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Abstract

Purpose: Knowledge of tumor mutation status is becoming increasingly important for the treatment of cancer, as mutation-
specific inhibitors are being developed for clinical use that target only sub-populations of patients with particular tumor
genotypes. Melanoma provides a recent example of this paradigm. We report here development, validation, and
implementation of an assay designed to simultaneously detect 43 common somatic point mutations in 6 genes (BRAF,
NRAS, KIT, GNAQ, GNA11, and CTNNB1) potentially relevant to existing and emerging targeted therapies specifically in
melanoma.

Methods: The test utilizes the SNaPshot method (multiplex PCR, multiplex primer extension, and capillary electrophoresis)
and can be performed rapidly with high sensitivity (requiring 5–10% mutant allele frequency) and minimal amounts of DNA
(10–20 nanograms). The assay was validated using cell lines, fresh-frozen tissue, and formalin-fixed paraffin embedded
tissue. Clinical characteristics and the impact on clinical trial enrollment were then assessed for the first 150 melanoma
patients whose tumors were genotyped in the Vanderbilt molecular diagnostics lab.

Results: Directing this test to a single disease, 90 of 150 (60%) melanomas from sites throughout the body harbored a
mutation tested, including 57, 23, 6, 3, and 2 mutations in BRAF, NRAS, GNAQ, KIT, and CTNNB1, respectively. Among BRAF
V600 mutations, 79%, 12%, 5%, and 4% were V600E, V600K, V600R, and V600M, respectively. 23 of 54 (43%) patients with
mutation harboring metastatic disease were subsequently enrolled in genotype-driven trials.

Conclusion: We present development of a simple mutational profiling screen for clinically relevant mutations in melanoma.
Adoption of this genetically-informed approach to the treatment of melanoma has already had an impact on clinical trial
enrollment and prioritization of therapy for patients with the disease.
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Introduction

Melanoma is a malignant tumor of melanocytes. Although the

disease accounts for only 4% of all dermatologic cancers, it is

responsible for 80% of deaths from skin cancer, with over 8,700

deaths projected in the USA in 2011 [1]. The 5 year survival for

patients with metastatic disease not treated with surgical resection

is well under 10%.

Historically, the disease has been classified based on histologic

and morphologic findings of the tumor tissue as well as the

anatomic site of origin. More recently, mutation profiling studies

have revealed that melanoma is further comprised of clinically

relevant molecular subsets defined by specific ‘driver’ mutations.

Such mutations occur in genes that encode signaling proteins

critical for cellular proliferation and survival. At least 6 genes have

been shown to be recurrently mutated in melanoma, including the

serine-threonine kinase encoded by BRAF [2]; the receptor

tyrosine kinase encoded by KIT [3]; the GTP-binding proteins

encoded by NRAS [4], GNA11 [5,6], and GNAQ [6,7]; and the

WNT signaling pathway component encoded by CTNNB1 [8].

With the exception of CTNNB1, a tumor with an alteration in one

of these genes rarely has a mutation in one of the other genes.

Together, mutations in these genes can be found in approximately

70% of melanomas, depending on the site of origin of the primary

lesion (Table 1). The frequency of gene mutation not only varies

by site of origin but also by the presence or absence of chronic

solar damage (CSD). For example, in skin intermittently exposed

to sun, approximately 80% of melanomas have mutations in BRAF

or NRAS. On the other hand, 15–20% of melanomas occurring on

mucosal, acral, and CSD skin have a KIT mutation while few have

BRAF mutations (5–15%). The KIT gene is wild-type (WT) in

melanomas arising from skin without CSD [3].

Tumor mutation status has been linked with sensitivity of

melanomas to specific targeted therapies. Tumors that harbor

BRAF V600E mutations display high radiographic response rates

to mutant-specific inhibitors such as PLX4032/RG7204/vemur-

afinib (Plexxikon/Roche) [9,10] and GSK2118436 (GlaxoSmith-

Kline) [11], while patients whose tumors have certain KIT

mutations (L576P, K642E, V559A) have disease sensitive to the

KIT inhibitor, imatinib (Table 1) [12,13,14,15,16,17,18,19,20].

Preclinical data suggest that MEK inhibition with drugs like

AZD6244 or GSK1120212 may be effective for uveal melanomas

carrying GNAQ or GNA11 mutations [6]. Tumors with NRAS

mutations may respond to more potent MEK inhibitors

(GSK1120212) or may require blockade of pathways mediated

by both MEK and PI3K or other strategies directed at the MET

receptor or ligand [21,22].

We report here the development, validation, and clinical

implementation of a multiplexed assay designed to simultaneously

detect 43 recurrent mutations in BRAF, KIT, NRAS, GNA11,

GNAQ, and CTNNB1 using tumor-derived DNA from formalin-

fixed paraffin-embedded (FFPE) tissues. The assay was adapted

from a previously implemented genotyping platform designed for

targeted mutational analysis of a broader set of tumor types [23].

The screen uses SNaPshot technology (Life Technologies/Applied

Biosystems), which involves multiplexed amplification of DNA

targets by the polymerase chain reaction (PCR) with unlabeled

oligonucleotide primers, multiplexed single-base primer extension

with fluorescently-labeled dideoxynucleotides, and analysis of

labeled primer-extension products by capillary electrophoresis.

Compared to direct sequencing, multiple publications have

already documented that the SNaPshot assay offers higher

analytical sensitivity and reduced complexity [23,24,25]. Our

assay provides a robust and accessible approach for the rapid

identification of important mutations in melanoma that can enable

prioritization of specific targeted therapies. As proof of principle,

we present our clinical experience with the initial 150 consecutive

patients whose melanomas were prospectively screened and its

impact on clinical trial assignment.

Methods

Cell Lines and Tumor Samples
Genomic DNA was derived from 16 cancer cell lines (10

melanoma cell lines and 6 additional various carcinoma cell lines

used as additional positive and negative controls; Table S7) in

addition to 24 fresh-frozen primary human melanomas. The

following cancer cell lines were generously provided by Dr. David

Solit (Memorial Sloan Kettering Cancer Center): WM1361A [26],

SK-MEL-238 [27], SK-MEL-90 [28], MEL270 [29], and 92.1

[29]. The following cell lines were generously provided by Dr.

Meenhard Herlyn (The Wistar Institute): WM1963 [30],

WM3682 [30], WM115 [31], WM266-4 [2], and WM3211

[32]. The following cancer cell lines were available in the Pao

laboratory: H358 [24], H2009 [24], H460 [24], H1975 [24],

H1666 [24]. The LoVo [56] cell line is available commercially

from the American Type Culture Collection (ATCC). DNA was

either kindly provided by collaborators or was isolated using a

DNeasyH kit (Qiagen Inc.). Some of these samples were subjected

to whole genome amplification using the GenomiPhi DNA

amplification kit (GE Healthcare) prior to use, as indicated. An

Table 1. Gene mutation frequency in melanoma and predicted sensitivities to targeted.

Gene Mutation Frequency and Anatomic Site Prediction

BRAF V600E/R/K/M/G/D 8% CSD 58% non-CSD 22% Acral 3%
Mucosal [2,3,4,34]

Sensitive to: Vemurafenib GK2118436,
GSK1120212 [9,11,33,44,45,46,47]

NRAS G12C/S/R/V/A/D G13A/V/R/D
Q61E/H/L/K/P/R

10% Acral 24% Mucosa 15% CSD 22%
non-CSD [34,48]

Sensitive to: (pre-clinical) MEK +/2 PI3K inhibition
[21,49,50,51] MET inhibition [22] Resistant to:
BRAF inhibitors

KIT W557R V559A/D L576P K642E D816H 23% Acral 16% Mucosal 28% CSD
[3,39,48]

Sensitive to: Imatinib Nilotinib Sunitinib Dasatinib
Decreased sensitivity to: Imatinib (D816H only)
[12,16,21,39,48]

CTNNB1 S37F/Y S45P/F/Y 4% Overall [52,53,54] Preclinical progression of BRAF-mutant
melanomas [8,53]

GNAQ Q209P/L/R 45% Uveal [6,7] Sensitive to: (pre-clinical) MEK inhibitors [55]

doi:10.1371/journal.pone.0035309.t001
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additional 17 FFPE-derived DNA samples were extracted using a

QIAamp DNA FFPE tissue kit (Qiagen, Inc.) and/or generously

provided by collaborators. Human male genomic DNA (Promega

Corporation) was used as a WT control.

SNaPshot Assay
The basic SNaPshot technique for cancer mutation analysis has

been described [23]. The standard operating procedure protocol is

provided in the Methods S1. PCR primers for this specific

melanoma screen are listed in Table S1. Single-base extension

primers are listed in Table S2. The concentration of PCR and

extension primers in each panel were optimized so that all

fluorescently labeled fragments displayed similar peak heights after

capillary electrophoresis (Figure 1A). Each peak was individually

validated with DNA from cell lines containing known mutations or

‘spiking primers’ (i.e. oligonucleotides; Table S3) harboring

mutations of interest (Figure S1A–E). For each panel, the spiking

primers were mixed to create a pan-positive control mix using

pools of ‘spiking primers’ (Table S4) to detect all possible known

mutations at each site (Figure 1B). Using genomic DNA from

frozen tissue samples, we were able to reliably perform the entire

SNaPshot screen with all five panels using 20 nanograms of DNA

per panel.

To measure assay sensitivity, one representative mutation in

each of the five panels was studied, using mixtures of male human

non-neoplastic genomic DNA and DNA from positive control cell

lines with known mutations. Cell lines SK-MEL-238, PA1, and

WM1361A were used as examples for sensitivity measurements of

BRAF V600K, NRAS G12D, and NRAS Q61R mutations,

respectively (Figure 1C and data not shown). For any given locus,

a mutation was called confidently if its peak height was greater

than or equal to 10% of the corresponding heterozygous WT peak

in the same sample. If the height of a potential mutation peak was

less than 10% of the corresponding WT peak or if no WT peak

was detected, then a mutation was called if the potential mutant

peak was three times higher than any background peaks of the

same color and size in separate analyses of WT DNA controls

[24]. The y-axis was adjusted to the appropriate scale to visualize

various peaks. According to these criteria, mutant peaks were

visually observed in dilutions as low as 6.25%, consistent with prior

published results on two different SNaPshot screens [23,24].

The current screen was designed to distinguish between BRAF

mutations in cis or trans. If a two nucleotide BRAF mutation (e.g.

1798_1799GT.AA) is present in cis, the 1799 mutation will not

be detected in the forward direction (Panel I), but will be detected

using the 1799 reverse primer (Panel 2). If the two nucleotide

BRAF mutation is present in trans, the 1799 mutation should be

detected using both the forward and reverse primers (Table S2).

Direct Dideoxynucleotide-Based Sequencing
All test and validation samples with mutations detected by

SNaPshot underwent secondary analysis by direct sequencing as

published using M13-tagged gene-specific primers (Table S5)

[24].

Assessment of Clinical Tumor Samples
The first consecutive 150 melanoma samples in the molecular

diagnostics lab and associated clinical characteristics were

analyzed after obtaining written informed consent from all patients

on a Vanderbilt University Institutional Review Board (IRB) -

approved protocol (MEL #09109). All clinical data was obtained

and maintained according to HIPAA standards. All unique

identifiers have been removed prior to publication. Tissue and

tumor samples in this study were obtained from Vanderbilt

University and were all used under the Vanderbilt University

Institutional Review Board (IRB) - approved protocol IRB#
100178 entitled ‘‘VICC MEL 09109-Storage and Research Use of

Human Biospecimens from Melanoma Patients and Clinical

Testing for the Assignment of Therapy’’.

Results

Development of a SNaPshot Assay to Assess Multiple
Somatic Point Mutations in Melanoma

The melanoma SNaPshot screen (v1.0) interrogates 43 somatic

point mutations occurring at 20 different loci in 6 genes (Table 2).

These mutations were originally selected in 2009 because they: 1)

appear in melanomas, 2) could potentially be used to prioritize

selection of existing or emerging targeted therapy, and 3) occur at

mutational ‘hotspots’. The screen included 21 single-base

extension SNaPshot assays, a portion of which were derived from

a 58 mutation genotyping panel that is currently being used for

clinical testing of FFPE-derived tumor samples [23]. While other

genes (e.g. CDKN2C, CDKN2A, MITF, BAP1, PTEN, ERBB4, and

FGFR2, etc.) are mutated with some frequency in melanoma, no

common recurring mutations in these genes are observed or the

function of observed mutations are unknown; therefore these genes

were not included in our screen. The selected mutations were

incorporated into five multiplexed panels, each capable of

detecting mutations at four (Panels I, II, III and V) or five (Panel

IV) loci (Figure 1A).

Distinguishing Among Different Mutant BRAF Alleles at
Amino Acid V600

According to the Catalogue of Somatic Mutations in Cancer

(COSMIC), approximately 42% of melanomas harbor BRAF

mutations, of which 36% are V600E and 3% are V600R/K/M/

G/D. Although mutant-specific inhibitors like vemurafenib and

GSK2118436 are predicted to be equally efficacious against a

variety of V600 mutants [33], clinical trials with the approved

BRAF inhibitor, Vemurafenib, have thus far have focused on

enrolling only those with V600E mutant melanoma. Therefore, we

designed our SNaPshot platform to distinguish among BRAF

V600 mutants (Table 2). DNA from fresh-frozen or FFPE human

melanoma tissue was used to show detection of multiple BRAF

V600 mutations V600E/K/M/R/E (Figure S2).

Validation of the Melanoma SNaPshot Screen on Tumor
Samples

We used the SNaPshot screen to interrogate a panel of 16 cell

lines with known mutation status. Results were in 100%

concordance with previously published data; no false positive or

false negative cases were observed (Table S6 and Table S7). The

lack of detection of mutations in known WT samples or samples

with mutations in homologous genes (e.g. NRAS vs. KRAS)

demonstrates specificity of the SNaPshot assay.

We next interrogated the mutation status of 24 fresh-frozen

primary human melanomas using the SNaPshot screen (Figure
S3, Table S6 and S8). Thirteen tumors (54%) had BRAF

mutations including 10 V600Es, 2 V600Ks, and 1 V600M. Three

samples (12.5%) had NRAS mutations: 2 Q61Rs and 1 G13A.

One sample (4.2%) had a KIT L567P mutation. The remaining

samples were WT for all of the mutations tested. As expected,

BRAF, NRAS, and KIT mutations were mutually exclusive, and the

distribution of mutations was consistent with that reported in the

literature (Table 1) [2,3,4,34]. All mutations detected by the

SNaPshot assay were verified by direct sequencing.

Mutational Profiling of Melanomas
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Finally to complete the development phase, the assay was used to

evaluate DNA from 18 FFPE samples (Table S6 and S9). Seven

samples (OHSU10) had known mutational status and were

evaluated blinded. The other 11 samples (VICC) had previously

unknown mutational status. Six samples harbored KIT mutations,

including 2 W557Rs, a V559A, a V559R, a L576P, and a K642E.

Seven samples contained BRAF mutations, including 4 V600Es, 2

V600Ks, and 1 V600R. One sample had an NRAS G13D

mutation, and four samples were WT for all mutations tested. A

tumor with a mutation in one gene did not harbor a mutation in any

other gene. We achieved 100% concordance with known results.

Spectrum of Mutations in the First 150 Clinically
Screened Melanomas

In July 2010, the SNaPshot assay was implemented in

Vanderbilt’s Clinical Laboratory Improvement Amendments-

approved Molecular Diagnostics Laboratory as a component of

routine care for patients with melanoma. Among the first 150

melanomas genotyped with informed consent (from 07/08/2010

to 12/13/2010), 90 (60%) had at least one mutation (Table 3,

Figure 2; Table S10), including 57, 23, 6, 3, and 2 mutations in

BRAF, NRAS, GNAQ, KIT, and CTTNB1, respectively. Among

BRAF V600 mutations, 79%, 12%, 5%, and 4% were V600E,

V600K, V600R, and V600M, respectively. Among the 57

melanomas with BRAF V600 mutations, 35 originated from

intermittent sun damaged skin, 10 from chronic sun damaged skin,

2 from acral sites, 2 from mucosal sites, and 8 from unknown

primary sites. None of the 7 uveal melanomas contained BRAF

mutations. NRAS mutations were found in disease from all sites

except the uvea. 2 of 3 KIT changes were found in melanomas

from acral and mucosal primary sites. 5 of 6 GNAQ mutations were

found in melanomas from uveal sites. No mutations were found in

GNA11 in this small set of uveal melanomas. Only one tumor had

two mutations (NRAS Q61L and CTNNB1 45P), while all other

mutations were mutually exclusive.

Clinical Trial enrollment of metastatic melanoma patients
with detected mutations

Eighty-two patients had metastatic (M1) disease of which 54 had

mutations. The prospective nature of this study provides a better

Figure 1. Melanoma SNaPshot screen (v1.0). A, five multiplexed panels can detect the mutational status of twenty gene loci. Each peak color
represents a particular nucleotide at that locus. The gene name, amino acid, and nucleotide are labeled above each peak. An ‘‘(R)’’ after the
nucleotide denotes a reverse extension primer. B, pan-positive control for melanoma SNaPshot screen. Peaks are labeled as described in A. C,
SNaPshot sensitivity measurement using cell line DNA carrying known mutations. Numbers indicate the arbitrary fluorescence units of WT (panel 1:
green, panels 2, 3: blue) and mutant (panel 1: blue, panels 2, 3: green) peaks. Solid arrows indicate mutant peaks and dotted arrows show background
peaks. Background peaks in the negative controls (far right panel) are indicated by their peak height and a star (*).
doi:10.1371/journal.pone.0035309.g001
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understanding on the impact of the implementation of the test and

its effect on patient treatment selection. Importantly, 23 of 54

patients (43%) with metastatic disease containing a detectable

mutation were subsequently enrolled on genotype-driven trials

(Table 4). This is not restricted only to patients with BRAF

V600E. Patient with NRAS, KIT, and GNAQ mutations were

also enrolled on specific trials directed at their tumor mutation

status. These data demonstrate the utility of this approach to the

treatment of melanoma and its ability to better match patients

with more effective therapies.

Discussion

Historically, therapeutic decisions for the treatment of malig-

nant melanoma have been based upon stage and histology

(ulceration and depth or volume of tumor), with the choice of

systemic anti-cancer therapies guided mostly by empiric data

leading to generally dismal outcomes [35,36,37,38]. However,

basic and translational research has uncovered molecular

abnormalities in melanomas that not only drive and sustain the

cancer but can also serve as attractive therapeutic targets. For

example, mutant-specific inhibitors induce a .50% response rate

in patients with BRAF V600-mutant tumors [9,10,11,39,40], and

nearly 50% of tumors harboring certain KIT mutations are highly

sensitive to imatinib [12,15,16,18,19,20].

Here, we present development, validation, and clinical implemen-

tation of a disease-specific SNaPshot-based screen [23,24] to assess

melanoma tumor samples simultaneously for 43 somatic recurrent

point mutations in 6 genes with relevance to targeted therapy. The

SNaPshot assay can be performed rapidly with minimal amounts of

starting FFPE-derived DNA material (20 nanograms) and high

sensitivity [23,24], detecting mutations in samples when mutant DNA

comprises ,10% of the total DNA (see supplemental material). By

comparison, direct dideoxynucleotide sequencing, used currently in

many clinical molecular labs, requires that mutant DNA comprise

.20–25% of the total DNA for mutation detection.

In its present form, the SNaPshot assay can detect mutations

that occur in the majority of melanomas. Of the first 150 tumor

samples tested in the clinical lab, 90 (60%) had an identifiable

mutation, which were 38% BRAF, 15% NRAS, 4% GNAQ, 2%

KIT, and ,1% CTNNB1. Now with additional prospective testing

for over 15 months, the numbers remain similar in their

breakdown. The frequency of these mutations and the anatomic

Table 2. The SNaPshot melanoma screen can detect 43 point mutations in 6 genes relevant to targeted therapy in melanoma.

NRAS KIT

Position AA mutant Nucleotide mutant* Position AA mutant Nucleotide mutant

G12 p.G12C c.34G.T W557 p.W557R c.1669T.C

p.G12S c.34G.A p.W557R c.1669T.A

p.G12R c.34G.C V559 p.V559A c.1676T.C

p.G12V c.35G.T p.V559D c.1676T.A

p.G12A c.35G.C L576 p.L576P c.1727T.C

p.G12D c.35G.A K642 p.K642E c.1924A.G

G13 p.G13A c.38G.C D816 p.D816H c.2446G.C

p.G13V c.38G.T

p.G13R c.37G.C CTNNB1

p.G13D c.38G.A S37 p.S37F c.110C.T

Q61 p.Q61E c.181C.G p.S37Y c.110C.A

p.Q61H c.183A.T S45 p.S45P c.133T.C

p.Q61H c.183A.C p.S45F c.134T.C

p.Q61L c.182A.T p.S45Y c.134C.A

p.Q61L c.182_183AA.TG

p.Q61K c.181C.A GNA11

p.Q61P c.182A.C Q209 p.Q209P c.626A.C

p.Q61R c.182A.G p.Q209L c.626A.T

p.Q61R c.182_183AA.GG

GNAQ

BRAF Q209 p.Q209P c.626A.C

V600 p.V600R c.1798_1799GT.AG p.Q209L c.626A.T

p.V600K c.1798_1799GT.AA p.Q209R c.626A.G

p.V600E c.1799T.A

p.V600E c.1799_1800TG.AA

p.V600M c.1798G.A

p.V600G c.1799T.G

p.V600D c.1799_1800TG.AT

*SNaPshot assays in bold text were previously published [23].
doi:10.1371/journal.pone.0035309.t002

Mutational Profiling of Melanomas

PLoS ONE | www.plosone.org 5 April 2012 | Volume 7 | Issue 4 | e35309



sites of origin for the primary tumor were consistent with

previously published results. Of the 90 mutations detected, 57

mutations were identified that involved the BRAF V600 position.

The percent of BRAF mutations that were V600E (79%)

(Figure 2) is also consistent with what has been reported in the

literature [2,34,41]. Since our assay was designed to distinguish

among various mutations that affect V600, our data further show

that allele-specific molecular diagnostic assays designed to detect

only the most common V600E mutation will miss ,20% of the

total number of V600 mutations in melanoma.

Importantly, our results demonstrate the impact of tumor

mutation assessment on directing melanoma patients to the most

appropriate clinical trials with the therapeutic agents most likely to

provide a benefit. Of the 54 patients with metastatic disease and a

detected tumor mutation, 23 (43%) were subsequently enrolled onto

genotype-driven trials based upon the results from their tumor

mutational profiling. This is a dramatic advantage over a simple

allele specific PCR for BRAF V600E. In addition to BRAF

inhibitors, patients are directed to trials for KIT mutations,

GNAQ/11 mutations in uveal melanoma, and even NRAS mutant

melanoma. In addition, studies in patients who have disease

progression following initial response to BRAF inhibitor therapy

have revealed a secondary mutation in NRAS as the mechanism of

resistance in nearly a quarter of this patient population [42].

Therefore, mutational profiling of resistant disease after BRAF

inhibitors may provide insight into selecting secondary therapy.

This prospective approach to mutation analysis has multiple

advantages in melanoma. First and foremost, it allows prospective

patient selection to the best available therapies or most relevant

clinical trials based on tumor mutational status. Given the increasing

number of clinically relevant genotypes in melanoma and the

expanding repertoire of targeted inhibitors (Table S11), clinical

characteristics or tumor histology are no longer the most effective

way to select and prioritize treatment options for patients with this

Figure 2. Distribution of mutations in the first 150 tumors genotyped in the molecular diagnostic lab. Left: distribution of all mutations.
Right: distribution of V600 mutations. See Table S10 for more details.
doi:10.1371/journal.pone.0035309.g002

Table 3. Spectrum of mutations in the first 150 melanomas genotyped in the molecular diagnostic lab.

Site of primary # of cases
Mutation
Present BRAF CTNNB1 GNAQ/GNA11 KIT NRAS

No mutation
detected

Head and Neck
(CSD*)

27 11 (41%) 10 0 0/0 0 1 16

Torso (non-CSD) 46 32 (70%) 24 1# 0/0 1 7 14

Extremities (non-CSD) 31 19 (61%) 11 0 0/0 0 8 12

Uveal 7 5 (71%) 0 0 5/0 0 0 2

Acral 13 6 (46%) 2 1 0/0 1 2 7

Mucosal 11 5 (45%) 2 0 0/0 1 2 6

Unknown primary 15 12 (80%) 8 0 1/0 0 3 3

Total cases
(% of total)

150 90 (60%) 57 (38%) 2 (1.4%) 6 (4%) 3 (2%) 23 (15%) 60 (40%)

*CSD – chronic sun damage.
#This CTNNB1 mutation (CTNNB1 S45P) occurred concurrently with an NRAS Q61L mutation.
doi:10.1371/journal.pone.0035309.t003
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disease. A single comprehensive tumor genotyping panel in the form

of the SNaPshot test will allow patients and physicians to understand

and incorporate complex tumor-gene-mutation information into

their treatment algorithms. Second, because the disease can quickly

progress, determining tumor mutation status as part of routine care

enables faster treatment prioritization [43]. Third, prospective

genotyping allows for the determination of an accurate portrait of

the genomic profile of patients who are routinely referred to this

institution as opposed to retrospective studies reported from large

databases (e.g. COSMIC) or other institutions. Finally, prospective

tumor profiling may allow us to make previously unknown

associations between a tumor mutation and clinical features and/

or clinical activity of new drug combinations. Of greatest

importance, this assay has proven benefit in directing patients to

the most appropriate therapies and clinical trials, which will

ultimately lead to improved outcomes for patients with melanoma.

Supporting Information

Figure S1 The melanoma screen can detect various
BRAF V600 mutations. BRAF V600 status and the BRAF

nucleotide(s) detected by SNaPshot are indicated to the left of the

panels. The SNaPshot panels that detect the BRAF nucleotides are

specified above the peaks. Forward extension primers are

represented by ‘F’ and reverse extension primers are represented

by ‘R’. Representative BRAF mutations are shown: A, WT BRAF

V600, B, BRAF V600E, C, BRAF V600E, D, BRAF V600K, E,

BRAF V600M, and F, BRAF V600R.

(TIF)

Figure S2 Validation of each SNaPshot peak. DNA from

FFPE samples with known mutation status or spiking primers

containing mutations of interest were used to validate the detection

of each mutation in the screen. Validation of mutations was

performed as described in the Materials and Methods section (A)

Panel I, (B) Panel II, (C) Panel III, (D) Panel IV, and (E) Panel V.

(TIF)

Figure S3 Melanoma SNaPshot screen results con-
firmed by direct sequencing. DNA from frozen melanoma

samples (see Table S8) was extracted and subject to the

melanoma SNaPshot assay (left panels) and direct sequencing

(right panels). The arrows indicate the position of the mutated

peaks. Representative samples with mutations in BRAF, NRAS, and

KIT are shown. All traces are available upon request.

(TIF)

Methods S1 Standard operating procedure: SNaPshot
genotyping assay for melanoma.
(DOCX)

Table S1 PCR primers for SNaPshot screen.
(DOC)

Table S2 Single-base extension primers for SNaPshot
screen.
(DOC)

Table S3 Spiking primers used for pan-positive control
assay.
(DOC)

Table S4 Pan-positive control mix preparation.
(DOC)

Table S5 PCR primers used for direct sequencing.
(DOC)

Table S6 Summary of mutations detected in cell lines,
frozen tissues, and FFPE samples.
(DOC)

Table S7 SNaPshot assay results for cell lines.
(DOC)

Table S8 SNaPshot assay results for fresh-frozen pri-
mary human melanomas.
(DOC)

Table S9 SNaPshot assay results for FFPE tissue.
(DOC)

Table S10 SNaPshot assay results for the first 150
clinically screened melanomas.
(DOCX)

Table S11 Open genotype-driven clinical trials at
Vanderbilt University.
(DOC)
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