).

The expression patterns for all 30 clusters are shown in 
Fig. S2 A subcategorized by complicated or uncomplicated 
outcome; 28/30 box plots showed early up- or down-regulation 
of the gene clusters. In the 5,136 genes whose expression 
changed at least twofold after severe injury, the direction and 
magnitude of peak perturbations did not differ between clini-
cal outcomes in this set (Fig. S2 B). In addition, a plot of the 
resolution time (half-time of recovery) from peak perturba-
tion indicated that in complicated outcomes, genomic recov-
ery was prolonged (Fig. S2 C). For example, cluster 2 showed 
a greater increase in early gene expression and a delayed re-
turn to baseline, whereas cluster 8 showed an exaggerated 
decrease in expression and a delayed return (Fig. 3, B and C). 
All 10 clusters are shown in Fig. S6 C. The direction of the 
responses for each of the 10 clusters was identical between a 
complicated and uncomplicated clinical recovery.

Unexpectedly, we show that the difference in gene expres-
sion between the two clinical recovery groups is not qualita-
tive, but is only quantitative, the magnitude of the early 
response and the time required for expression to return to con-
trol values. In patients with an uncomplicated recovery, ex-
pression was returning or had returned to baseline within 7–14 d 
for both up- and down-regulated genes, but in patients with a 
complicated and prolonged recovery, the early changes in 
expression were greater, and the later changes had not returned 
to baseline, for the most part, by 28 d. There were no new 
genes or pathways that were recruited or any that dropped out 
in trauma patients with a complicated recovery versus those 
with an uncomplicated recovery.

Despite this clinical outcome, dichotomization and the 
modest, but significant differences in 
severity of injury, the volume of blood 
transfused, and the degree of base 
deficit between the two outcome 
groups (as shown in Table I), the ge-
nomic findings are unexpected. The 
overall changes in gene expression are 

expression are also long-lived. In more than half of the genes, 
messenger RNA abundance levels had not returned to base-
line after 28 d in blunt trauma and 90 d in severe burns, 
reflecting prolonged aberrations in the leukocyte transcrip-
tome. Perhaps the persistence of cellular debris in the plasma, 
in part, drives this prolonged genomic response, which is 
consistent with the concept of nonresolving inflammation 
(Nathan and Ding, 2010).

Complicated versus uncomplicated clinical recovery
The development of organ failures and infections are well 
known complications after injury that contribute to pro-
longed intensive care unit stays and higher costs for acute 
hospitalization and rehabilitation. To explore in greater detail 
the transcriptomic response to critical illness, we compared 
genomic patterns of the extremes in clinical recovery after 
trauma, those patients who were responding to the injury it-
self (uncomplicated: recovery in <5 d), and those who were, 
in addition, responding to ensuing complications (compli-
cated: recovery >14 d, no recovery, or death; Fig. 1 A).

We were interested to identify whether the genomic pat-
terns were different between patients with complicated and 
uncomplicated outcomes. That is, are there genes or path-
ways that behave differently in these extremes in clinical re-
covery? There were 2,391 genes in the circulating leukocytes 
whose expression was significantly different (FDR <0.001) at 
any one point over the time course when comparing patients 
with complicated versus uncomplicated outcomes. Of these 
genes, 1,201 had at least twofold changes in expression at any 
time point when compared with controls over the entire 
time course of the complicated or uncomplicated recovery 
(Fig. 3 A). Among the top up-regulated pathways associ-
ated with complicated recovery were IL-10, IL-6, and p38 

Figure 3. Differences in gene expression 
patterns between patients with a compli-
cated and uncomplicated clinical recovery. 
Heat map of 1,201 genes whose expression 
was at least twofold different at any time 
point when compared with controls (CTRL) for 
patients with a complicated (Comp) or un-
complicated recovery (Uncomp). (A) Cluster 
analysis of the two cohorts. The brackets to 
the right of the cluster indicate cluster 2 and 8 
shown in B and C, respectively. (B) One cluster 
of genes whose expression was up-regulated 
in patients with a complicated recovery.  
(C) One cluster of genes whose expression 
was down-regulated in patients with a com-
plicated recovery.

http://www.jem.org/cgi/content/full/jem.20111354/DC1


JEM Vol. 208, No. 13 2587

Br ief Definit ive Repor t

treatment of the multitude of immunological complications 
after trauma might be unlikely.

Furthermore, given the commonality of gene expression 
between burn injury and blunt trauma and the considerable 
overlap with a single, low-dose bolus of bacterial endotoxin, 
the genomic patterns in the human leukocyte transcriptome 
represent a fundamental response to severe inflammatory 
stress. The findings are consistent with a genomic storm that 
is neither chaotic nor erratic, but rather highly coordinated 
and reproducible. This storm likely represents a common tran-
scriptional response to severe stress in humans regardless of its 
origin, with far more similarities than differences.

The current paradigm of the host response to severe 
trauma has been traditionally viewed as an early SIRS fol-
lowed temporally by a compensatory antiinflammatory or 
immune-suppressive response syndrome (CARS; Fig. 4 A; 
Bone, 1996a; Hotchkiss and Karl, 2003). Current dogma  
argues that exaggerated inflammation contributes to adverse 
outcome (Giannoudis, 2003; Keel and Trentz, 2005; Xu et al., 
2009; Zhang et al., 2010), and complicated outcomes are 
commonly associated with second hits or multiple inflam-
matory events induced by clinical episodes of infection or 
surgical stress, causing a secondary major genomic response 
(Nast-Kolb et al., 2001; Keel and Trentz, 2005). Much of 
this work is based on mouse models of trauma, burns, and 
sepsis, but we have accumulating evidence that the human 
genomic response to severe trauma can only be partially reca-
pitulated by mouse models (unpublished data). However, the 
findings are unequivocal that the temporal nature of the cur-
rent SIRS/CARS paradigm is not supported at the level of 
the leukocyte transcriptome.

The question of whether these prolonged changes in gene 
expression reflect an ongoing or repeated inflammatory stim-
ulus or simply a response to the primary injury event cannot 

remarkably similar, and the number of genes that are differ-
entially expressed is small when compared with the changes 
in the transcriptome produced by severe injury.

Conclusion and perspectives
These experiments challenge the current paradigm regard-
ing how the adult human responds to severe injury. Severe 
injury, whether a result of blunt trauma or burn injury pro-
duces a genomic storm in which up to 80% of the leukocyte 
transcriptome is altered. The changes occur rapidly in 
trauma within 4–12 h and are prolonged for days and weeks. 
We are not aware of any tumor or other clinical condition 
associated with such diversity and magnitude of genomic 
changes. Furthermore, delayed clinical recovery with organ 
injury is not associated with dramatic qualitative differ-
ences in the leukocyte transcriptome. In both clinical co-
horts (complicated and uncomplicated recovery), all genes 
moved in the same direction despite the patient’s clinical 
course. We could find no evidence of a single gene or clus-
ter of genes whose expression changed uniquely, associ-
ated with different clinical outcomes. Rather, the genomic 
changes in the dichotomous clinical recoveries in trauma 
represent variations in a common inflammatory stress re-
sponse, which is unlikely to be distinguishable by a single or 
small set of biomarkers.

Our findings demonstrate that the genomic response to 
trauma not only induces the activation of a large number of 
inflammatory mediators, genes involved in pattern recog-
nition, and antimicrobial functions, but also suppresses 
genes involved in antigen presentation, T cell proliferation 
and apoptosis, T cell receptor function, and NK cell func-
tion. Furthermore, the differences between complicated and 
uncomplicated outcomes are seen in all of these pathways. 
Such findings suggest that identifying single agents for the 

Figure 4. A genomic storm: Refining the immune, inflammatory paradigm in trauma. (A) The current paradigm explains complications of severe 
injury as a result of excessive proinflammatory responses (SIRS) followed temporally by compensatory antiinflammatory responses (CARS) and suppres-
sion of adaptive immunity. A second-hit phenomenon results from sequential insults, which leads to more severe, recurrent SIRS and organ dysfunction. 
(B) The proposed new paradigm involves simultaneous and rapid induction of innate (both pro- and antiinflammatory genes) and suppression of adaptive 
immunity genes. Complicated recoveries are delayed, resulting in a prolonged, dysregulated immune–inflammatory state.
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Although the mechanisms responsible for complicated 
clinical recovery after severe injury remain incompletely elu-
cidated, we show in this study that the initial magnitude and 
duration of these genomic changes may discriminate compli-
cated and uncomplicated recoveries. The changes in both in-
nate and adaptive immunity are established soon after injury, 
so that early, targeted therapy to either or both immune 
pathways may be the approach that has the best possibility of 
improving patient outcomes.

MATERIALS AND METHODS
Study design. Blood was sampled from 167 severe blunt trauma patients 
under the age of 55 yr who consented to blood sampling. The first blood 
sample was taken within 12 h of the injury and 1, 4, 7, 14, 21, and 28 d after 
injury. Study subjects were treated under the guidance of standard operating 
procedures developed, implemented, and audited across all participating cen-
ters to minimize treatment variation (Nathens et al., 2005; Minei et al., 2006; 
Moore et al., 2006; West et al., 2006; Harbrecht et al., 2007; Cuschieri  
et al., 2008; O’Keefe et al., 2008; West et al., 2008; Evans et al., 2009). 
Clinical outcomes and complications within 28 d after injury were re-
corded. Total blood leukocytes were isolated according to protocols pub-
lished previously (Feezor et al., 2004; Laudanski et al., 2006). Total cellular 
RNA was extracted and hybridized onto an HU133 Plus 2.0 GeneChip 
(Affymetrix) according to the manufacturer’s recommendations. The study 
was approved by the Institutional Review Board of each institution. In addi-
tion to local institutional oversight, Massachusetts General Hospital reviewed 
and approved the program’s data center and databases.

Statistical analysis. Trauma patients were divided into two groups to eval-
uate the impact of complications and expression differences associated with 
clinical recovery: (1) uncomplicated recovery in <5 d (n = 55) and (2) com-
plicated recovery after 14 d, no recovery by 28 d, or death (n = 41; Fig. 1 B). 
Univariate analysis was performed to compare characteristics between 
groups using either the Student’s t test or Mann-Whitney signed rank test 
and Fisher’s exact test. Univariate analyses were conducted to examine the 
effect of blood transfusion, ISS, and base deficit on expression using a linear 
regression model. A propensity score for the effect of blood transfusion 
was developed from the confounding variables using logistic regression 
(D’Agostino, 1998; Hayes and Groner, 2008).

Statistical analysis was performed to identify genes differentially expressed 
between injured patients and healthy subjects and between trauma patients 
with different clinical outcomes using the software program EDGE (Storey 
et al., 2005). A k-means clustering was then applied to visualize major tem-
poral patterns of the resulting significant genes with at least a twofold change 
in expression over time (Tavazoie et al., 1999; Calvano et al., 2005). Genes 
differentially expressed between patients and controls and between different 
clinical outcomes were then subjected to pathway analysis using Ingenuity 
Pathway Knowledge Base as previously described (Calvano et al., 2005; 
Laudanski et al., 2006). The results were independently validated with blood 
leukocyte genomics obtained from 133 adult patients with burns >20% of 
the total body surface area and from 4 healthy humans after administration of 
low-dose bacterial endotoxin (Calvano et al., 2005).

Additional information. A supplemental web-based portal (Massachusetts 
General Hospital, 2011) is available to explore in greater detail the largest 
clinical and genomic database to date from severely injured humans. Data in 
this study have been deposited in the GEO DataSets site under accession 
number GSE11375.

Online supplemental material. Fig. S1 shows the distribution of 167 
samples assayed within the first 12 h of injury. Fig. S2 shows the com-
parison of gene expression patterns of the 5,136 genes with a greater than 
twofold change from control subjects for patients with a complicated  
(n = 55) and uncomplicated (n = 41) clinical recovery. Fig. S3 presents data 

be resolved. The findings are most consistent with the 
nonresolving inflammation hypothesis (Nathan and Ding, 
2010) that severely injured patients who are destined to die 
from their injuries have the same response as patients who 
subsequently recover. The difference is in the degree and the 
duration of the dysregulated acute inflammatory response.

The early peak and continuous genomic recovery over 
28 d in the circulating blood leukocytes are also not consis-
tent with a second-hit phenomenon causing recurrent major 
systemic inflammatory responses (Dewar et al., 2009). Nor 
are these data consistent with the current paradigm that  
the early transcriptional activation of innate immunity and  
microbial recognition precedes or induces a secondary or 
subsequent transcriptional activation of antiinflammatory or  
immune suppressive genes, or suppression of antigen presen-
tation, or T cell response genes (Bone, 1996a,b). Collectively, 
these data demonstrate a potentially sustained genomic re-
sponse implicating the potential acute onset of a chronic in-
flammatory process that may be associated with increased risk 
for late mortality. In fact, these unique findings may be partly 
responsible for the recent findings by Davidson et al. (2011) 
demonstrating increased 1-yr mortality in patients sustaining 
severe injury compared with noninjured matched controls.

We propose a new paradigm. At the level of the leuko-
cyte transcriptome, alterations in the expression of classical 
inflammatory and antiinflammatory as well as adaptive im-
munity genes occur simultaneously, not sequentially after se-
vere injury (Fig. 4 B). Our data show that the transcriptomic 
changes in the adaptive immune response occur very early 
and in fact are simultaneous with the proinflammatory re-
actions found in innate immunity. Given these findings, 
however, it can still be true that the phenotype of the  
immunosuppression of trauma may not be fully manifested 
until days after the injury, but initiation of these processes  
at the level of the leukocyte transcriptome occurs early  
and simultaneously with the activation of inflammation and  
innate immunity.

Severe blunt trauma and burn injury produce a global re-
prioritization of the leukocyte transcriptome affecting multi-
ple cellular functions and pathways, a true genomic storm, the 
first hours of which are mimicked by endotoxemia. In the 
context of the host immune response, these changes are rep-
resented by simultaneous up-regulation of innate immune-
related genes and the suppression of adaptive immune-related 
genes, regardless of clinical outcomes.

There are several caveats, however. We have looked initially 
at blood leukocyte populations, and compartmentalization of 
the inflammatory response is well known. Whether these 
changes in innate and adaptive immune responses are recapitu-
lated in secondary lymphoid organs and the reticuloendothelial 
system is unknown. Second, our sampling intervals were ex-
tended as time from the injury progressed. There may well have 
been brief secondary responses that we could not detect. How-
ever, the absence of late episodes of new organ injury (Fig. 1 A) 
in this patient population argues strongly against evidence of any 
clinically relevant second inflammatory hit.
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