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Sirtuin proteins are conserved regulators of aging that have recently emerged as important
modifiers of several diseases which commonly occur later in life such as cancer, diabetes,
cardiovascular, and neurodegenerative diseases. In mammals, there are seven sirtuins
(SIRT1-7), which display diversity in subcellular localization and function. SIRT1 has received
much of attention due to its possible impact on longevity, while important biological and
therapeutic roles of other sirtuins have been underestimated and just recently recognized.
Here we focus on SIRT2, a member of the sirtuin family, and discuss its role in cellular and
tissue-specific functions. This review summarizes the main scientific advances on SIRT2
protein biology and explores its potential as a therapeutic target for treatment of age-related
disorders.
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INTRODUCTION
Silent information regulator 2 (SIR2) is the eponymous gene of a
whole family of conserved genes named sirtuins, which are present
in organisms ranging from bacteria to plants, and animals (Haigis
and Sinclair, 2010). Original studies of aging in S. cerevisiae led
to the discovery that extra copies of the SIR2 gene extended lifes-
pan by 50%, whereas SIR2 deletion reduced longevity (Kaeberlein
et al., 1999). In yeast, SIR2 promotes longevity by suppressing the
formation of toxic extrachromosomal rDNA circles (Sinclair and
Guarente, 1997). Remarkably, the fly and worm SIR2 orthologs
also play a role in the regulation of lifespan (Tissenbaum and Guar-
ente, 2001; Rogina and Helfand, 2004). However, the increase of
longevity due to Sir2 overexpression in fly and nematode models
has recently been challenged, and is now considered to be about
15% in nematodes (Burnett et al., 2011; Viswanathan and Guar-
ente, 2011). Nevertheless, several studies in yeast and fly models
suggested that SIR2 could be a critical mediator of the benefi-
cial effects of caloric restriction (CR) (Chen and Guarente, 2007).
CR is a dietary regimen that reduces caloric intake by a total of
30% without malnutrition. CR has been shown to slow down the
aging process and increase lifespan in all laboratory models tested
(Koubova and Guarente, 2003). In mammals, several studies found
that CR leads to an increase of sirtuins protein expression in a
variety of tissues (Cohen et al., 2004; Shi et al., 2005). Importantly,
SIRT1 was found to be required for the increase of physical activ-
ity induced by CR (Chen et al., 2005). These studies suggest that
mammalian sirtuins are involved in the activation of biological
responses during CR required for the increased lifespan.

The discovery that SIR2 extended lifespan in yeast, worms,
and flies incited scientists to further study mammalian sirtu-
ins, since questions such as whether sirtuins promote health and
protect against aging-associated disorders are of great scientific
and social/economic interest. In mammals there are seven sirtu-
ins, SIRT1-7, all possessing a highly conserved central NAD+-
binding site and common catalytic domain (Frye, 2000; Landry
et al., 2000; Smith et al., 2000; Tanner et al., 2000). Sirtuins are
NAD+-dependent deacetylases, linking their enzymatic activity
to the energy state of the cell (Nakagawa et al., 2009). There-
fore it is crucial to study the effect of nicotinamide phospho-
ribosyltransferase (NAMPT) on SIRT2 activity, a key enzyme
that regulates NAD biosynthesis. The sirtuin-mediated deacety-
lation reaction couples lysine deacetylation to NAD+-hydrolysis.
This hydrolysis yields O-acetyl-ADP-ribose, the deacetylated sub-
strate and nicotinamide, which is an inhibitor of sirtuins activ-
ity (Tanner et al., 2000). During glycolysis and the citric acid
cycle NAD+ is reduced to NADH, hence the ratio of NAD+ to
NADH is inversely proportional to energy availability. Interest-
ingly, in yeast cells NADH can competitively inhibit the deacetylase
reaction catalyzed by sirtuins and NADH levels are decreased
by CR (Lin et al., 2004). Thus it is tempting to speculate that
mammalian sirtuins should have augmented enzymatic activity
under conditions of low energy, high NAD+ to NADH ratio,
and therefore they function as sensors for the cellular energy
status. Although the catalytic domain of mammalian sirtuins is
conserved, they are structurally different with respect to their
N- and C-termini, to their localization within the cell, and in
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FIGURE 1 | Cellular distribution of mammalian sirtuins. Mammals
possess seven sirtuins, SIRT1–7, that have a NAD+-dependent catalytic
core domain in common. Additional variable N-terminal and C-terminal
sequences flank this core domain leading to diverse subcellular
localizations that may account for differences in their biological functions
as well as different substrates and binding partners within the cell. SIRT1
is mainly nuclear, modulating, amongst others, chromatin structure by
deacetylating specific lysine residues in histones H1, H3, and H4, although
it can transiently be found in the cytoplasm. SIRT2, the closest homolog of

SIRT1, is primarily a cytoplasmic protein, but can transiently shuttle into
the nucleus during mitosis, where it deacetylates Lys-56 of histone H3 and
Lys-16 of histone H4. In the cytoplasm, SIRT2 deacetylates microtubules,
in particular α-tubulin at Lys-40 and a variety of other substrates (Table 1).
SIRT3, SIRT4, and SIRT5 were found to co-localize with mitochondria
indicating key regulative roles in metabolism and energy usage of the cell.
SIRT6 is a nuclear protein found to regulate DNA repair, while SIRT7
co-localizes with the nucleolus and was shown to be involved in rRNA
transcription.

that they utilize different substrates and protein binding partners
(Blander and Guarente, 2004). SIRT1 is mainly nuclear, although
it can transiently be found in the cytoplasm (Haigis and Guar-
ente, 2006). While SIRT2 is primarily a cytoplasmic protein, it
can transiently shuttle into the nucleus in a cell cycle-dependent
manner (North et al., 2003; North and Verdin, 2007a). SIRT3,
SIRT4, and SIRT5 are mitochondrial proteins. SIRT6 is a nuclear
protein and SIRT7 is nucleolar (Liszt et al., 2005; Ford et al.,
2006; Figure 1). Despite the fact that some sirtuins can have
redundant functions, different biological roles may be determined
by intracellular compartmentalization, and by different tissue
expression pattern.

Among all mammalian sirtuins, SIRT1 has been the most
extensively studied. Nevertheless, studies of the other mammalian
sirtuins have uncovered a variety of substrates, interacting part-
ners and biological relevance in diverse cellular processes. Here
we focus on the biological role of SIRT2, the only cytoplasmic
member of the family, explore its various roles in age-associated
disorders and discuss possible therapeutic applications.

THE BIOLOGICAL PROPERTIES OF THE SIRT2
SIRT2 is the mammalian ortholog of yeast HST2 (Perrod et al.,
2001). Similar to SIR2, HST2 is upregulated by CR as well as oxida-
tive stress and extends lifespan by a SIR2-independent mechanism
(Lamming et al., 2005; Zhu et al., 2012). In future experiments,
it will be important to determine if mice overexpressing SIRT2
mice show an altered lifespan. It would be equally important to
determine whether SIRT2 is required for any of the protective
phenotypes mediated by CR.

SIRT2 is found primarily in the cytoplasm, co-localizes
with microtubules and deacetylates the major component of
microtubules, α-tubulin at lysine 40 (North et al., 2003). In the
same study the authors identified the microtubule deacetylase
HDAC6 as a binding partner of SIRT2. It is unclear whether SIRT2
deacetylates soluble or polymerized α-tubulin, and thus could be
formally considered as a microtubule deacetylase.

SIRT2 transiently migrates to the nuclei during G2/M transi-
tion and deacetylates histone H4 at lysine 16, thereby modulating
chromatin condensation during metaphase (Vaquero et al., 2006).
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Interestingly, SIRT1 also deacetylates lysine 16 of histone H4, indi-
cating a possible synergistic relationship or functional redundancy
between these sirtuins (Imai et al., 2000; Vaquero et al., 2004).
When SIRT2 is overexpressed it delays cell cycle progression (Dry-
den et al., 2003). Moreover, SIRT2 protein levels vary accordingly
to the cell cycle phase, increasing during mitosis. Altogether, these
observations implicate SIRT2 in the regulation of the cell cycle
(Inoue et al., 2007).

In addition to α-tubulin and histone H4 substrates, SIRT2
deacetylates forkhead transcription factors of class O, FOXO1, and
FOXO3 (Li et al., 2007; Wang and Tong, 2009; Zhu et al., 2012).
Since FOXO transcription factors are involved in multiple cellular
processes, such as DNA repair, cell cycle, apoptosis, metabolism,
and aging, SIRT2 is therefore also connected with these diverse
pathways (Calnan and Brunet, 2008).

SIRT2 deacetylates lysine residues in the catalytic domain of
p300, a histone acetyltransferase, which maintains its active form
by autoacetylation (Black et al., 2008). The known consequence
of SIRT2-dependent deacetylation of p300 is the de-repression
of p53 transcriptional activity (Han et al., 2008). Notably, p300
is capable of inhibiting SIRT2 activity by direct acetylation, thus
demonstrating a complex relationship and regulation of acety-
lase and deacetylase activities in cells. Interestingly, posttransla-
tional phosphorylation also negatively modulates SIRT2 activity.
Phosphorylation at serine 331 inhibits SIRT2 catalytic activity
(Pandithage et al., 2008). SIRT2 is phosphorylated by various
cycline-CDK complexes at serine 331 and is dephosphorylated
by CDC14B phosphatase (Dryden et al., 2003; Southwood et al.,
2007; Pandithage et al., 2008).

In addition, several proteins such as 14-3-3 β/γ and homeobox
transcription factor 10 are binding partners but not deacetylation
substrates of SIRT2 (Bae et al., 2004; Jin et al., 2008). The currently
known SIRT2 substrates/binding partners suggest a complex and
apparently diverse function for this sirtuin in the cell (Table 1).

SIRT2 IN METABOLIC SYNDROMES
In western societies high fat and low fibber diets, together with
a sedentary life style, are associated with a high prevalence of
metabolic syndrome, that increases with age (Ford et al., 2002).
Metabolic syndrome is the condition brought about by: obesity;
insulin resistance; hypertension; and elevated lipid content in the
blood. Metabolic syndrome increases the risk of serious health
problems (Moller and Kaufman, 2005). In the obese it is the
proportion of body fat which is significant, not purely weight
per se. Dramatically, obesity is associated with a decrease in life
expectancy (Haslam and James, 2005).

Among all the mammalian sirtuins, the SIRT2 transcript is the
most abundant in adipocytes (Li et al., 2007); this alone may
indicate a role in the regulation of adipose tissue functional-
ity. Together with the observation that SIRT2 decreases during
preadipocyte differentiation and regulates adipocyte differentia-
tion in a negative manner by deacetylating FOXO1, it raises the
exciting hypothesis that this protein has a pivotal role in the regu-
lation of fat abundance (Jing et al., 2007; Wang and Tong, 2009).
Thus, it can be speculated that modulating SIRT2 activity may
ameliorate, at least in part, the metabolic disturbances in the obese
resulting from increased fat mass. In support of this hypothesis,
retroviral expression of SIRT2 in adipocytes was found to promote

Table 1 | SIRT2 substrates and interactors and their biological relevance.

Interactor/substrate Kind of interaction Biological relevance Reference

α-Tubulin Substrate (deacetylation of Lys-40) Cytoskeleton modulation Oligodendroglial

differentiation

North et al. (2003), Tang and

Chua (2008), Zhu et al. (2012)

Histone H3 Substrate (deacetylation of Lys-56) Cell cycle regulation Das et al. (2009)

Histone H4 Substrate (deacetylation of Lys-16) Cell cycle regulation Vaquero et al. (2006)

FOXO1 Substrate (deacetylation of

Lys-residues surrounding Ser-253)

Adipocyte differentiation Li et al. (2007), Wang and

Tong (2009)

FOXO3 Substrate (residues not yet identified) Regulation of oxidative stress Zhu et al. (2012)

Cell growth arrest apoptosis

Par-3 Substrate (deacetylation of Lys-831,

848, 881, 1327)

Modulation of peripheral myelination Beirowski et al. (2011)

P300 Substrate (deacetylation of several

Lys-residues)

Regulation of p300 autoacetylation Black et al. (2008)

PEPCK1 Substrate (residues not yet identified) Blood glucose homeostasis Jiang et al. (2011)

p65 Substrate (deacetylation of Lys-310) Regulation of NF-κB dependent gene expression Rothgiesser et al. (2010)

HOXA10 Binding partner Not known Bae et al. (2004)

HDAC6 Binding partner Cytoskeleton dynamics North et al. (2003)

14-3-3β/γ Binding partners Downregulation of p53 activity Jin et al. (2008)

CDK1, cyclinE/CDK2,

cyclinA/CDK2, p35/CDK5

Phosphorylation of SIRT2 at

Ser-331,-368

Inhibition of SIRT2 catalytic activity Southwood et al. (2007),

Pandithage et al. (2008)

CDC14A/B, Dual-specificity protein phosphatase 14A/B; CDK1, cyclin-dependent kinase 1; cyclinA/CDK2, cyclin A/cyclin-dependent kinase 2 complex; CyclinE/CDK2,

cyclin E/cyclin-dependent kinase 2 complex; p35/CDK5, p35/cyclin-dependent kinase 5 complex; FOXO, Forkhead box protein of class O; HDAC6, Histone deacetylase

6; HOXA10, Homeobox protein A10; Lys, Lysine; NF-κB, Nuclear factor-kappa B; Par-3, Polarity protein par-3; PEPCK1, phosphoenolpyruvate carboxykinase 1; P300,

Histone acetyltransferase ac-P300; p53, tumor suppressor protein 53; p65, transcription factor p65; Ser, Serine; 14-3-3β/γ, 14-3-3 Protein β/γ isoforms.
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lipolysis (Wang and Tong, 2009). Thus, SIRT2 activators could be
used as a novel therapeutic approach to obesity and in a more
general way to metabolic syndrome.

SIRT2 expression is elevated in white adipose tissue and kid-
ney of caloric-restricted mice (Zhu et al., 2012). It is interesting
to note that CR reverses the modifications to some physiological
parameters caused by metabolic syndrome. Moreover CR protects
against the diseases to which metabolic syndrome is a risk factor
(Guarente, 2006). Another exciting study raised the possibility that
SIRT2 plays a role in blood glucose homeostasis by deacetylating
and stabilizing phosphoenolpyruvate carboxykinase 1 (PEPCK1),
an important enzyme in gluconeogenesis (Jiang et al., 2011). When
SIRT2 is activated by low glucose conditions, PEPCK1 is stabilized
and it shifts the equilibrium toward the generation of glucose
from non-carbohydrate carbon sources, mimicking a fast or exer-
cise state in the organisms. Conversely, in the presence of high
glucose SIRT2 expression is suppressed, leading to PEPCK1 degra-
dation by the ubiquitin proteasome system (Jiang et al., 2011).
This study raises the question of how glucose availability regu-
lates SIRT2 transcription. Since other sirtuins are also linked to
metabolic homeostasis, another question arises: how does SIRT2
communicate with other family members to promote metabolic
homeostasis? Further insights into the intricate regulation of the
metabolic network will likely emerge when we identify novel SIRT2
targets in organs such as liver, fat, pancreas and muscle. The study
of tissue-specific knockouts will also contribute to a better under-
standing of the regulatory pathways that control metabolism in
health and disease and assess a possible therapeutic role of SIRT2
modulation in metabolic syndromes. Genetic studies should also
address the safety of targeting SIRT2 activity pharmacologically
and the extent of the possible benefits.

SIRT2 IN CANCER
Cancer cells have the ability to divide and grow in an uncontrolled
manner. A common event in various cancers is the presence of
mutant proteins, namely the machinery responsible for cell cycle
control and differentiation (Vogelstein and Kinzler, 2004). Several
studies are in favor of SIRT2 working as a mitotic check-point,
thus suggesting a role in tumorigenesis (Inoue et al., 2007). SIRT2
protein and RNA levels are decreased in gliomas, melanomas, and
gastric carcinomas (Hiratsuka et al., 2003; Peters et al., 2010). We
can speculate that in human gliomas this decrease may be asso-
ciated with the deletion of the SIRT2 gene, since SIRT2 is located
at 19q13.2, a region frequently deleted in this kind of carcinoma
(von Deimling et al., 1994; Rasheed et al., 1999; Hiratsuka et al.,
2003). Moreover, in a glioma cell line SIRT2 inhibits colony for-
mation (Hiratsuka et al., 2003). In melanomas SIRT2 is mutated in
the catalytic domain, eliminating its enzymatic activity (Lennerz
et al., 2005). Another important observation is that when the ser-
ine 368 SIRT2 mutant (phosphorylation site) is overexpressed in
a glioblastoma cell line, it leads to a reduction of hyperploid cells
under mitotic stress exposure (North and Verdin, 2007b). These
two studies indicate that the enzymatic function of SIRT2 may play
a role in cancer, at least in the case of melanoma and glioblastoma.
It remains to be determined whether SIRT2 enzymatic activity
is also important in other kinds of cancers. In a recent report,
SIRT2 deficiency in mice led to augmented levels of Aurora-A

and -B, known to direct centrosome amplification, aneuploidy,
and mitotic cell death. Surprisingly, gender-specific tumorige-
nesis was observed in the SIRT2-deficient mice, where females
primarily developed mammary tumors, while males developed
more hepatocellular carcinoma (Kim et al., 2011). The same study
showed SIRT2-dependent regulation of the anaphase-promoting
complex/cyclosome activity through deacetylation of its coacti-
vators, APC (CDH1) and CDC20. The previous data combined
with other study showing that lysine 53 of histone H3, which is
deacetylated by SIRT2 and SIRT1, was hyperacetylated in can-
cer cells, implies that SIRT2 may act as a tumor suppressor gene
(Das et al., 2009). Downregulation of SIRT2 renders cancer cells to
apoptosis. For example, SIRT2 downregulation caused apoptosis
in a cancer cell line such as HeLa but not in normal cells, suggest-
ing a possible therapeutic avenue for intervention (Li et al., 2011).
In addition, SIRT2 regulates the expression of the pro-apoptotic
protein BIM due to its ability to deacetylate FOXO3 (Wang et al.,
2012). Overall, SIRT2 overexpression is found to reduce cell pro-
liferation and to regulate cell death in response to DNA damage
stress. These and previously published results with cancer cell lines
suggest SIRT2 as a tumor suppressor gene (Das et al., 2009). The
dual role of sirtuins in cancer has recently been reviewed and
although most evidences point to SIRT2 as a tumor suppressor
gene. Further studies will be important to elucidate the role of
SIRT2 activation in specific human cancers (Bosch-Presegue and
Vaquero, 2011). These critical studies will illuminate potential and
feasible therapeutic interventions for cancer treatment.

SIRT2 IN THE CENTRAL NERVOUS SYSTEM
All seven members of the mammalian SIR2 family are expressed
in the brain. SIRT2 is the most abundant, although not much
is known about its role in this organ (Zhu et al., 2012). SIRT2
is expressed in nearly all brain cells including olfactory and hip-
pocampal neurons, while primarily found in the myelin producing
cells of the central nervous system (CNS): oligodendrocytes (OL;
Pandithage et al., 2008; Zhu et al., 2012). There are three known
alternatively spliced SIRT2 isoforms in mammals. The full-length
SIRT2 protein (isoform SIRT2.1) showed only moderate expres-
sion in the CNS, comparable to that seen in peripheral tissues.
In sharp contrast, a significant increase of the second isoform,
SIRT2.2, was observed during postnatal mouse development.
SIRT2.2 expression levels remained remarkably high in the adult
CNS, with maximal accumulation in aged brains (Maxwell et al.,
2011).

SIRT2 expression in OL plays a role in myelinogenesis, while
in neurons its function is essentially unknown. In OLs, SIRT2 is
rather localized to the myelin sheath than to the cell body (Werner
et al., 2007). SIRT2 appears to decelerate cell differentiation of OL
precursor cells through deacetylating α-tubulin (Li et al., 2007).
In accordance with the suggested role for SIRT2 as an OL dif-
ferentiation inhibitor, gene knockdown causes upregulation of
myelin basic protein and promotes OL differentiation. Moreover,
it appears that SIRT2 functions in myelin sheaths at sites of micro-
tubule remodeling (Southwood et al., 2007; Harting and Knoll,
2010). Based on a recent report, SIRT2 is highly abundant during
active myelination, and protein levels are regulated by the QKI-
dependent pathway and mediated through selective regulation
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of proteolipid protein PLP (Zhu et al., 2012). Consistent with
this mechanism, the presence of the SIRT2.2 isoform is severely
reduced in brain of Plp1 knockout mice. Recently,mice with tissue-
specific knockout of SIRT2 in Schwann cells were found to display
a transient delay in myelination (Beirowski et al., 2011). It appears
that in Schwann cells SIRT2 deacetylates an important regulator of
cell polarity Par-3. SIRT2 deacetylates Par-3 and leads to a decrease
in the activity of the polarity complex signaling component aPKC,
thus regulating myelin formation. Notably, SIRT2 knockout did
not lead to an increase of α-tubulin acetylation in Schwann cells.
It remains to be tested whether pharmacological stimulation of
SIRT2 can facilitate re-myelination in neuronal injuries or to be
therapeutically beneficial in human conditions such as multiple
sclerosis, characterized by progressive loss of myelin.

In neurons, SIRT2 is evenly distributed within the cytoplasm,
neurites, and their growth cones (Pandithage et al., 2008). One
important feature regulated by SIRT2 is neuronal motility, which
is strongly dependent on the dynamic properties of the cytoskele-
ton, particularly those of actin filaments and microtubules. The
obvious connection is the ability of SIRT2 to deacetylate α-
tubulin, which is the main component of microtubules, together
with β-tubulin. SIRT2 inhibits neurite outgrowth and growth
cone collapse in postmitotic hippocampal neurons (Pandithage
et al., 2008). Interestingly, this effect was antagonized by CDK-
dependent phosphorylation of SIRT2, raising the important ques-
tion of how posttranslational modifications, namely SIRT2 phos-
phorylation regulates its activity (Pandithage et al., 2008). Recent
studies reveal that focal areas of endogenous SIRT2 expression
correlate with reduced α-tubulin acetylation in primary mouse
cortical neurons, further suggesting that SIRT2 may function as
a microtubule deacetylase in mature neurons (Maxwell et al.,
2011). Noteworthy, there are no direct evidences convincingly
demonstrating that SIRT2 deacetylates microtubules in neurons.
Overexpression of SIRT2 leads to inhibition of neurite elongation
and impairment of migration in primary hippocampal neurons
(Pandithage et al., 2008). However, no studies have been published
so far indicating a direct role for SIRT2 in neuronal differentiation.
The fact that SIRT2 deacetylates FOXO3 and thereby regulates its
transcriptional activity, suggests a role for SIRT2 in neural stem
cells homeostasis; because FOXO3 regulates the neuronal stem
cell pool by maintaining quiescence (Renault et al., 2009). Besides,
SIRT1 modulates neuroblastoma cell differentiation by deacetylat-
ing FOXO3 (Kim et al., 2009). Thus, it is likely to assume that SIRT2
might also play a role in neuronal differentiation. The tumor sup-
pressor p53, has recently been ascribed a role in the regulation of
neuronal cell migration, neurite outgrowth, growth cone motil-
ity, and axonal regeneration (Di Giovanni et al., 2006; Tedeschi
and Di Giovanni, 2009). Since SIRT2 was shown to deacetylate
p53 in vitro, we cannot rule out the possibility of p53 being an
in vivo substrate for SIRT2 (Nahhas et al., 2007). Whether SIRT2
mediates these p53 dependent processes, is an intriguing question.
Clearly more studies are needed to assess the precise role of SIRT2
in neuronal networks.

SIRT2 in neurodegenerative disorders
Neurodegenerative disorders affect mostly the elderly popula-
tion and strongly contribute to a tremendous increase in health

expenditures due to the augmentation in life expectancy. A com-
mon hallmark to several neurodegenerative disorders is the pres-
ence of abnormal protein inclusions in the brain containing spe-
cific misfolded proteins (Mattson and Magnus, 2006). However,
the precise functions of those proteins under physiological and
pathological conditions remain unclear. Nevertheless, SIRT2 was
associated with the aggregation of proteins such as α-synuclein
and huntingtin, involved in Parkinson’s and Huntington’s disease
(HD), respectively (Outeiro et al., 2007; Pallos et al., 2008; Luthi-
Carter et al., 2010). In addition, SIRT2 was indirectly associated
with cellular processes implicated in the pathophysiology of neu-
rodegenerative disorders, namely autophagy, oxidative stress, and
inflammation.

Modifications in autophagy pathways were described in neu-
rodegenerative diseases and in the normal aging brain (Wong and
Cuervo, 2010). Importantly, activation of autophagy may mitigate
or even prevent these disorders. Autophagy is a degradation mech-
anism by which cells clear out organelles, proteins, and protein
aggregates that may be too large to be degraded by the ubiquitin
proteasome system (Kraft et al., 2010). Several stimuli can acti-
vate autophagy and, notably, one of the main triggers is nutrient
deprivation. In response to oxidative stress or serum depriva-
tion SIRT2 releases FOXO1, which is then acetylated and binds to
ATG7 and thus induce autophagy in the context of cancer (Zhao
et al., 2010a,b). Accordingly, it would be interesting to test whether
SIRT2 also mediates autophagy through deacetylation of FOXO1
in the context of neurodegeneration. This hypothesis seems plau-
sible concerning the stimulus for SIRT2 to release FOXO1 and
making it available to activate autophagy. Interestingly, SIRT1 also
plays a role in the regulation of autophagy through deacetylation
of ATG5, 7, and 8 (Lee et al., 2008). It is widely accepted that
oxidative stress is implicated in the pathogenesis of neurodegen-
erative diseases. SIRT2 elevates the expression of the antioxidant
mitochondrial superoxide dismutase (MnSOD) due to its abil-
ity to deacetylate FOXO3 and consequent increase of FOXO3
DNA-binding activity (Wang et al., 2007). Interestingly, MnSOD
enzymatic activity is regulated by SIRT3 deacetylation in response
to stress (Tao et al., 2010).

Another interesting link between SIRT2 and neurodegener-
ation is the nuclear factor-kappa B (NF-κB). NF-κB plays a
pivotal role in regulating gene expression programs related to
aging and inflammation, namely by inducing the expression of
pro-inflammatory cytokines. New emerging data point to an asso-
ciation between chronic neuroinflammation and the exacerbation
of several neurodegenerative diseases (Salminen and Kaarniranta,
2009). For instance, as the organism ages NF-κB transcription is
activated and its incorrect regulation may elicit neurodegenera-
tion. SIRT2 has been reported to interact with p65, an NF-κB
family member, in the cytoplasm and to deacetylate it at lysine 310
after stimulation with TNF-α (Rothgiesser et al., 2010). Interest-
ingly, deacetylation of p65 by SIRT1 antagonizes NF-κB activity
(Yeung et al., 2004).

SIRT2 in Parkinson’s disease. Parkinson’s disease (PD) is the sec-
ond most common neurodegenerative disorder, after Alzheimer’s
disease affecting around 4 million people worldwide. The dis-
ease is characterized by the dysfunction and degeneration of
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dopaminergic neurons in the substantia nigra, which alters neuro-
transmitter balance in the striatum resulting in the progressive loss
of movement control (Gelb et al., 1999; Forman et al., 2005). The
vast majority of PD cases are sporadic and aging is the main risk
factor, although inherited forms account for 5–10% of the cases.
The pathological hallmark of PD and other synucleinopathies is
the accumulation of protein aggregates called Lewy bodies (LB),
which consist mainly of α-synuclein (Spillantini et al., 1997). LBs
occur in the central, peripheral, and autonomic nervous system.
The biological significance of LBs, their impact on neurodegener-
ation, and whether they are detrimental, and interfere with normal
cell function, or are a structural manifestation of a cytoprotective
response to confine and eliminate cytotoxic proteins is currently
unclear.

SIRT2 regulates α-synuclein inclusion number, size, and cyto-
toxicity. Inhibition of SIRT2 function, either pharmacologically or
genetically, led to a rescue of α-synuclein toxicity in models of PD,
namely dopaminergic neurons and in an in vivo fly model (Out-
eiro et al., 2007). Inhibition of SIRT2 promoted the development
of fewer and bigger aggregates. Interestingly, a smaller quantity of
LB-like inclusions which are bigger in size was ascribed a protective
role in neuronal cell death in vitro (Outeiro et al., 2007). However,
the exact molecularSIRT2 inhibition-dependent neuroprotective
mechanism is still elusive. It is tempting to speculate that SIRT2
inhibition increases microtubule-dependent transport of putative
neurotoxic α-synuclein oligomers to the nucleation aggregation
site, which facilitates formation of large benign inclusions. Con-
sistent with this idea, an interaction between microtubules and
α-synuclein was observed by several groups (Iseki et al., 2000; Pay-
ton et al., 2001; Alim et al., 2004). Speculatively, the affinity of
interaction between oligomeric α-synuclein and acetylated micro-
tubules may be enhanced by inhibition of microtubule deacetylase
SIRT2 or/and HDAC6. We envision that genetic crosses between
PD and SIRT2 brain-specific knockout mice will provide valu-
able clues on neuroprotective mechanism(s) and further report
on therapeutic potentials of SIRT2.

SIRT2 in Huntington’s disease. Huntington’s disease is an auto-
somal dominant neurodegenerative disorder caused by mutant
huntingtin protein containing pathologically extended polyglu-
tamine repeats (Bates, 2003). The disease is characterized by a
gradual and progressive loss of neurons, predominantly in the
cortex and striatum leading to impairment in muscle coordi-
nation, cognitive decline, and dementia. Currently, there is no
cure for HD and treatments can only mildly relieve some of its
symptoms. Pharmacological inhibition of SIRT2 achieved neu-
roprotection in cellular and invertebrate models of HD through
a negative regulation of sterol biosynthesis (Luthi-Carter et al.,
2010). In primary striatal neurons expressing a mutant hunt-
ingtin fragment, genetic or pharmacological inhibition of SIRT2
was associated with significant reduction of polyglutamine inclu-
sions. The reduction of inclusion formation, which is believed to
be dependent on microtubule transport, may represent a benign
biomarker. Another major finding from this study is that this
protective effect is intimately related to transcriptional regulation
of genes controlling metabolism, including sterol and fatty acid
biosynthesis, carbohydrate metabolism, and purine metabolism

(Luthi-Carter et al., 2010). More specifically, SIRT2 inhibition
reduced sterol levels via decreased nuclear trafficking of sterol
regulatory element-binding protein 2 (SREBP-2) and resulted in
lower cholesterol levels. Notably, in the same model, manipulation
of sterol biosynthesis at the transcriptional level mimicked SIRT2
inhibition, demonstrating that the metabolic effects are sufficient
to diminish mutant huntingtin toxicity. Genetic manipulation of
SREBP-2 expression levels and/or subcellular localization had no
effect on the aggregation state of mutant huntingtin fragments. In
follow-up studies, pharmacological inhibition of SIRT2 in wild
type primary neurons resulted in SREBP-2 cytoplasmic reten-
tion, transcriptional downregulation of cholesterol biosynthetic
genes, and reduction of neuronal cholesterol (Taylor et al., 2011).
The experiments were extended to Neuro-2a (N2a) neuroblas-
toma cells and to hippocampal slice cultures from wild type mice,
where SIRT2 inhibition-dependent reduction of cholesterol levels
was observed as well (Taylor et al., 2011). These results illuminate
an emerging novel role of SIRT2 in regulation of neuronal metab-
olism, and specifically of cholesterol biosynthesis. Accordingly, in
a HD fly model, decreased levels of SIRT2 promoted viability of
photoreceptor neurons (Pallos et al., 2008).

The fact that the same small molecule is protective in PD and
HD, two devastating disorders, is highly promising, suggesting it
might also have a beneficial impact on other neurodegenerative
diseases.

CONCLUDING REMARKS AND FUTURE DIRECTIONS
Despite one decade of research, the precise function of SIRT2
in age-related disorders remains unclear. Therefore, elucidating
the cellular function of SIRT2 and the mechanisms underlying its
protective and/or pathogenic effects in those disorders is essen-
tial for the development of efficient therapies for preventing and
treating age-related maladies. The identification of novel SIRT2
substrates will be crucial in pursuing such endeavor. Although a
lack of direct evidence supporting the hypothesis that SIRT2 can
regulate lifespan in mice exists, it deacetylates a variety of proteins,
which play diverse roles in fundamental cellular processes related
to the healthy state of the organisms. In this list we have FOXO
transcription factors, α-tubulin, PEPCK1, and NF-κB. The effect
of SIRT2 seems to vary in a tissue-specific and disease-specific
manner, indicating we are still lacking a complete understanding
of its mode of action.

Although persuasive, when considering the usage of pharmaco-
logical inhibitors/activators of sirtuins as candidates for protection
against aging-related maladies, one has to be aware of the appar-
ent opposite effects of SIRT1 and SIRT2 as well as the possible
cross talk between other family members. We might not be able to
use general inhibitors/activators since they might evoke opposite
response from different family members. The development of spe-
cific inhibitors/activators for the mammalian sirtuins will enclose
the potential to be beneficial to neurodegenerative diseases, cancer,
diabetes, and cardiovascular diseases.

Currently unanswered questions in this fast growing field are:
(i) How is SIRT2 transcription, stability, and enzymatic activity
regulated by pathological stress conditions? (ii) How does SIRT2
communicate with other sirtuins to modulate the pathophysiol-
ogy of diseases such as cancer, metabolic syndrome, PD, and HD?
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(iii) Can SIRT2 regulate lifespan in mice? (iiii) Is SIRT2 together
with SIRT1 a mediator of CR?

Regardless of the current lack of answers to these ques-
tions, SIRT2 biology grew substantially in the last decade. It
will be exciting to see which new pieces to the puzzle will
undoubtedly be added in the years to come. This will yield
tremendous profits for both basic and clinically applied age-related
research. In addition, understanding the molecular mechanisms
underlying the protective role of all sirtuins in different organs
could bring us closer to the development of novel drug tar-
gets, which could be used to design new and more successful

therapies for these diseases and even postpone the normal aging
process.
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