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OBJECTIVE—Because of confounding factors, the effects of
dietary n-3 polyunsaturated fatty acids (PUFA) on type 1 diabetes
remain to be clarified. We therefore evaluated whether fat-1
transgenic mice, a well-controlled experimental model endoge-
nously synthesizing n-3 PUFA, were protected against strepto-
zotocin (STZ)-induced diabetes. We then aimed to elucidate the
in vivo response at the pancreatic level.

RESEARCH DESIGN AND METHODS—b-Cell destruction
was produced by multiple low-doses STZ (MLD-STZ). Blood glu-
cose level, plasma insulin level, and plasma lipid analysis were
then performed. Pancreatic mRNA expression of cytokines, the
monocyte chemoattractant protein, and GLUT2 were evaluated
as well as pancreas nuclear factor (NF)-kB p65 and inhibitor of
kB (IkB) protein expression. Insulin and cleaved caspase-3 immu-
nostaining and lipidomic analysis were performed in the pan-
creas.

RESULTS—STZ-induced fat-1 mice did not develop hyperglyce-
mia compared with wild-type mice, and b-cell destruction was
prevented as evidenced by lack of histological pancreatic damage
or reduced insulin level. The prevention of b-cell destruction was
associated with no proinflammatory cytokine induction (tumor
necrosis factor-a, interleukin-1b, inducible nitric oxide synthase)
in the pancreas, a decreased NF-kB, and increased IkB pan-
creatic protein expression. In the fat-1–treated mice, proin-
flammatory arachidonic-derived mediators as prostaglandin
E2 and 12-hydroxyeicosatetraenoic acid were decreased and
the anti-inflammatory lipoxin A4 was detected. Moreover, the
18-hydroxyeicosapentaenoic acid, precursor of the anti-inflammatory
resolvin E1, was highly increased.

CONCLUSIONS—Collectively, these findings indicate that fat-1
mice were protected against MLD-STZ–induced diabetes and
pointed out for the first time in vivo the beneficial effects of n-3
PUFA at the pancreatic level, on each step of the development of
the pathology—inflammation, b-cell damage—through cytokine
response and lipid mediator production. Diabetes 60:1090–
1099, 2011

b-Cells, the principal constituents of islets of Lang-
erhans, control whole body metabolic fuel homeo-
stasis by secreting insulin in response to elevations
in plasma glucose concentration. Experimental

multiple low-doses streptozotocin (MLD-STZ)–induced di-
abetes is characterized by extreme insulin deficiency as
a result of a decrease in the number of functional b-cells
(1,2) by a direct toxic effect of STZ on b-cells and in-
flammatory reaction against damaged b-cells. Reactive
oxygen species (ROS) and nitrogen species such as nitric
oxide (NO) specifically toxic to b-cells (3,4) are then
produced, leading to b-cell destruction and reduced insulin
secretion. Transcription factors, such as nuclear factor-kB
(NF-kB), induce the expression of proinflammatory cyto-
kines and enzymes that are critically involved in the
pathogenesis of chronic inflammatory diseases including
type 1 diabetes (5).

Both genetic and environmental factors are involved in
the etiology of type 1 diabetes and dietary factors, and
among them polyunsaturated fatty acids (PUFA) are prime
candidates for environmental modulators of type 1 di-
abetes (6). Currently, n-6 PUFA comprise a major part of
the fatty acid intake in Western-style diets (7) leading to
a relative deficiency in n-3 PUFA, which may predispose to
increased risk of inflammatory diseases, such as type 1
diabetes. Indeed, the n-6 PUFA arachidonic acid (AA) is
metabolized in activated cells into diverse proinflammatory
eicosanoids. Among them, 12-hydroxyeicosatetraenoic acid
(12-HETE), generated upon 12-lipoxygenase (LO) activa-
tion, is directly toxic to b-cells leading to decreasing insulin
secretory function and b-cell death (8). Resistance to type
1 diabetes induction in 12/15-LO knockout mice was re-
cently observed (9). Conversely, lipoxins (LX) are endog-
enous eicosanoids synthesized locally from AA at sites of
inflammation and exhibit proresolving activities. Among
them, LXA4 can counteract inflammation in different cell
and animal models. LX are considered as endogenous stop
signals for inflammation (10–12).

There is growing evidence that dietary n-3 PUFA can be
involved in diabetes prevention (13) in reducing the ac-
tivity of proinflammatory processes (14) in both animals
and humans (15–17). Among them, eicosapentaenoic acid
(EPA) and docosahexaenoic acid (DHA) are potent im-
munomodulators and are equipotent in inhibiting in-
terleukin (IL)-2 production in mice (18). Suresh and Das
(19) showed that several n-3 and n-6 PUFA and their ei-
cosanoid metabolites alter the susceptibility of alloxan-
induced diabetes in rat. These observations suggest that
n-3 PUFA may lower inflammation susceptibility and
dampen the inflammatory response in pancreatic tissue by
suppressing cytokine production. Lipidomic approaches
have demonstrated that potent anti-inflammatory mediators
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are generated from EPA and DHA (20–23). These newly
discovered mediators, termed resolvins and protectins, are
involved in the resolution of inflammation and have been
shown to inhibit NF-kB activity (20).

Very recently, an in vitro study using two cellular models
evaluated the direct impact of n-3 PUFA on the function
and viability of pancreatic b-cells (23). The authors showed
a strong resistance to the destruction of the cells treated
by cytokines by stable cellular production of n-3 PUFAs in
mfat-1–transfected b-cells. The in vivo relevance of such
conclusions remains to be explored as well as the effi-
ciency of high pancreatic n-3 PUFA in alleviating insulin-
dependent diabetes.

Transgenic fat-1 mice carry a C. Elegans gene, fat-1,
encoding an n-3 fatty acid desaturase catalyzing the con-
version of n-6 to n-3 PUFA (24). There is a remarkable
difference in the n-6–to–n-3 PUFA ratio in tissues from
wild-type (WT) versus fat-1 transgenic mice (20 to 50 and
close to 1, respectively) fed diets high in n-6 and low in
n-3 PUFA (24). A single diet can therefore be used to
generate mice with different fatty acid profiles (high and
low n-6–to–n-3 ratios) eliminating potential confounding
dietary factors and allowing in vivo investigation on the
role of n-6–to–n-3 ratio in the destruction of pancreatic
b-cells.

Thereby, we used fat-1 transgenic mice to determine
whether endogenously synthesized n-3 PUFA could be
b-cell protective in MLD-STZ, and we then evaluated the
mechanisms involved at the pancreatic level in such di-
abetes prevention.

RESEARCH DESIGN AND METHODS

Animals and diets. Transgenic fat-1 mice were generated as described pre-
viously (24) and backcrossed onto a C57BL/6 J background. We used male fat-
1 transgenic mice and nontransgenic littermate controls (14 weeks old, 20–25 g)
since male and female mice have different susceptibilities to STZ (25). The
presence of the fat-1 gene in each mouse was confirmed both by genotyping
and tail fatty acid analysis profiles. Transgenic and WT animals were main-
tained on a 10% safflower oil diet (INRA Jouy-en-Josas, France) ad libitum and
housed in temperature- and humidity-controlled conditions with a 12-h light/
dark cycle, under pathogen-free conditions. The diet contained (g/100 g diet)
4.5 sucrose, 18.8 casein, 51 corn starch, 0.3 DL-methionine, 3.8 mineral mix, 2
vitamin mix, and 10 safflower oil. Safflower oil is high in linoleic acid (18:2n-6)
with very little n-3 fatty acids (less than 0.1% of the total fat supplied). Under
the 10% safflower oil regimen, all the transgenic animals presented a total n-6–
to–n-3 PUFA ratio greater than (but close to) 1 in their tail tissue (n-6/n-3 =
1.5 6 0.2 in fat-1 mice vs. 34.1 6 3.8 in WT control animals; n = 11 per group).
All procedures followed institutional guidelines for the use and care of labo-
ratory animals and were approved by the Ethical Committee of the University
of Burgundy (#Bk 0611).
MLD-STZ administration. Diabetes was induced by MLD-STZ, as described
previously (26). Briefly, STZ (2-deoxy-2–3-[methyl-3-nitrosoureido]-D-gluco-
pyranose; Sigma, St. Louis, MO) was dissolved in 0.1 mol/L sodium citrate
buffer (pH 4.5) and injected intraperitoneally, within 15 min of preparation, at
a dose of 45 mg/kg/day for 5 consecutive days to produce a b-cell destruction
model. Control WT and transgenic mice were injected with citrate buffer as
vehicle. Blood glucose level was measured, in nonfasted animals, in venous
blood using a glucometer (One Touch Vita; LifeScan, Issy les Moulineaux,
France). Mice were evaluated every 2 days at 2:00 P.M. and were considered
diabetic when blood glucose levels exceeded 250 mg/dL, usually 7 to 9 days
after the last STZ injection. All mice were killed in blind for tissue collection as
follows: 3 days after the fifth STZ injection, four mice per group were killed and
cytokines, monocyte chemoattractant protein (MCP)-1, GLUT2 pancreas mRNA
expression, and NF-kB p65 and inhibitor of kB (IkBa) pancreas protein ex-
pression were determined; 9 days after the fifth STZ injection, three mice per
group were killed and the pancreatic islets were immunostained for insulin and
cleaved caspase-3; the remaining animals (four mice) were killed 20 days after
the fifth STZ injection and NF-kB p65 protein expression was determined.
Blood collection and plasma insulin assays. Before mice were killed, 800 mL
of blood were collected from each mouse anesthetized by Isofluran (TEM,
Bordeaux, France) from the retro-orbital vein. Plasma was snap-frozen in liquid

nitrogen and stored at 280°C until plasma insulin concentration determination
was performed using a mouse ELISA kit (Abcys SA, Paris, France).
Tail, pancreas, and plasma fatty acid composition. The fatty acid com-
position in tail (to perform the phenotyping), pancreatic tissue, and plasma was
determined by gas chromatography as described previously (27–29).
Lipidomic analysis. Lipidomic analyses were performed according to
Masoodi et al. (22). All pancreatic tissue was homogenized in ice-cold meth-
anol and diluted with ice-cold water to 15% (vol/vol). Internal standards (40 ng
PGB2-d4 and 80 ng12-HETE-d8) (Cayman Chemicals, Ann Arbor, MI) were
added to each sample. These suspensions were centrifuged; the clear super-
natants acidified to pH 3 and immediately applied to preconditioned solid
phase extraction cartridges (C18-E, Phenomenex, Macclesfield, U.K.) to ex-
tract the lipid mediators. Chromatographic analysis was performed on a C18
column (Luna 5m, Phenomenex) using a Waters Alliance 2695 high-performance
liquid chromatography (HPLC) pump coupled to an electrospray (ESI) triple
quadrupole Quattro Ultima mass spectrometer (Waters, Elstree, Hertsfordshire,
U.K.). Instrument control and data acquisition were performed using MassLynx
V4.0 software. The following multiple reaction monitoring transitions were used
for the assay of lipid mediators and internal standards: prostaglandin E2 (PGE2)
m/z 351 . 271; PGE3 m/z 349 . 269; LXA4 m/z 351 . 217; 12-HETE m/z 319 .
179; 18-hydroxyeicosapentaenoic acid (18-HEPE) m/z 317 . 133; PGB2-d4 m/z
337 . 179; 12-HETE-d8 m/z 327 . 184. Results are expressed as picograms
metabolite per milligram of protein based on calibration lines constructed with
commercially available eicosanoid standards (Cayman Chemicals). Protein
content was estimated using the Bio-Rad protein assay kit with BSA as stan-
dard (Bio-Rad, Hemel Hempstead, U.K.).
Histological and immunohistochemical analysis. Immunohistochemistry
was performed on formalin-fixed, paraffin-embedded pancreas sections stained
with hematoxylin and eosin. Sections were deparaffinized and dehydrated in
a graded series of ethanol washes. Tissue sections were subjected to heat-
induced epitope retrieval (0.1 M citrate buffer boiled in a 600-watt microwave),
then cooled at room temperature for 20 min. After washing in PBS (pH 7.4),
endogenous peroxidase was quenched using a 3% solution (v/v) of hydrogen
peroxidase and PBS. After blocking nonspecific staining with PBS/3%BSA,
sections were incubated with primary antibodies (overnight at 4°C for both
cleaved caspase-3 and insulin antibodies). Sections were then incubated with
secondary antibody, washed again in PBS, and incubated for 20 min with
horseradish peroxidase-3-amino-9-ethylcarbazole detection solution. Slides
were counterstained with hematoxylin. Antibodies for insulin (C27C9) and
cleaved caspase-3 (Asp 175) were obtained from Cell Signaling Technology
(Ozyme, Saint-Quentin-en-Yvelines, France) and used at a concentration of
1/800 and 1/100, respectively.

The islet size from STZ-induced and untreated animals has been compared
using the following procedure: images of islets were acquired on the Cell
Station of CellImaP Plateform (IFR100, Dijon, France). Briefly, this station is
made of an inverted motorized microscope (Axiovert 200M, Carl Zeiss, Le Pecq,
France) equipped with an Axiocam. Image analysis was done using Axiovision
software. More precisely, islets were surrounded using polygonal lasso and
surfaces were recorded. Only islets bigger than 20,000 mm2 were counted.
RT-PCR analysis. Total RNA was extracted from snap-frozen pancreata using
Tri-Reagent (Euromedex, Souffelweyersheim, France). RNA quantity was
measured at 260 nm and purity estimated by the 260-to-280 ratio. Extracted
RNAs were reverse-transcribed to cDNA using random primers, and a reverse
transcriptase system (Invitrogen, Cergy Pontoise, France) and amplified by
PCR. RT-PCR products were quantified using a densitometer and image ana-
lyzer (Bio-Rad, Ivry-sur-Seine, France). b-Actin gene primers were used as an
internal control. RT-PCR was carried out using the following mouse specific
primers: TNF-a(F-59CCACATCTCCCTCCAGAAAA39, R-59AGGGTCTGGGCCA
TAGAACT39), IL-1b (F-59CTCACAAGCAGAGCACAAGC-39, R-59CTCAGTGCA
GGCTATGACCA-39), inducible nitric oxide synthase (iNOS) (F-59ACAGCCTC
AGAGTCCTTCAT39, R-59TTGTCACCACCAGCAGTAGT-39), MCP-1 (F-59AGC
ACCAGCCAACTCTCACT-39, R-59TCTGGACCCATTCCTTCTTG-39), GLUT2
(F-59CGGAATGGTCGCCTCATT-39, R-59CAGTCCTGATACACTTCGTC-39), FAT-1
(F-59CACTCTTCTCTCCCTACTTCC-39, R-59AGCTCCATTCATCAGCCTC-39), and
b-actin (F-59GAAATCGTGCGTGACATC-39, R-59GCTTGCTGATCCACATCT-39).
Western blot analysis. Pancreatic tissue (30 mg) was homogenized in Triton
protein lysis buffer (20 mM Tris, 150 mM NaCl, 200 mM EDTA, 200 mM EGTA,
1% Triton X-100) containing protease and phosphatase inhibitors (Sigma).
Proteins (40 mg) were separated by 10% SDS-PAGE and electroblotted to
Protran nitrocellulose membranes (Whatman, Dassel, Germany). After blocking
nonspecific binding sites with 5% nonfat milk in Tris buffered saline (TBS) (0.1%
Tween-20 in TBS), blots were probed overnight at 4°C with primary antibody
against NF-kB p65 and IkBa (Cell Signaling, Ozyme) and b-actin (Sigma-
Aldrich, Saint-Quentin Fallavier, France) at a concentration of 1/200, 1/800,
and 1/5,000, respectively, washed in T-TBS, incubated 1 h at room temperature
with horseradish peroxidase-conjugated goat anti-rabbit IgG for NF-kB p65
and goat anti mouse IgG for IkBa and b-actin (Jackson ImmunoResearch
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Laboratories, West Grove, PA). Detection was performed using the enhanced
chemiluminescence (ECL) Western blotting analysis procedure (ECL Plus,
Amersham, Freiburg, Germany).
Statistical analysis. Results were expressed as the arithmetical mean and SE
(mean 6 SE) for each group. To determine significant differences, means 6
SE were analyzed using ANOVA and the Newman-Keuls test. Statistical sig-
nificance in the pancreas major fatty acid composition, total n-6, total n-3, and
the n-6–to–n-3 ratio between WT and fat-1 transgenic mice was determined
using a Student t test.

RESULTS

MLD-STZ–induced fat-1 transgenic mice do not develop
hyperglycemia. No significant body weight change was
observed in WT and fat-1 mice after STZ treatment. One
week after the last injection of STZ, STZ-induced mice
started to develop hyperglycemia, which persisted for the
entire observation period (25 days). As shown Fig. 1, gly-
cemia increased in all the WT STZ-induced mice through-
out the study period; in contrast, glycemia in all the fat-1
STZ-induced mice remained unchanged and was identical
to that in WT and fat-1 citrate-treated mice. In the WT STZ-
induced group, the mean blood glucose concentration was
320 mg/dL, with no body weight change, whereas in the
STZ-induced fat-1 mice and the control citrate-treated mice
this mean was 130 mg/dL.
n-3 enrichment protects fat-1 transgenic mice from
MLD-STZ–induced b-cell damage. STZ induced severe
degenerative and necrotic changes and islet shrinkage in

WT mice compared with the citrate; in contrast, no histo-
logical changes were observed in STZ-induced fat-1 mice
compared with the WT or fat-1 citrate-treated mice (Fig. 2A).

The effect of STZ administration on pancreatic GLUT2
gene expression was also assessed, since STZ is taken up
via GLUT2. GLUT2 mRNA expression was decreased in
STZ-induced WT mice compared with citrate-treated ani-
mals (Fig. 2B).

b-Cell insulin level was assessed by immunostaining
pancreatic tissue, and pictures of representative islets are
shown (Fig. 2C). Pancreas sections from citrate-treated
WT and fat-1 mice showed islets with normal insulin
content of insulin-expressing cells. As expected, diabetic
STZ-induced WT mice showed lower insulin content and
increased islet destruction. In contrast, STZ-induced fat-1
mice showed large islets with normal insulin content
similar to the one observed in vehicle-treated animals. The
number of islets bigger than 20,000 mm2 was decreased by
70% in WT STZ-induced mice compared with WT citrate-
treated animals. The percentage of islets bigger than
20,000 mm2 was much higher in citrate-treated fat-1 mice
compared with WT (+120%) and decreased by 33% when
fat-1 mice were given STZ. Nevertheless, this percentage
remained higher in fat-1 STZ-induced mice than in WT
citrate-treated animals.

On day 25, the plasma insulin level (Fig. 2C) was dra-
matically decreased in WT STZ-induced mice, whereas this

FIG. 1. n-3 fatty acid enrichment protects animals from MLD-STZ–induced hyperglycemia. Blood glucose level was measured in nonfasted WT and
transgenic animals given STZ or STZ-vehicle as control (n = 4). Results are presented as a mean 6 SE. Differences were analyzed by the Newman-
Keuls test. Means assigned a superscript letters (a, b, c) were statistically different at P < 0.05. WC, citrate-treated WT mice; WS, STZ-induced
WT mice; FC, citrate-treated fat-1 mice; FS, STZ-induced fat-1 mice.
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was prevented in fat-1 mice. Meanwhile, the plasma insulin
level was significantly higher in citrate-treated transgenic
mice compared with WT; however, when fat-1 mice were
given STZ, the insulin level decreased to that of WT citrate-
treated mice.

To further determine whether fat-1 mice were protected
against MLD-STZ–induced pancreatic damage, the pres-
ence of apoptotic b-cells in pancreas sections was as-
sessed by immunostaining for cleaved caspase-3, and
pictures of representative islets are shown (Fig. 2D). Islets
from STZ-induced WT mice showed a marked increase in
apoptotic b-cells compared with islets of citrate-treated
mice (Fig. 2D). However, STZ-induced fat-1 mice showed
that the levels of apoptotic cells were identical to those of
citrate-treated fat-1 mice and were even lower than in
sections from citrate-treated WT mice.

Pancreas n-3 fatty acid enrichment inhibits
proinflammatory cytokines, NF-kB protein expression
and increases IkBa protein expression in MLD-STZ–
induced fat-1 transgenic mice. A preliminary time-
course study (days 1, 3, and 9 after the last STZ injection)
has been performed to estimate the initiation and de-
velopment of the inflammatory process and b-cell damage.
Our results show that TNF-a mRNA expression was in-
creased from day 3 and remained highly expressed at day 9
in the WT STZ-induced mice, when no expression of this
proinflammatory cytokine was observed in the fat-1 animals,
whatever the treatment (Fig. 3A). Moreover, in parallel to
the induction of TNF-a expression, we observed an islet
damage progression (Fig. 3B).

NF-kB activation plays a critical role in proinflammatory
cytokine expression. We, therefore, examined pancreatic

FIG. 2. n-3 fatty acid enrichment protects animals from MLD-STZ–induced b-cell damage. A: Representative hematoxylin and eosin (H&E)-stained
sections analysis showing islet morphology of WT (top) and fat-1 transgenic (bottom) mice (n = 3). B: Representative effect of STZ administration
on pancreas GLUT2 gene expression (n = 4). C: Representative immunohistochemistry for insulin in the pancreatic islets of WT (top) and fat-1
transgenic (bottom) mice (n = 3). Islet quantification of WT and fat-1 mice presented as percentage of islets with an area bigger than 20,000 mm2

.
Plasma insulin concentration in control or STZ-injected WT and transgenic mice (n = 4) is shown. D: Representative immunohistochemistry for
cleaved caspase-3 in the pancreatic islets of the WT (top) and fat-1 transgenic (bottom) mice (n = 3). Results are presented as a mean 6 SE.
Differences were analyzed by the Newman-Keuls test. Means assigned different superscript letters (a, b, c) (D) were statistically different at P <
0.05. For A, C, and D, results were obtained at day 9 after the fifth STZ injection. WC, citrate-treated WT mice; WS, STZ-induced WT mice;
FC, citrate-treated fat-1 mice; FS, STZ-induced fat-1 mice. (A high-quality digital representation of this figure is available in the online issue.)
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expression of the NF-kB p65 protein to determine the un-
derlying mechanisms involved in inhibition of STZ-induced
inflammatory responses by fat-1 transgenic mice. Our results
show (Fig. 4A) that the expression of the NF-kB p65 subunit
was greatly increased in STZ-induced WT mice but not in
STZ-induced fat-1 mice, suggesting that the endogenous n-3
fatty acid enrichment in the latter inhibited induction of
NF-kB p65. Moreover, IkB protein expression, the NF-kB
repressor, was highly repressed in WT STZ-induced mice
but not in STZ-induced fat-1 mice.

In view of the preliminary results shown in Fig. 3A and
in order to gain insight into the mechanisms underlying the
protection of fat-1 mice from STZ-induced diabetes, we
next examined at day 3 pancreatic mRNA expression of

the inflammatory cytokines TNF-a/IL-1b, the expression of
the chemokine MCP-1, and iNOS. As shown in Fig. 4B, the
fat-1 mice showed a significant reduction in TNF-a, IL-1b,
and iNOS mRNA expression compared with WT mice. Al-
though MCP-1 gene expression was significantly increased
in STZ-induced WT mice, it remained quite unchanged in
STZ-induced fat-1 mice, as compared with citrate-treated
groups.
Pancreas n-3 fatty acid enrichment and formation of
PUFA-derived mediators. As shown in Fig. 5A, the fat-1
gene was well expressed in the pancreatic tissue of trans-
genic animals. Pancreas total lipid fatty acid compositional
analysis revealed high increases in alpha-linolenic acid (18:3
n-3) EPA (20:5 n-3), and docosapentaenoic acid (DPA; 22:5

FIG. 3. A: Time course mRNA level for TNF-a in pancreas collected 1, 3, and 9 days after the last STZ injection, from WT and transgenic animals
injected with multiple low doses of streptozotocin or citrate as vehicle. B: Representative hematoxylin and eosin (H&E)-stained pancreas sections
analysis, showing islet morphology of WT (top) and fat-1 transgenic (bottom) mice (n = 3). Differences were analyzed by Newman-Keuls test. Bars
assigned different superscript letters (a, b, c) were statistically different at P < 0.05; n = 4 mice in each group. WC, citrate-treated WT mice; WS,
STZ-induced WT mice; FC, citrate-treated fat-1 mice; FS, STZ-induced fat-1 mice. (A high-quality digital representation of this figure is available in
the online issue.)
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n-3) in fat-1 transgenic mice compared with WT mice,
whereas AA (20:4 n-6) was decreased by 97% (Fig. 5B). In
addition, the ratio of n-6 PUFA to the long chain n-3 PUFA
was drastically reduced (P , 0.01) in fat-1 pancreatic
tissue (2.6 6 0.4), compared with WT mice (225.8 6 6.7).
These data indicate that n-3 fatty acid desaturase ex-
pression enriched fat-1 pancreatic tissue in n-3 PUFA at
the expense of n-6, giving a more balanced n-6–to–n-3
ratio.

We assessed PUFA-derived bioactive mediators, particu-
larly 12- and 15-LO products from the pancreas (Fig. 5C).
Although no n-3 PUFA–derived mediators were detected in

the WT pancreas, some were present in the fat-1 pancreas.
Regarding AA-derived mediators, the proinflammatory PGE2
was decreased by 95% in the transgenic STZ-induced mice
and the toxic b-cell LO product, 12-HETE, was reduced by
97% in the fat-1 when compared with the STZ-induced WT
mice. Moreover, the anti-inflammatory LXA4, undetected
in WT, was detected in the fat-1 STZ-induced mice. Among
the EPA-derived mediators, only 18-HEPE, precursor for
the biosynthetic pathway of the anti-inflammatory resolvin
E1, was detected in STZ-induced fat-1 mice, and its con-
centration was increased eightfold compared with the WT
animals.

FIG. 4. Pancreas n-3 fatty acid enrichment inhibits expression of NF-kB p65 and proinflammatory cytokines and increases expression of IkBa in
fat-1 transgenic mouse model. A: Representative effect of STZ administration on pancreas NF-kB (p65) and IkBa protein expression. B: mRNA
levels for proinflammatory cytokines and chemokine in pancreas from WT and transgenic animals. TNF-a, IL-1b, iNOS, MCP-1, and b-actin mRNA
levels from pancreas of animals that have been injected with MLD-STZ or citrate as control are shown. Differences were analyzed by Newman-
Keuls test. Bars assigned different superscript letters (a, b, c) were statistically different at P < 0.05; n = 4 mice in each group. In A, for NF-kB
(p65) results were obtained at day 3 (top) and day 20 (bottom) after the fifth STZ injection. For IkBa, results were obtained at day 3 after the fifth
STZ injection. For B, results were obtained at day 3 after the fifth STZ injection. WC, citrate-treated WT mice; WS, STZ-induced WT mice; FC,
citrate-treated fat-1 mice; FS, STZ-induced fat-1 mice.
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Plasma n-3 fatty acid enrichment and total lipid level.
Plasma total lipid fatty acid compositional analysis
revealed huge increases in EPA and DPA in fat-1 trans-
genic mice compared with WT mice, whereas AA (20:4 n-6)
was highly decreased (Fig. 6A). STZ administration did not
affect the fatty acid composition of both WT and fat-1
mice. In addition, the ratio of n-6 PUFA to the n-3 PUFA
was drastically reduced (P , 0.05) in fat-1 plasma, com-
pared with WT mice (Fig. 6B). This data confirm that
plasma was enriched in n-3 PUFA at the expense of n-6
PUFA, giving a more balanced n-6–to–n-3 ratio, when
plasma total lipid level was not statistically changed in all
groups (Fig. 6C).

DISCUSSION

These results clearly demonstrate that increasing the
pancreatic levels of endogenously synthesized n-3 PUFA
prevents MLD-STZ–induced diabetes in fat-1 transgenic
mice and that this effect is associated with less activation

of markers of the inflammatory response. Furthermore, the
protection from type 1 diabetes in fat-1 mice is correlated
with the formation of anti-inflammatory derivatives of n-3
fatty acids and with downregulation of NF-kB p65 and
proinflammatory cytokine expression in the pancreatic
tissue of these animals.

More than alleviating chemically induced diabetes, our
results show that endogenous production of n-3 fatty
acids in fat-1 transgenic mice totally prevents hyperglyce-
mia (Fig. 1). Animal studies have already suggested that
PUFA might reduce the risk of chemically induced di-
abetes and attenuate the oxidant stress in animal models
(30,31). Nevertheless, n-3 feeding is unable to mimic the
protection observed in the fat-1 mice (19,32). Indeed, in
these reports WT animals fed n-3 did not show similar
phenotype than the fat-1 mice, which were totally resistant
to MLD-STZ–induced diabetes. This can be explained by
the fact that the fat-1 mice present the ideal n-6–to–n-3
ratio of about 1—only achievable in WT animals by con-
suming foods containing this ratio—without introducing

FIG. 5. A: Representative RT-PCR for fat-1 and b-actin pancreas expression. Tg, fat-1 transgenic mice. B: Pancreas major fatty acids composition,
total n-6, total n-3, and n-6–to–n-3 ratio are indicated for untreated WT and fat-1 transgenic mice as white and gray bars, respectively (mean6 SE).
*P< 0.05; **P< 0.01 (Student t test); n = 11 per group. ND, not detected.♣, The n-6–to–n-3 ratio is given by (18:2 n-6 + 20:4 n-6 + 22:4 n-6 + 22:5 n-6)/
(18:3 n-3 + 20:5 n-3 + 22:5 n-3 + 22:6 n-3). C: Presence of different lipid mediators in pancreas samples of STZ-induced WT (n = 4) and fat-1
transgenic mice (n = 4). **P < 0.01 (Student t test).
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stringent dietary changes, which is not the case in the
above dietary experiments. Additionally, inconsistent and/
or controversial outcomes may be the result of confound-
ing dietary factors. Many variables can arise from the diet
and feeding procedure, including impurities in the oils
used, food storage, and diet duration, all of which can af-
fect the tissue fatty acid profile. In contrast, the genetic
approach presented in this study allows us to generate two
different plasma and pancreatic fatty acid profiles exhibit-
ing a balanced ratio of n-6–to–n-3 PUFA (Fig. 5B, 6A and B)
using a single diet rich in linoleic acid (18:2 n-6) but lacking
n-3 fatty acids.

STZ is taken up by pancreatic b-cells via GLUT2, which
is expressed at high levels in b-cells. We found that GLUT2
was expressed similarly in fat-1 and in WT mice (Fig. 2B).
Moreover, GLUT2 mRNA expression was decreased in
STZ-induced WT mice compared with citrate-treated ani-
mals, which agree with an alteration of b-cells. Nevertheless,
we observed a slight decrease (not statistically different) of
GLUT2 mRNA expression in fat-1 STZ-induced mice versus
fat-1 controls, consistent with studies reporting that a re-
duced GLUT2 expression can prevent the diabetogenic ac-
tion of STZ (33,34). Additionally, STZ itself restricts GLUT2
expression in vivo and in vitro when administered in multi-
ple doses (35).

The dramatic decrease in WT STZ-induced mice plasma
insulin level (Fig. 2C) observed in the current study is
consistent with the usually described STZ fragmentation of
DNA, which induces destruction of the insulin-producing
b-cells (mainly by apoptosis), leading to reduced insulin

secretion and thus to hyperglycemia (1,25). STZ-induced
fat-1 mice showed large islets with no apoptotic b-cells and
no decrease in insulin level (Fig. 2C and D). The higher
plasma insulin level as well as bigger islets observed in the
fat-1 transgenic mice compared with WT agrees with data
reported recently on mfat-1 isolated islets (23). These
authors explained this phenomenon by reduced level of
PGE2, being known as a negative regulator of insulin
production. Accordingly, in our study, such reduced PGE2
level is also observed in the fat-1 mice pancreas (Fig. 5C),
in relation to higher insulin level. This suggests that the
control of inflammation through reduction of n-6 PUFAs
can be beneficial on b-cell function.

This demonstrates that n-3 fatty acid enrichment of
plasma and the pancreas protects the fat-1 mice from STZ-
induced b-cell destruction. We can then conclude that
there is a relationship between n-3 PUFA levels and pro-
tection from hyperglycemia.

Type 1 diabetes is thought to result from perturbed im-
mune regulation. STZ promotes immune cell invasion of
the islet and generally causes pancreatic inflammation
known as insulitis (36), generated by cytokines and free
radicals. Despite C57Bl/6 J background being sensitive to
hyperglycemic action of STZ, it has been reported that this
model is resistant to STZ-induced insulitis (25). The pres-
ent experiment confirms such data, and recent observa-
tions on mouse insulinoma 6 cells (data not shown)
revealed higher TNF-a expression after STZ administra-
tion indicating increased inflammation, independently to
immune cell invasion. In the current study, prevention of

FIG. 6. A: Plasma major fatty acids composition, total n-6, and total n-3 are indicated for untreated and STZ-induced WT and fat-1 mice (n = 5).
B: Plasma fatty-acids ratios in untreated and STZ-induced WT and fat-1 mice (n = 5). C: Plasma total lipid level in untreated and STZ-induced
animals. Results are presented as a mean6 SE. Differences were analyzed by the Newman-Keuls test. Means assigned different superscript letters
(a, b, c) were statistically different at P < 0.05.
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hyperglycemia in fat-1 mice was accompanied by down-
regulation of NF-kB p65, TNF-a, IL-1b, MCP-1, and iNOS
mRNA expression (Fig. 4), suggesting that NF-kB plays an
important proapoptotic role in cytokine-induced b-cell
destruction. Interestingly, our results also show a higher
expression of IkBa in the fat-1 mice than in WT, suggesting
that a high n-3 PUFA pancreatic level would be able to
overexpress IkBa to prevent NF-kB activation. Recently,
Eldor et al. (37) reported that a conditional and specific
NF-kB blockade protects pancreatic b-cells from di-
abetogenic agents, showing that b-cell–specific activation of
NF-kB is key in the progressive loss of b-cells in diabetes.

It is becoming increasingly clear that n-3 PUFA exert
their effect on inflammatory gene expression through di-
rect actions on the intracellular signaling pathways that
lead to NF-kB activation (38). Our results can be related to
a significant decrease in NF-kB activity observed in the
colon of fat-1 mice with colitis (21) and colon tumors
(39). Moreover, EPA-derived resolvin E1 is able to inhibit
TNF-a–induced NF-kB activation (20).

TNF-a and IL-1b play a central role in regulating b-cell
destruction in the pancreas (40), and TNF-a and IL-1b
inhibitors prevent diabetes in mouse models (41,42). Our
findings are consistent with previous studies in animal
models and humans, showing that n-3 PUFA decrease
TNF-a and IL-6 production (15,43,44), and with recent
studies showing a lower TNF-a production in fat-1 mice
during inflammation (21,38,45), confirming the function of
the n-3 PUFA–derived compounds as anti-inflammatory
mediators (20,21).

Both EPA and DHA decrease agonist-induced activation of
NF-kB, which might play a role in reducing MCP-1 gene
expression (46). We found decreased MCP-1 mRNA ex-
pression in transgenic mice (Fig. 4B); we propose that this
MCP-1 downregulation is critically involved in the beneficial
effects of endogenous n-3 fatty acids, along with down-
regulation of proinflammatory cytokines. Several of the del-
eterious effects of cytokines on rodent pancreatic islets are
mediated by NO, which is produced by the inducible form of
iNOS (47). Our results agree with previous reports showing
attenuation of iNOS in an lipopolysaccharide-stimulated
macrophages model by n-3 PUFA through NF-kB inhibition
(48). Here we show that cytokine-induced NF-kB–mediated
iNOS expression was significantly lower in the pancreas of
fat-1 transgenic mice compared with WT (Fig. 4B).

The inflammatory process alleviation observed in the
current study occurs via mechanisms similar to data re-
cently obtained in vitro on islets, isolated from mfat-1 mice
and then exposed to proinflammatory cytokines (23). Such
islets showed a strong resistance to cytokine-caused de-
struction comparable with the present one. These interesting
data observed in vitro needed to be explored in vivo in
chemically induced diabetic conditions; our present data
evidence that fat-1 expression and its consequent pancreas
enrichment in n-3 fatty acids is efficient in deterring diabetes
by protecting from the STZ-cellular destruction.

Another significant finding of the current study was
large differences in the levels of the AA (notably 12-HETE)
and EPA-derived mediators in fat-1 mice compared with
controls. 12-HETE production has been linked to diabetes
(9,49,50). It can activate NF-kB and is directly toxic to
b-cells, markedly decreasing insulin secretion and in-
creasing b-cell death (8). These observations can be re-
lated to the huge difference in n-6–to–n-3 fatty acid ratio
between the transgenic and WT mice (Fig. 5B). Further-
more, the increased production of AA-derived LXA4, in the

fat-1 tissue, indicates an overall shift from AA-derived
proinflammatory metabolites to an anti-inflammatory and
proresolving profile. LXA4 is formed by either transcellular
metabolism of AA through two sequential lipoxygenation
steps or from 15-HETE esterified in cellular phospholipids
(51), a mechanism that has been linked to disease or host
defense and that may be preferentially activated in the fat-
1 mice. Additionally, EPA can compete with AA as sub-
strate for cyclooxygenase (COX)-2, resulting in reduced
levels of PGE2 and increased levels of PGE3. PGE3 was
detected, albeit at very low levels, in fat-1 mice pancreatic
tissue although it was not found in WT mice. However, the
concentration of PGE3 did not reach that of PGE2, sug-
gesting that there is a role for AA-derived lipid mediators
that cannot be totally replaced by EPA-derived lipid
mediators.

Taken together, our results evidence for the first time
that fat-1 expression and its consequent pancreas enrich-
ment in n-3 fatty acid prevents chemically induced
diabetes. This prevention occurs by downregulating proin-
flammatory cytokine gene expression, blocking NF-kB
activation, and highly repressing proinflammatory PUFA-
derived lipid mediators in the pancreas of fat-1 mice versus
WT. If pancreatic n-3 fatty acid enrichment is found to be
effective in preventing insulin-dependent diabetes in hu-
mans, as was the case in mice in the current study, a nutri-
tional cost-effective intervention could benefit young people
affected by this disease, since there is currently no clinically
useful preventive measure against developing autoimmune
type 1 diabetes.
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