View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Harvard University - DASH

DIGITAL ACCESS TO
SCHOLARSHIP AT HARVARD

soadm D A

. S H
The Long-Run Risks Model and Aggregate Asset Prices: An
Empirical Assessment

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Beeler, Jason, and John Y. Campbell. 2012. The long-run risks
model and aggregate asset prices. An empirical assessment.
Critical Finance Review 1(1): 141-182.

Published Version  doi:10.1561/104.00000004

Accessed February 19, 2015 10:30:31 AM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL .InstRepos; 9887621

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Open Access Policy Articles, as set forth at
http://nrs.harvard.edu/urn-3:HUL .l nstRepos:dash.current.terms-of -
userOAP

(Article begins on next page)


https://core.ac.uk/display/28940183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/9887621&title=The+Long-Run+Risks+Model+and+Aggregate+Asset+Prices%3A+An+Empirical+Assessment
http://dx.doi.org/10.1561/104.00000004
http://nrs.harvard.edu/urn-3:HUL.InstRepos:9887621
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

The Long-Run Risks Model
and Aggregate Asset Prices:
An Empirical Assessment

Jason Beeler and John Y. Campbell

First draft: November 2008
This version: October 2011

'Beeler: Department of Economics, Littauer Center, Harvard University, Cambridge MA 02138,
USA. Email jbeeler@fas.harvard.edu. Campbell: Department of Economics, Littauer Center, Har-
vard University, Cambridge MA 02138, USA, and NBER. Email john campbell@harvard.edu. We
are grateful to Ravi Bansal, John Cochrane, Cam Harvey, Dana Kiku, Ken Singleton, Ivo Welch,
Amir Yaron, and participants at the NBER Summer Institute for their comments on earlier versions
of this paper.



Abstract

The long-run risks model of asset prices explains stock price variation as a response
to persistent fluctuations in the mean and volatility of aggregate consumption growth,
by a representative agent with a high elasticity of intertemporal substitution. This
paper documents several empirical difficulties for the model as calibrated by Bansal
and Yaron (BY, 2004) and Bansal, Kiku, and Yaron (BKY, 2011). US data do not
show as much univariate persistence in consumption or dividend growth as implied by
the model. BY’s calibration counterfactually implies that long-run consumption and
dividend growth should be highly predictable from stock prices. BKY’s calibration
does better in this respect by greatly increasing the persistence of volatility fluctu-
ations and their impact on stock prices. This calibration fits the predictive power
of stock prices for future consumption volatility, but implies much greater predictive
power of stock prices for future stock return volatility than is found in the data. The
long-run risks model, particularly as calibrated by BKY, implies extremely low yields
and negative term premia on inflation-indexed bonds. Finally, neither calibration
can explain why movements in real interest rates do not generate strong predictable
movements in consumption growth.



1 Introduction

Consumption-based asset pricing models explain fluctuations in aggregate asset prices
using shocks to the process driving aggregate consumption, together with assumptions
about the utility function of a representative investor. A very basic question is
what types of shocks are important, and different consumption-based models answer
this question differently. The habit-formation model of Campbell and Cochrane
(1999), for example, emphasizes shocks to the current level of consumption that
move consumption in relation to a moving average of its past values, while the rare
disasters model of Rietz (1988) and Barro (2006, 2009), extended by Gabaix (2010)
and Wachter (2011), emphasizes changes in the probability or severity of a large drop
in consumption.

Bansal and Yaron (henceforth BY, 2004) have argued that the key shocks moving
aggregate stock prices are changing expectations of long-run consumption growth and
its volatility. Their long-run risks model has attracted a great deal of attention, with
important subsequent work by Bansal, Khatchatrian, and Yaron (2005), Bansal, Kiku,
and Yaron (2007, 2010, 2011), Hansen, Heaton, and Li (2008), Bansal, Dittmar, and
Kiku (2009), and Bansal and Shaliastovich (2009, 2010) among others. The purpose
of this paper is to evaluate the plausibility of the claim that these shocks are the main
drivers of aggregate asset prices.

The long-run risks model has four key features. First, there is a persistent pre-
dictable component of consumption growth. This component is hard to measure
using univariate time-series methods, but investors perceive it directly and so it in-
fluences asset prices. In BY’s original calibration of the model, this is the most
important cause of stock price movements. Second, there is persistent variation in
the volatility of consumption growth. A more recent calibration of the model by
Bansal, Kiku, and Yaron (henceforth BKY, 2011) greatly increases the importance of
changing volatility by increasing its persistence, somewhat in the spirit of Calvet and
Fisher (2007, 2008). Third, consumption and dividends are not the same; the stock
market is a claim to dividends, which are more volatile than consumption although
correlated with consumption and sharing the same persistent predictable component
and the same movements in volatility.

Finally, assets are priced by a representative investor who has Epstein-Zin-Weil
preferences (Epstein and Zin 1989, Weil 1989). These preferences generalize power
utility by treating the elasticity of intertemporal substitution (EIS) and the coefficient



of relative risk aversion (RRA) as separate free parameters. In the long-run risks
model, EIS is greater than one and RRA is many times greater than one. The level
of EIS ensures that stock prices rise with expected future consumption growth and
fall with volatility of consumption growth, while the level of RRA delivers high risk
premia. Because EIS is greater than the reciprocal of RRA, asset risk premia are
driven not only by covariances of asset returns with current consumption, as in the
classic power-utility models of Hansen and Singleton (1983) and Mehra and Prescott
(1985), but also by the covariances of asset returns with expected future consumption
growth (Restoy and Weil 1998, 2011).?

In this paper we assess the consistency of the BY and BKY calibrations of the long-
run risks model with stylized facts about macroeconomic dynamics and the pricing of
stocks and bonds. Some of our points have been made in recent papers by Bui (2007)
and Garcia, Meddahi, and Tédongap (2008), but our examination of the long-run risks
model is more comprehensive.?

We make five main points. First, there is evidence of mean-reversion rather than
persistence in US consumption and dividend series in the period since 1930 that is
emphasized by BY and BKY. Even in data from the period since World War 11, the
persistence of consumption and dividend growth is considerably smaller than in the
BY and BKY calibrations of the long-run risk model. Thus the simplest univariate
time-series analysis casts doubt on the existence of the predictable variations in long-
run growth that drive the long-run risks model.

Of course, predictable variations in long-run growth might exist in the data but
might be masked by temporary fluctuations that are omitted from the long-run risks
model. If this is the case, however, economic agents must perceive those variations in

2The Epstein-Zin-Weil model can alternatively be used to derive an augmented version of the
classic Capital Asset Pricing Model, in which asset risk premia are driven not only by covariances
of asset returns with the current return on the aggregate wealth portfolio, but also by covariances
with news about future returns on wealth (Campbell 1993, 1996, Campbell and Vuolteenaho 2004).
We do not explore this approach to the model here. Campbell (2003) gives a textbook treatment
of the Epstein-Zin-Weil model under homoskedasticity.

3A similar empirical analysis by BKY analyzes only the calibration with extremely persistent
consumption volatility and ignores the original BY calibration. We evaluate both calibrations for
two reasons. Many contributions to the long-run risks literature continue to use a half life of volatility
shocks closer to that in BY (Bansal, Kiku and Yaron (2007) Bansal and Shaliastovich (2009) Bansal
and Shaliastovich (2010)), so it remains important to understand the properties of the long-run risks
model with lower volatility persistence. In addition, including both calibrations builds understanding
of the sensitivity of model properties to parameters.



order for them to influence asset prices. This means that asset prices should predict
consumption and dividend growth if the long-run risks model is true. Our second
main point is that the level of the stock market (as measured by the log price-dividend
ratio) is a poor predictor of dividend growth and particularly of consumption growth,
but a strong predictor of future excess stock returns. These patterns are inconsistent
with both the BY and BKY calibrations of the long-run risks model.

BKY recognize that the original calibration of the long-run risks model by BY
overstates the ability of stock prices to predict consumption and dividend growth.
Accordingly they calibrate a version of the model in which predictable movements in
consumption volatility are a more important influence on stock prices, thereby weak-
ening the correlation between stock prices and subsequent consumption growth. Our
third main point is that while the BKY calibration does capture an important empir-
ical regularity—that stock prices strongly predict future consumption volatility—it
creates a new puzzle by overstating the ability of stock prices to predict stock return
volatility.

Fourth, we show that the long-run risks model predicts a downward-sloping term
structure of interest rates on real (inflation-indexed) bonds. This is because both
negative shocks to consumption growth and positive shocks to volatility lower real
interest rates and raise bond prices, while at the same time driving up the marginal
utility of consumption, implying that real bonds hedge against such shocks. In the
model, investors are willing to accept low yields on long-term real bonds for the sake
of their hedging properties. While data on real bond yields are quite limited, the
implied downward slope seems too large to be consistent with the data, particularly
in the BKY calibration of the model.

Our final main point is that the long-run risks model cannot explain why there
is predictable variation in short-term real interest rates that is unaccompanied by
predictable variation in consumption growth. The model requires that the repre-
sentative investor’s EIS is greater than one, but this implies a strong tendency for
consumption growth to move predictably with short-term real interest rates. The
data show no such pattern, which has led earlier authors such as Hall (1988) and
Campbell (2003) to argue that the EIS is much smaller than one. It is true that
changing volatility can weaken the relation between predictable consumption growth
and the short-term real interest rate, but the magnitude of this effect is too small to
reconcile the long-run risks model with the data.

The paper is organized as follows. Section 2 lays out the long-run risks model
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and its solution, discusses the alternative calibrations of BY and BKY, and explains
our simulation methodology. We use analytical solutions to a loglinear approximate
model of the sort proposed by Campbell and Shiller (1988) and Campbell (1993).
This method is highly accurate for reasonable values of the intertemporal elasticity of
substitution, provided that one solves numerically for the parameter of loglineariza-
tion (Campbell 1993, Campbell and Koo 1997). The empirical evaluation by BKY
also uses the loglinear approximation of the model.?

Section 3 explains the data that we use to evaluate the performance of the model,
annual US data over the period 1930-2008 and quarterly data over the period 1947.2-
2008.4. This section presents basic moments from the data and the model as cali-
brated by BY and BKY, highlighting the ability of the model to fit some basic facts
about asset prices and the crucial importance of volatility shocks in the BKY cal-
ibration. Finally, this section shows that higher-order univariate autocorrelations
of consumption and dividend growth, particularly in the 1930-2008 sample, contrast
with the predictions of the long-run risks model.

The key testable prediction of the long-run risks model is that stock prices reflect
investors’ rational expectations of long-run consumption growth and volatility. Sec-
tion 4 examines the ability of stock prices to predict consumption growth, dividend
growth, excess stock returns, and the volatility of these series. This section also
discusses the temporal pattern of correlation between stock prices and consumption
growth, and multivariate predictions of growth rates and excess returns that use not
only the log dividend-price ratio, but also lagged dependent variables and real interest
rates.

Section 5 studies the implications of the long-run risks model for the term structure
of real interest rates. Section 6 examines instrumental variables (IV) estimates of
the elasticity of intertemporal substitution, which are less than one in aggregate data,
and asks whether the long-run risks model can explain this fact. The long-run risks
model implies downward bias in the IV estimates, but this bias is not large enough
to explain the very low estimates in the data. Section 7 concludes. An appendix
available online (Beeler and Campbell 2011) provides further technical details.

41t is also possible to derive analytical solutions to a discrete-state approximation of the model
(Garcia, Meddahi, and Tédongap 2008).



2 The Long-Run Risks Model

2.1 Model statement

Bansal and Yaron (BY, 2004) and Bansal, Kiku, and Yaron (BKY, 2011) propose
the following processes for consumption and dividend growth, denoted by Ac;y; and
Ady . respectively:

Aciy1 = pe+ o+ 0y

Tiy1 = PTt+ P0tCe41
crfJrl = 2+ v(0? =T + Wiy (1)
Adpyr = pg+ Qe + o + To41,

Wity €415 U1, Nypq ~ G.0.d. N(0,1).

Here z; is a persistently varying component of the expected consumption growth rate.
0? is the conditional variance of consumption, also persistently time-varying, with
unconditional mean 2. The variance process can take negative values, but this will
happen only with small probability if the mean is high enough relative to the volatility
of variance. Dividends are imperfectly correlated with consumption, but their growth
rate Ad;,; shares the same persistent and predictable component z; scaled by a
parameter ¢, and the conditional volatility of dividend growth is proportional to the

conditional volatility of consumption growth.’

2.2 Solution

BY solve the long-run risks model using analytical approximations. They assume
that the log price-consumption ratio for a consumption claim, z;, is linear in the
conditional mean and variance of consumption growth, the two state variables of the
model:

2 = Ao + A1z, + Ago?, (2)
and that the log price-dividend ratio for a dividend claim, z,,,, is similarly linear:

Zmt = AO,m + Al,mxt + AQ,maf' (3)

>This process does not impose cointegration between consumption and dividends. Some more
recent research, notably Bansal, Dittmar, and Kiku (2008) and Hansen, Heaton, and Li (2008),
emphasizes such cointegration.



Under the assumption that a representative agent has Epstein-Zin utility with time
discount factor 9, coefficient of relative risk aversion v, and elasticity of intertemporal
substitution 1, the log stochastic discount factor for the economy is given by

0
M1 = 01n5 - EACt_i_l + (0 - 1)Ta,t+1; (4)

where 6 = (1 —7)/(1 — 1/4¢) and 74441 is the return on the consumption claim, or
equivalently the return on aggregate wealth.

BY use the Campbell-Shiller (1988) approximation for the return on the consump-
tion claim in relation to consumption growth and the log price-consumption ratio:

Tap+1l = Ko + K121 — 2 + Acig, (5)

where ko and k; are parameters of linearization. Substituting equations (1) and (5)
into equation (4), the innovation in the log SDF can be written as

My — By (mt+1) = _)\T]Utnt_i,_l — Ae01€141 — MO Wi, (6)

where A, = 7, \e = (1 — 0)rk1d1¢,, and A\, = (1 —0) Ask;. The X's represent
the market prices of risk for consumption shocks 7, ,, expected consumption growth
shocks e; .1, and volatility shocks w; | respectively.

In order to solve the model, one must find the unknown parameters Ay, A, As,
Aoms Atm, Aom, Ko, and k1. Conditional on the linearization parameters kg and 1,
the A parameters can be found analytically. The parameters Ag and As determine
the mean of the price-consumption ratio, Z, and the parameters x¢ and k1 are simple
nonlinear functions of z. It is straightforward to iterate numerically until a fixed point
for z is found. Campbell (1993) and Campbell and Koo (1997) study a somewhat
simpler model, without volatility shocks, and find that the loglinear approximation
method is highly accurate provided that numerical iteration is used to find a fixed
point for Z, but approximation accuracy deteriorates noticeably if Z is prespecified.
Details of the approximate solution method for the long-run risks model are given in
the online appendix (Beeler and Campbell 2011).

2.3 Calibration

Table I reports parameter values from the calibrations of BY and BKY. All para-
meters are given in monthly terms; thus mean consumption growth of 0.0015, or 15
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basis points per month, corresponds to annualized growth of 1.8%. The monthly
persistence of the predictable component of consumption growth is 0.979 in BY and
0.975 in BKY, implying half-lives of between two and three years (33 and 27 months
respectively).

Dividends are more variable than consumption, and this is captured in the BY cal-
ibration by the parameters ¢ and ¢. The first measures the sensitivity of predictable
dividend growth to predictable consumption growth, while the second measures the
ratio of the standard deviations of dividend shocks and consumption shocks. The
first parameter is 3 in BY and 2.5 in BKY, while the second is 4.5 in BY and 5.96 in
BKY. Both calibrations imply that dividend growth is less predictable than consump-
tion growth, but the difference between the two processes is accentuated in BKY. In
addition, BKY introduces a contemporaneous correlation of consumption shocks and
dividend shocks, using the parameter 7, that is absent (zero) in BY.

Both calibrations of the model imply that persistent growth shocks cause ex-
tremely volatile changes in the expected long-run level of consumption and dividends,
even though the conditional volatilities of expected next-period consumption and divi-
dends are low. The average absolute magnitude of the change in the expected long-run
level of consumption is 1.3% per month (not annualized) in the BY calibration and
0.9% per month in the BKY calibration. These numbers are even larger for divi-
dends, which have a leveraged exposure to long-run risks. The average magnitude
of a monthly shock to expected long-run dividends is 3.9% in the BY calibration and
2.2% in the BKY calibration.

The persistence of volatility, v, is 0.987 in BY, implying a half-life slightly over
four years, and 0.999 in BKY, implying an essentially infinite (58-year) half-life.
Volatility shocks have similar standard deviations in the two calibrations (0.0000023
in BY and 0.0000028 in BKY), but the greater persistence of volatility in BKY im-
plies that volatility shocks are very much more important for asset prices in that
calibration. The original BY calibration is driven by long-run consumption growth
risk, whereas in the BKY calibration long-run volatility risk is more important.

The asset pricing properties of the long-run risk model depend on the preference
parameters of the representative agent. Table I reports the parameters used in BY
and BKY. BY consider relative risk aversion coefficients v of 7.5 and 10, and assume
an elasticity of intertemporal substitution ¢ of 1.5 and a time discount factor ¢ of
0.998 per month, equivalent to a pure rate of time preference of 2.4% per year. In
our empirical work for BY we will use risk aversion of 10. BKY set risk aversion at
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10 and the EIS at 1.5, and use a higher time discount factor of 0.9989 per month,
implying a pure rate of time preference of 1.3% per year.

2.4 Simulation

In the remainder of the paper, we compare the model with quarterly and annual data
by simulating the model at a monthly frequency and then time-aggregating the data to
a quarterly or annual frequency. First, we generate four sets of i.i.d. standard normal
random variables and use these to construct the monthly series for consumption, div-
idends, and state variables using equation (1). Next, we construct quarterly (annual)
consumption and dividend growth by adding three (twelve) monthly consumption and
dividend levels, and then taking the growth rate of the sum. Low-frequency log mar-
ket returns and risk free rates are the sum of monthly values, while log price-dividend
ratios use prices measured from the last month of the quarter or year. Because the
price-dividend ratio in the data divides by the previous year’s dividends, we multiply
the price-dividend ratio in the model by the dividend in that month and divide by
the dividends over the previous year.

Following BY and BKY, we censor negative realizations of conditional variance,
replacing them with a small positive number, but retaining sample paths along which
the volatility process goes negative and is censored. Because volatility is so persis-
tent in the BKY calibration, it is much more likely to go negative than in the BY
calibration. In our simulations, we find negative realizations of volatility 1.3% of
the time for the BKY process, but less than 0.001% of the time for the BY process.
When we simulate 79-year paths of volatility using the BKY calibration, over half of
them go negative at some point, whereas this happens less than 0.2% of the time for
the BY process.

To initialize each simulation, we set state variables to their steady-state values
but run each simulation for a “burn-in” period of ten years before using the output.

In subsequent tables, we report the median moments from 100,000 simulations
run over sample periods equal in length to our empirical samples. We also report the
fraction of the 100,000 moments that are smaller than the ones in the empirical data,
that is, the percentile of the simulated moment distribution that corresponds to the
empirical moment. This number (or one minus this number) can be interpreted as a
p-value for a one-sided test of the long-run risks model using the particular moment



under consideration. To highlight this fact, we use bold font for percentiles that are
smaller than 0.05 (5%) or larger than 0.95 (95%).

3 Basic Moments

3.1 Data and sample periods

In order to evaluate the performance of the long-run risks model, we follow BY and use
data on US real nondurables and services consumption per capita from the Bureau of
Economic Analysis. We take stock return and dividend data from CRSP and convert
to real terms using the CPI. We create a proxy for the ex-ante risk free rate by
forecasting the ex-post quarterly real return on three-month Treasury bills with past
one-year inflation and the most recent available three-month nominal bill yield. This
procedure, which is equivalent to forecasting inflation and subtracting the inflation
forecast from the nominal bill yield, is described in detail in the online appendix
(Beeler and Campbell 2011).

We use the longest available annual (1930-2008) and quarterly (1947.2-2008.4)
datasets that include all necessary data. The empirical work in BKY uses an identical
annual dataset. BKY argue that the primary focus should be on the annual dataset
because it covers the longest time period. However, we believe it is important to
examine how well the long-run risks model works in the postwar era, just as any
empirical analysis examines whether results are sensitive to the inclusion of a few
outlier observations.

BKY argue that the Great Depression provides an extremely important few ob-
servations to include when studying asset prices. It should be noted that the Great
Depression itself represents a period in history that the model is very unlikely to
generate. Over the four-year period 1930-1933, consumption declined by a cumula-
tive 18% (26% relative to trend). Using finite-sample simulations equal in length to
the long-run annual dataset, we find that four-year cumulative consumption declines
larger than this occur in 6.9% of samples for the BY model and 6.6% of samples for
the BKY model. Over the four-year period 1934-1937, consumption increased by a
cumulative 19% (12% above trend). A four-year decline and subsequent four-year
increase in consumption of equal or greater size happens in only 0.1% of samples for



the BY model and 0.3% of samples for the BKY model. A model with rare disasters
in consumption is much more likely to generate historical data consistent with the
Great Depression (Barro 2006, 2009, Barro et al. 2010).

Table II reports basic moments for the annual and quarterly US datasets, and the
corresponding median moments implied by simulations of the BY and BKY calibra-
tions of the long-run risks model with relative risk aversion v = 10. The median
simulated moments are calculated from 100,000 simulations of finite samples equal
in length to the historical samples. We look at five variables: the changes in log
consumption and dividends, log stock return, log risk free interest rate, and log price-
dividend ratio. All variables are measured in real terms. For each variable, we
report the mean, standard deviation, and first-order autocorrelation.

It is apparent from the left panel of Table II that the long-run risks model does a
good job of matching many basic properties of the long-run annual data, including the
means, standard deviations, and first-order autocorrelations of consumption growth,
dividend growth, and stock returns. However, some problems are worth noting.

The model understates the volatility of the riskless interest rate at about 1.2%
in the BY calibration and 1.0% in the BKY calibration, compared to 2.9% in the
data. This is despite the fact that the real interest rate does not include the volatile
inflation surprises usually associated with an ex-post real interest rate. Our use of
a forecasting equation for the real interest rate reduces volatility, but movements in
our proxy for the ex-ante real interest rate, especially during the Great Depression,
are still much more volatile than in the model.

A more serious discrepancy is that the long-run risks model greatly understates
the volatility of the log price-dividend ratio. In the model, the standard deviation
of the log price-dividend ratio is 0.18 for both the BY and BKY calibrations, as
compared with 0.45 in the annual data. Historical stock prices display low-frequency
variation relative to cash flows, which is not captured by the model.®

The same issues arise in postwar quarterly data in the right panel of Table III. At
first glance, the behavior of quarterly dividend growth is an additional problem. The
model implies a modest positive autocorrelation of dividend growth, but in quarterly
data dividend growth has a first-order autocorrelation of -0.58. However this results

6The historical standard deviation of the log price-dividend ratio is this high in part because
stock prices were persistently high at the end of our sample period. If we end the sample in 1998,
as in BY, we obtain a lower standard deviation of 0.36, still somewhat higher than in the model.
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merely from seasonality in dividend payments, a phenomenon that is commonly ig-
nored in stylized asset pricing models. Dividend seasonality should not be regarded
as an important omission of the long-run risks model.

A more serious difficulty is that postwar quarterly consumption growth has a much
lower volatility than either calibration of the model. Without the Great Depression
included in the sample, the annualized standard deviation of consumption growth is
only around 1%, much smaller than the 2.4% BY and 2.3% BKY calibrated values.

3.2 The relative importance of consumption and volatility
shocks

The BY and BKY calibrations of the long-run risks model assign very different roles
to movements in consumption growth and volatility. Movements in volatility have
very little effect in the BY calibration, whereas they are primary in the BKY calibra-
tion. To establish this, we have calculated the moments shown in Table II for two
simpler models, one with constant volatility and time-varying expected consumption
growth, and one with iid consumption growth. Other parameters of the BY and
BKY calibrations remain unchanged.

In the BY calibration, the equity premium is zero with iid consumption growth,
5.4% with constant volatility and time-varying expected consumption growth, and
5.5% with time-varying volatility. The standard deviation of the log price-dividend
ratio is 0.07 with iid consumption growth, 0.18 with constant volatility and time-
varying expected consumption growth, and 0.18 with time-varying volatility. (It is
positive with iid consumption growth because one divides by the previous year’s
dividends which adds noise.) It is apparent that time-variation in volatility is of
little consequence for the results reported by BY.

In the BKY calibration, the results are very different. The equity premium is
1.6% with iid consumption growth, 3.8% with constant volatility and time-varying
expected consumption growth, and 6.6% with time-varying volatility. (The positive
equity premium with iid consumption growth results from the positive correlation of
dividend and consumption growth assumed in the BKY calibration.) The standard
deviation of the log price-dividend ratio is 0.09 with iid consumption growth, 0.13
with constant volatility and time-varying expected consumption growth, and 0.18
with time-varying volatility. A large proportion of the equity premium, and a large
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proportion of the variability in stock prices relative to dividends, result from time-
varying volatility in the BKY calibration of the long-run risks model.

3.3 Variance ratios

Variance ratio statistics are commonly used to summarize the persistence of growth
rates. Table III sheds more light on the dynamic behavior of consumption and
dividend growth by reporting variance ratios for these series. For the postwar sample,
we aggregate quarterly observations to an annual frequency to remove the effects of
seasonality.

The variance ratio statistic at horizon K is the variance of K-period growth rates
divided by K times the variance of one-period growth rates. For consumption growth,
the K-period variance ratio is

V(K) _ @(ACt.i_l + ...+ Act+K) (7)
KVar(Acyi1)

As the sample size increases, the variance ratio converges to a triangular weighted
average of the first K — 1 population autocorrelations:

. Var(ActH + ...+ ACH—K) . i j
V(K) = KVar(A) =1+2 ; L= rp (8)

while in finite samples, the variance ratio can differ from the corresponding average of
sample autocorrelations (Lo and MacKinlay, 1989). Table III reports variance ratios
for consumption and dividend growth for horizons K of two, four, and six years,
corresponding to one, three, and five autocorrelations.

In both the long-run and postwar data, both consumption and dividends have pos-
itive first-order annual autocorrelations, so two-year variance ratios are between 1.2
and 1.4 in Table ITI. These values are not far from the 1.25 that would be implied by
time-aggregation of a continuous-time random walk (Working 1960). When we look
beyond the two-year horizon there is a preponderance of negative autocorrelations
in the long-run annual data, and these negative autocorrelations generate variance
ratios below one at a horizon of six years. In the postwar quarterly data, higher-order
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autocorrelations are very close to zero, implying that the six-year variance ratios are
almost exactly equal to the two-year variance ratios.”

The patterns in the long-run data are quite different from the behavior implied
by the BY and BKY calibrations of the long-run risk model. The median six-year
variance ratios generated by the BY calibration are about 2.3 for consumption and 1.9
for dividends, and these numbers are only slightly lower in the BKY calibration, 2.0
for consumption and 1.4 for dividends. Fewer than 1% of the simulated samples have
variance ratios as low as those in the long-run data, implying that six-year variance
ratios reject both the BY and BKY calibrations at the 1% level in this dataset. The
postwar quarterly data contrast less strongly with the long-run risk model, failing to
reject either calibration of the model at the 5% significance level.

4 What Do Stock Prices Predict?

4.1 Predicting stock returns, consumption, and dividends

In the long-run risks model, the main cause of stock price variability relative to div-
idends is predictable and persistent variation in consumption growth, which creates
similar variation in dividend growth. Thus, it is natural to test the model by evalu-
ating the ability of the log price-dividend ratio to predict long-run consumption and
dividend growth. At the same time, a large empirical literature has argued that
the log price-dividend ratio predicts excess stock returns and not dividend growth or
real interest rates (Campbell and Shiller 1988, Fama and French 1988, Hodrick 1992).
This suggests that one should compare the predictability of excess returns with the
predictability of consumption and dividend growth, in the data and in simulations
from the long-run risks model.

We undertake this exercise in Table IV for both the BY and BKY calibrations
of the long-run risks model. We regress excess stock returns, consumption growth,
and dividend growth, measured over horizons of 1, 3, and 5 years, onto the log price-
dividend ratio at the start of the measurement period. @ We report results both

"Campbell and Mankiw (1987) and Cochrane (1988) noted a similar difference in estimated
persistence between pre-war and post-war data on GNP growth. The appendix reports the first five
sample autocorrelations, together with simulated values from the long-run risks model.
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for annual data over the period 1930-2008 and for quarterly data over the period
1947.2-2008.4. Model results and not just empirical results differ across the two data
sets, both because the sample periods differ in length which affects the finite-sample
properties of the model, and because time-aggregation has different effects in quarterly
and annual data. Time-aggregation increases measured cash-flow predictability, an
effect which is larger in the annual model.

In the data, one must adopt a convention about the timing of measured consump-
tion. Measured consumption is a flow that takes place over a discrete time interval,
but in a discrete-time asset pricing model, consumption takes place at a point of time
and consumption growth is measured over a discrete interval from one point of time
to the next. To match the data to the model, one must decide whether measured
consumption should be thought of as taking place at the beginning of each period,
or the end. The former assumption gives a higher contemporaneous correlation of
consumption growth and asset returns, and is advocated by Campbell (2003). The
latter assumption generates a higher correlation between consumption growth and
lagged financial market data, and is used by BY and Parker and Julliard (2005)
among others. Here we report results using the end-of-period timing convention.
Results using the beginning-of-period timing convention are qualitatively similar. We
time-aggregate the model using the same timing assumption as in the data so that
the comparison of data and model is legitimate.

The top part of Table IV shows the results for predicting excess stock returns. At
the left, we report regression coefficients, ¢ statistics, and R? statistics in annual and
then quarterly postwar data. Then we report the median simulated R? statistics im-
plied by the BY and BKY calibrations, followed by the percentiles of the simulated >
statistics corresponding to the statistics in the data. The appendix reports a similar
analysis comparing the regression coefficients in the model to the data, with similar
results. The remaining parts of Table IV repeat these exercises for consumption
growth and for dividend growth.

Table IV shows a striking contrast between the patterns in the data and in the
BY calibration of the long-run risks model. 1In the data, the log price-dividend
ratio predicts excess stock returns negatively, with a coefficient whose absolute value
increases strongly with the horizon. At a 5-year horizon, the R? statistic is 27% in
long-run annual data and 26% in postwar quarterly data. However there is relatively
little predictability of consumption growth in the data. At a one-year horizon there
is some predictability in annual data but this predictability dies out rapidly. There is
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no predictability of consumption growth in postwar quarterly data. Dividend growth
predictability also appears to be short-term in the annual data and absent in postwar
quarterly data.

These empirical patterns are the reverse of the predictions of the BY calibration
of the long-run risks model. According to the model, regressions of excess returns on
log price-dividend ratios have median R? statistics that never rise above 3% at any
horizon, while regressions of consumption and dividend growth on log price-dividend
ratios have high explanatory power even at long horizons. At five years, the median
explanatory power of the log price-dividend ratio is 29% for consumption growth and
26% for dividend growth.

For excess returns, median finite-sample R? statistics are very small under the
null that the long—run risks model describes the data. However, the finite-sample
distribution of these statistics has a fat right tail because of the well-known Stambaugh
(1999) bias in predictive regressions with persistent regressors whose innovations are
correlated with innovations in the dependent variable. The bias affects not only
the coefficients, but also the t statistics and R? statistics of predictive regressions
(Cavanagh, Elliott, and Stock 1995). Because of this problem, the predictability of
excess returns can only be used to reject the model statistically at horizons greater
than one year in annual data. For consumption and dividend growth, Stambaugh bias
is a much less serious concern, and both the regression coefficients and R? statistics
deliver strong statistical rejections of the long-run risk model at almost all horizons.

BY conducted a similar exercise to this with qualitatively similar but quantita-
tively less extreme results. However, their work used a numerical technique to solve
the model that has since been abandoned in the literature. The authors have since
argued that analytical solutions are more reliable for assessing the model’s empirical
properties (Bansal, Kiku and Yaron (2007)), and they use similar analytical solutions
to ours in BKY. Bui (2007) and Garcia, Meddahi, and Tédongap (2008) also report
results similar to ours.

We repeat this analysis for the BKY calibration of the long-run risks model. Re-
call that this calibration greatly increases the persistence of volatility; it therefore
increases the effect of volatility on asset prices and the predictive power of the log
price-dividend ratio for excess stock returns, and reduces the predictive power for
consumption and dividend growth. At a five year horizon, the median explanatory
power of the log price-dividend ratio is 4.3% for excess stock returns, 8.5% for con-
sumption growth and 6.1% for dividend growth. In finite samples there are enough
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simulations in which stock prices have spuriously increased predictive power for stock
returns, and decreased predictive power for consumption and dividend growth, that
statistical rejections of the model are less extreme for this calibration. In annual
data only 5-year return and consumption predictability reject the BKY calibration
at the 5% one-tailed significance level, while in postwar quarterly data the model is
rejected only at a one-year horizon.

In summary, the long-run risks model, as its name suggests, tends to generate
stock prices that reveal the long-run prospects for consumption and dividend growth.
This does not seem to be the case in the data, so extreme movements in volatility, as
assumed by BKY, are needed to bring the model into even rough concordance with
the data.

4.2 The timing of consumption and stock price variation

The contrast between the long-run risks model and the data can be better understood
by studying the timing of the relationship between stock prices and consumption
growth. Consider a regression of K-period time-aggregated consumption growth
onto the log price-dividend ratio, with a lead of j periods:

ActJrj —|—...—|—Act+j+[( = OéjK—FBjK(pt _dt)+€jKt' (9)

When j > 1, this is a predictive regression of the sort we have reported in Table VI.
The long-run risks model implies that both the regression coefficient and the R? sta-
tistic of the regression should be highest when j is around 1 — K /2, declining slowly
as 7 moves away from this value. The timing convention for consumption implies that
the log price-dividend ratio in period ¢ is most highly correlated with consumption in
period t 4+ 1. As one moves away from period ¢ + 1, in either direction, predictabil-
ity declines as the distance from the state variable x; increases. Predictability is
maximized when the K-period growth rates are centered around the time ¢ 4 1.

Figures 1 and 2 plot the regression coefficient 3, and R? statistic R? K against j,
for several alternative horizons K. Figure 1 plots the 3, and R? statistics for annual
data and Figure 2 is based on quarterly data. The top panel of each figure shows
a one-year horizon, the middle panel shows a three-year horizon, and the bottom
panel shows a five-year horizon. The graphs on the left side of each figure show the
regression coefficients and the graphs on the right side of the figure show the R?. Each

16



graph contains three curves, one for the BY calibration, one for the BKY calibration,
and one for the historical data. The BKY curves are lower than the BY curves, but
the historical curves are much lower again.

The long-run risks model is sometimes described as a “forward looking” asset
pricing model, with asset prices more correlated with future consumption growth.
These figures demonstrate that in fact the price-dividend ratio in the long-run risks
model is just as correlated with past consumption growth as it is with forward looking
consumption growth. This is because the persistent unobserved state variable x; is
correlated with past consumption growth as well as future consumption growth.

It is noteworthy that in Figure 1 the curves for regression coefficients are partic-
ularly shifted down in the predictive region j > 1 at the right of the figures, while
in Figure 2 both the regression coefficient and R? curves appear shifted down in this
region. In this sense the empirical curves are shifted to the left relative to the the-
oretical curves. To the extent that stock prices are related to consumption growth,
they appear relatively more responsive to lagged consumption growth, and relatively
less predictive of future consumption growth, than the long-run risks model implies.
Responsiveness of stock prices to lagged consumption growth is a phenomenon that
is captured by habit formation models such as Campbell and Cochrane (1999), al-
though of course the Campbell-Cochrane model shares with the long-run risks model
a counterfactually strong relation between consumption growth and stock prices.

4.3 Predicting volatility

Movements of consumption volatility are also important drivers of stock prices in the
long-run risks model, and particularly so in the BKY calibration of that model. Thus
it is appropriate to evaluate the model by asking whether it matches the ability of
stock prices to predict future realized volatility of consumption, dividends, or excess
stock returns. In Table V, we do this using a measure of realized volatility suggested
by Bansal, Khatchatrian and Yaron (2005).

We begin by fitting an AR(1) process for each variable y, that we are interested
in:
Y41 = bO + blyt + Upt1. (10)

Then we calculate K-period realized volatility as the sum of the absolute values of
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the residuals over K periods:

K-1

VOlt,t—i—K—l = Z |Ut+k|- (11)

k=0

Finally, we regress the log of K-period realized volatility onto the log price-dividend
ratio:

In [Voli1p+ k] = ac + Bo(pe — di) + &, (12)

Table V shows that the log price-dividend ratio predicts consumption volatility,
with a negative sign, at horizons from 1 to 5 years. The effect is highly statistically
significant, and the explanatory power of the regressions at a 5-year horizon is 20%
in long-run annual data and 46% in postwar quarterly data. The evidence that the
log price-dividend ratio predicts dividend or return volatility is considerably weaker.

The BY calibration of the long-run risks model generates a relation between stock
prices and consumption or dividend volatility with the same negative sign that we
observe in the data. However, the effect in the model is far weaker than in the data;
the explanatory power of the regressions is trivially small. The BY calibration of
the long-run risks model is strongly rejected statistically on the basis of its lack of
explanatory power for consumption volatility. It is, however, consistent with the weak
relation between stock prices and the future volatility of stock returns and dividend
growth observed in the data.

The BKY calibration of the model has a much more persistent volatility process.
This increases the predictive power of stock prices for consumption and dividend
volatility to levels that match the data quite well. Unfortunately, the model also
predicts that stock prices should be good predictors of the future volatility of stock
returns. The median R? at a 5-year horizon is 11% for the annual model and 18%
for the quarterly model. In contrast the R? in the data are 0.1% for the long-run
annual data and 6% for the postwar quarterly data (where the regression coefficient
has the opposite sign to that predicted by the model). The discrepancies between
the model-implied and empirical R? statistics are significant at the 5% level for 3-
and 5-year horizons in the annual data, and almost significant for the 1-year horizon
in the postwar quarterly data. Thus the BKY calibration creates a new puzzle: if
stock prices are driven by persistent changes in the volatility of consumption, which
in turn moves the stock market, why don’t they forecast the future volatility of the
stock market itself?
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To ensure the robustness of these results, we have also considered a measure of
realized volatility used by Campbell (2003). We start by regressing each variable of
interest y;,1 onto the log price-dividend ratio:

Y1 = bo + b1(pr — di) + wpy1. (13)

In the second stage, we regress the K-period average of squared residuals onto the
log price-dividend ratio:

Zk 0 ut+1+k

e = .+ B.(pr — di) + &, (14)

The general pattern of results using this method is very similar to those using the
Bansal, Khatchatrian and Yaron (2005) method.

The message of this section is that the BY calibration of the long-run risks model
greatly understates the effect of consumption volatility on stock prices. The BKY
calibration does much better in this respect, in effect changing the driving force of the
model from consumption growth to consumption volatility. However, this leads to a
new difficulty, which is that there has only been a weak historical relation between
stock prices and the volatility of stock returns themselves. An interesting challenge
for future research will be to build a model that matches the strong relation between
stock prices and consumption volatility without generating a counterfactually strong
relation between stock prices and stock return volatility.

4.4 Multivariate predictability

BKY argue that a vector autoregression (VAR) provides evidence for the predictabil-
ity of cash flows in annual data. Their methodology differs from ours in two important
respects. First, they include a larger information set with three predictor variables:
lagged cash-flow (consumption or dividend) growth, the riskfree rate, and the log
price-dividend ratio. Second, instead of directly regressing long-horizon cash-flow
growth onto the predictor variables, BKY estimate a first-order VAR and use it to in-
fer long-run cash-flow predictability under the assumption that the model is correctly
specified. This procedure does not give the same results as direct long-horizon re-
gression if the model is misspecified. For example, if annual consumption is the time
aggregate of a random walk, it is an MA(1) process with short-term predictability
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but no longer-term predictability beyond one year ahead. In this case the VAR(1)
will exaggerate the long-run predictability of consumption growth.

In order to separate the impact of a larger information set from the impact of the
VAR methodology, we perform predictive regressions of cash-flow growth over hori-
zons of 1,3 and 5 years onto BKY’s information variables. These regressions expand
the information set while maintaining our direct long-horizon regression methodology.
We report the results in Table VI for the 1930-2008 annual data set, the same dataset
used in the BKY VAR. The table also shows multivariate long-horizon regression
results for excess stock returns and riskless interest rates.

Table VI reports regression R? statistics. The R? statistic from the data is on the
left, followed by the median R? statistics from the two calibrations, and finally the
percentiles of the model distribution for the R? statistic in the data.

When we regress excess stock returns onto a multivariate information set including
lagged excess stock returns, the real interest rate, and the log price-dividend ratio, the
R? statistics in the data are extremely close to the R? statistics earlier reported for
univariate regressions in Table IV. The inclusion of lagged excess stock returns and
the real interest rate barely increases the predictability of stock returns in the data.®
However, the predictability of excess returns increases slightly in both calibrations of
the model. As a result, the model becomes slightly more likely to generate as much
excess return predictability as we see in the data.

The multivariate regression predicting consumption growth from lagged consump-
tion growth, the real interest rate, and the log price-dividend ratio has much higher
short-run predictability than the univariate regression reported in Table IV, 27%
rather than 6%, reflecting short-run positive autocorrelation of consumption growth.
However, the explanatory power of the multivariate regression dies out rapidly and is
only 4% at a 5-year horizon. BKY report a 22% R? statistic at the 5-year horizon us-
ing their VAR procedure. If their VAR were correctly specified, our approach would
deliver the same R? statistic in a large enough sample since both procedures use the
same information. Thus the primary reason for the high long-horizon predictability
reported by BKY is likely VAR misspecification. The long-horizon R? statistics im-
plied by the BY and BKY calibrations are far larger than those we measure in the
data, providing further evidence against the long-run risks model.

8For this case, the empirical results are similar if we use a VAR methodology as in Campbell and
Shiller (1988) and Campbell (1991).
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For dividend growth, there is more multivariate predictability even at long hori-
zons, with an R? of 10% at the 5-year horizon. This is still much smaller than the
28% VAR implied R? that BKY report at the 5-year horizon, with the difference
again attributable to misspecification. The BY calibration implies more multivariate
predictability than found in the data, but the BKY calibration is fairly successful at
matching this moment of the data.

Finally, real interest rates are substantially predictable from past real interest
rates, consumption growth, and the log price-dividend ratio. This is true in the data
but much more so in the BY and BKY calibrations of the long-run risks model. At
a l-year horizon, the difference between empirical and model-implied predictability
is large enough to reject the BY and BKY calibrations statistically.

A limitation of Table VI is that it looks only at the overall explanatory power of
multivariate regressions and not at individual regression coefficients and ¢ statistics.
Tables reported in the appendix examine the multivariate regressions more closely
and find further evidence against the BKY calibration of the long-run risks model.
In the regression for consumption growth, the BKY calibration implies that the real
interest rate should predict next period’s consumption growth positively. In the data,
we find the opposite sign.

Similarly, in the multivariate regression for dividend growth, the only statisti-
cally significant variable predicting 5-year dividend growth is lagged past dividend
growth, but with a negative sign. This result reflects the negative dividend autocor-
relations that were reported in Table III. The implied process for dividend growth
is mean-reverting, and therefore it does not generate a large equity premium. In
this important sense the long-horizon multivariate predictability of dividend growth
is evidence against the long-run risks model rather than evidence for it.

5 The Term Structure of Real Interest Rates

The long-run risks literature has focused primarily on stock prices, but the model
has important implications for the term structure of real interest rates as well. In
a consumption-based model with power utility, the risk premia on long-term real
bonds relative to short-term real bonds (real term premia) depend on the covariance
between innovations to consumption and innovations to real interest rates. If con-
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sumption follows a mean-reverting process such that positive shocks to consumption
are expected to reverse themselves through slower subsequent consumption growth,
then a positive consumption shock causes real interest rates to fall, and bond prices
to rise. In this case real bonds are risky and there is a positive real term premium.
On the other hand, if consumption growth follows a persistent process such that pos-
itive shocks cause upward revisions in expected future consumption growth, then a
positive consumption shock causes real interest rates to increase and bond prices to
fall. In this case real bonds hedge consumption risk and have a negative real term
premium (Campbell 1986).

With Epstein-Zin utility as assumed by the long-run risks model, revisions in
expected future consumption growth command a risk premium even if they are un-
correlated with shocks to contemporaneous consumption growth. Since increases
in expected consumption growth drive up real interest rates and drive down bond
prices, the long-run risks model with a positive risk premium for consumption growth
implies a negative real term premium. This fact has been pointed out by Piazzesi
and Schneider (2006).

Shocks to consumption volatility also lower the term premium in the model. An
increase in consumption volatility lowers real interest rates and increases real bond
prices by stimulating precautionary savings. The increase in bond prices hedges the
unfavorable shock to volatility, increasing average bond prices and reducing term
premia. This effect is more powerful the more persistent is volatility.

In Table VII we report the moments of yields and returns on real zero coupon
bonds for the BY calibration in the top panel and the BKY calibration in the bottom
panel. The results are the medians from 100,000 finite sample simulations. In each
panel we report the mean real yield, mean yield spread relative to the short-term
riskless interest rate, the real term premium, and the standard deviation of excess
real bond returns. We report results for a range of maturities from 3 months to 30
years.

In the top panel, we find that the BY calibration generates an average yield spread
of -1.8% for the 30-year zero-coupon bond relative to a short-term riskless bond and
an average spread of -1.0% between a 30-year zero-coupon bond and a 5-year zero-
coupon bond. The behavior of the real term structure is another troubling difficulty
for the long-run risks model of asset prices.

In the bottom panel, the problem is even more serious for the BKY calibration.
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The persistence of volatility in that calibration makes long-run consumption extremely
uncertain, lowering the safe long-term discount rate in the manner described by Mar-
tin (2009, 2010) and Weitzman (2007, 2009). Now the average yield spread between a
30-year zero-coupon bond and the short-term riskless bond is -2.9% and the average
yield spread between 30-year and 5-year zero-coupon bonds is -2.2%. In addition,
the average 30-year real interest rate implied by the BKY calibration is far below
zero, at -1.7%.

Although there are less than fifteen years of inflation-indexed bond data in the
United States, the observed term structure of Treasury inflation-protected securities
(TIPS) has never had a quantitatively significant negative slope. The current real
term structure is steeply upward sloping. A positively sloped term structure during
the late 1990’s and 2000’s could be consistent with the BKY model if this period was
a time of historically low expected short-term growth or historically high short-term
volatility. However, the high price-dividend ratio of the stock market during this
period suggests exactly the opposite, that this period was one of historically high
expected growth or historically low volatility. Possibly even more troubling from the
perspective of the data is the strongly negative real yield. Campbell, Shiller, and
Viceira (2009) report that the real yield on long-term TIPS has always been positive
and is usually above 2%, in contrast with the negative values implied by the BKY
calibration of the long-run risks model.

6 The Elasticity of Intertemporal Substitution

6.1 The need for a high EIS

Both the BY and BKY calibrations of the long-run risks model make the assumption
that the elasticity of intertemporal substitution (EIS) is greater than one. This
assumption is critical for the asset pricing properties of the model to match the
data.

In the appendix, we present a table showing the effects of setting the EIS to 0.5
rather than the high value of 1.5 assumed by BY and BKY. When ¢ < 1, the
riskless interest rate is high and volatile because the representative agent dislikes
increasing consumption over time and would like to borrow from the future to flatten
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the upward-sloping and time-varying expected consumption growth path. Also, the
equity premium is trivially small and the volatility of the price-dividend ratio is low,
implying that the volatility of stock returns is close to the volatility of dividend
growth.

The low volatility of the price-dividend ratio results from offsetting effects of
expected consumption growth on stock prices. Rapid consumption growth raises
stock prices by increasing expected future dividends, but lowers them by increasing
real interest rates. The leverage parameter ¢ measures the strength of the effect
on future dividends, while the reciprocal of the EIS, 1/, measures the strength of
the effect on interest rates. If ¢ is close to 1/, then the two effects roughly cancel
and stock prices respond only weakly to long-run growth shocks (Campbell 2003).
The BY calibration assumes ¢ = 3, so setting ¢» = 0.5 produces a relatively stable
price-dividend ratio and a volatility of stock returns close to the volatility of dividend
growth.

The low equity premium with ¢/ < 1 is closely related. In the BY calibration, there
is no contemporaneous correlation between consumption growth and dividend growth,
so in a power utility model with 1) = 1/, the equity premium would be zero.” With
Epstein-Zin utility, the equity premium depends not only on the covariance of the
stock return with contemporaneous consumption growth, but also on its covariances
with shocks to expected future consumption growth and consumption volatility. If
1 > 1/v as assumed in the long-run risks literature, an asset that pays off when
there is an upward revision in expected consumption growth is risky and commands
a premium. However, this premium is small when the response of stock prices to
expected future consumption growth is weak. In addition, the sign of the premium for
consumption volatility risk is ambiguous. When 1) < 1, stock prices increase when
volatility increases and the risk premium for volatility shocks is negative (Lettau,
Ludvigson, and Wachter 2008).

In the BKY calibration, an extreme problem arises in the case where 1) = 0.5.
Because the rate of time preference is relatively low, and long-run uncertainty about
consumption is high as a result of persistently time-varying volatility, consumers
have a strong desire to save in the BKY calibration. If they are sufficiently risk
averse, precautionary savings can make the equilibrium real interest rate negative
and an infinite-lived consumption or dividend claim can have an infinite price. This

9The BKY calibration does allow for a positive contemporaneous correlation of consumption and
dividend shocks, producing a small positive equity premium even in the power utility case.
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happens with v» = 0.5 and v = 10. Since the consumption claim appears in the
stochastic discount factor for Epstein-Zin utility, this problem prevents us from even
calculating the equilibrium riskless interest rate for these cases. Meaningful results
can be restored only by lowering the coefficient of risk aversion substantially.

This discussion makes it clear that the long-run risks model can only match the
level of the equity premium, and the volatility of stock prices in relation to dividends,
if the EIS is greater than one. This observation is not new; it has been emphasized
by BY and other papers in the long-run risks literature.

6.2 Estimating the EIS

In a model with constant variance, a high EIS implies that the real interest rate should
be perfectly correlated with, but less volatile than, predictable consumption growth.
Hansen and Singleton (1983), followed by Hall (1988), Campbell and Mankiw (1989),
and others, have used an instrumental variables (IV) regression approach to estimate
the elasticity of intertemporal substitution from the homoskedastic Euler equation.
One way to run the regression is as

1
Tit+1 = M + (a) Aciir + M 441 (15)
In general the error term 7,, ., will be correlated with realized consumption growth
so OLS is not an appropriate estimation method. However 7, ,,, is uncorrelated with
any variables in the information set at time ¢. Hence any lagged variables correlated
with asset returns can be used as instruments in an IV regression to estimate 1/.

Alternatively, one can reverse the regression and estimate

Aciiy = Ti+ T + Gy (16)

If the orthogonality conditions hold, then the estimate of ¢ in (16) will asymptotically
be the reciprocal of the estimate of 1/¢) in (15). In a finite sample, however, Staiger
and Stock (1997) have shown that the IV estimator is poorly behaved if the right
hand side variable is difficult to predict. This means that if the Euler equation holds
and v is small, it is better to estimate (16); however, if ¢ is large, it is better to
estimate (15).
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Hall (1988) estimated an extremely small value of 1) using this approach. Camp-
bell and Mankiw (1989) found some predictability of consumption growth associated
with predictable income growth, but little predictable variation associated with in-
terest rates, again implying a low ¢. Campbell (2003) summarizes these results and
finds similar patterns in international data.

BY have criticized this literature on the grounds that time-varying volatility causes
time-variation in the intercept of the Fuler equation and biases the estimate of the
elasticity of intertemporal substitution. While this criticism is correct in principle,
it is an empirical question whether there is a large downward bias. In Table VIII we
simulate the long-run risks model to see whether IV estimates of 1 are importantly
downward biased.

Table VIII reports two-stage least squares estimates of equations (16) and (15), in
both annual and quarterly data for both the BY and BKY calibrations of the model.
The first two rows of each part of Table VIII report results using the log short-term
real interest rate as the asset return, while the second two rows use the realized log
stock return. We use the end-of-period timing convention for consumption. The
instruments are the asset return, the consumption growth rate, and the log price-
dividend ratio, lagged twice to avoid difficulties caused by time-aggregation of the
consumption data (Wheatley 1988, Campbell and Mankiw 1989). The columns
report empirical estimates, median finite-sample estimates implied by the BY and
BKY calibrations of the long-run risks model, and finally the percentiles of the finite-
sample distribution of model estimates corresponding to the empirical estimates.

The original BY calibration implies no downward bias in IV estimates of i/ when
the asset is the real interest rate. The finite-sample median values of the regression
coefficients are always at or above the true EIS of 1.5. The discrepancy between the
model estimates and the data estimates provides strong statistical evidence against
the model. There is however a serious finite-sample problem with IV estimates of
1 using the stock return as the asset return. If the long-run risks model is true,
these estimates are strongly downward-biased and extremely noisy, so they cannot
be used to reject the model. Presumably the poor finite-sample performance of IV
regressions with stock returns reflects a weak instrument problem.

In the BKY calibration we do find that IV estimates of the elasticity of intertempo-
ral substitution are biased downwards in several cases, but the median EIS estimates
are always above 1.3. This reflects the greater importance of time-varying volatility
in this calibration of the model. Even in the BKY calibration, however, the low IV

26



estimates of 1 using the risk free rate as an asset provide statistical evidence against
the model in both annual and quarterly data.

These results highlight an empirical difficulty for the long-run risks model, that
the real interest rate is so volatile relative to predictable variation in consumption
growth. It is hard to reconcile this with the assumption of the model that assets are
priced by a representative agent with an EIS greater than one.

Some authors have looked at disaggregated data and have found greater pre-
dictable variation in consumption growth than appears in aggregate data. Attanasio
and Weber (1993) and Beaudry and van Wincoop (1996) have found higher values
for ¢ using disaggregated cohort-level and state-level consumption data. Vissing-
Jorgensen (2002) points out that many consumers do not participate actively in asset
markets; using household data she finds a higher value for 1) among asset market
participants. But these results do not confirm the long-run risks model because that
model is calibrated to aggregate consumption data. A general equilibrium model
with limited asset market participation and long-run risk in the consumption of stock
market participants is a different model that remains to be explored.

7 Conclusion

The long-run risks model of asset prices (Bansal and Yaron 2004) is an important
advance in that it allows economists to understand asset price variation in an economy
with persistent shocks to both consumption growth and volatility, while making a
realistic distinction between aggregate consumption and dividends.

However, the model has several important difficulties as a quantitative descrip-
tion of US financial history. In US data there is little evidence either for long-run
persistent fluctuations in consumption and dividend growth rates, or for the ability of
stock market participants to predict these growth rates. Results are similar whether
we look only at stock prices as growth rate predictors, or whether we also consider
lagged growth rates and real interest rates. This finding implies that the long-run
risks model cannot use persistent variations in consumption growth as the main force
driving stock market variation.

Bansal, Kiku, and Yaron (2011) recognize this problem and recalibrate the model
to emphasize persistent variations in consumption volatility. However this creates a
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new difficulty, which is that although stock prices strongly predict future consumption
volatility, they have little predictive power for the future volatility of stock returns.
The discrepancy between these two types of volatility movements is an interesting
issue for future research.

The long-run risks model generates extremely low yields and negative term premia
on long-term inflation-indexed bonds. In the calibration of Bansal, Kiku, and Yaron
(2011), this implies real yields far below zero. While US inflation-indexed bond yields
were extremely low in the early stages of the financial crisis of 2007-08, they have been
high enough in most other periods to create yet another empirical challenge for the
long-run risks model of asset prices.

A final difficulty for the long-run risk model is that aggregate consumption growth
does not respond to variations in the short-term real interest rate in the manner re-
quired by the model’s assumption that the elasticity of intertemporal substitution
is greater than one. Although Bansal and Yaron (2004) correctly point out that
time-varying consumption volatility can bias traditional estimates of the elasticity
of intertemporal substitution that assume homoskedastic consumption growth, this
bias is not large. Another challenge for future research is to resolve the apparent
contradiction between the smoothness of consumption in the face of real interest vari-
ation, which suggests a low elasticity of intertemporal substitution, and the negative
response of stock prices to consumption volatility, which suggests a high elasticity.

It is of course possible that other parameter choices within the long-run risks
framework, or extensions of the framework to include features such as habit forma-
tion, rare disasters, or cointegration of consumption and dividends, will match the
data more closely than these calibrations do. It would be natural to estimate such
modifications of the model using a generalized method of moments (GMM) estima-
tor, asking the model to fit both the volatilities and means of asset returns and the
predictive moments we have emphasized in this paper. This is challenging given
the number of parameters in the model, the size of available datasets, and the per-
sistent processes followed by some state variables. Despite this technical challenge,
we hope that future research will pay close attention to the forecastability of real in-
terest rates, stock returns, consumption growth, and dividend growth, as well as the
shape of the term structure of real interest rates, in judging the merits of proposed
consumption-based asset pricing models.
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Table 1

Long Run Risks Parameters

Endowment Process

ACt—i—l He + Tt + Utnt—H

PTt + Y 0t€111

2 —2 2 2
Ti41 0+ v(of —07) + owwit1

Tt41

Adir1 = pg+ ¢z + poturr + o1
Parameter Symbol BY Calibration BKY Calibration
Mean Consumption Growth e 0.0015 0.0015
LRR Persistence p 0.979 0.975
LRR Volatility Multiple Ve 0.044 0.038
Mean Dividend Growth a 0.0015 0.0015
Dividend Leverage 10} 3.0 2.5
Dividend Volatility Multiple % 4.50 5.96
Dividend Consumption Exposure 7 0.0 2.6
Baseline Volatility T 0.0078 0.0072
Volatility of Volatility Ow 0.0000023 0.0000028
Persistence of Volatility v 0.987 0.999

Preference Parameters

Risk Aversion vy 7.5-10 10
EIS ¥ 15 15
Time Discount Factor o 0.9980 0.9989

Table I displays the model parameters for Bansal and Yaron (2004) (BY) and Bansal, Kiku and Yaron
(2009) (BKY). The endowment process for the model is displayed above the table. All parameters
are given in monthly terms. The standard deviation of the long run innovations is equal to the
volatlity of consumption growth times the long run volatility multiple (LRR Volatility multiple)
and the standard deviation of dividend growth innovations is equal to the volatility of consumption
growth times the volatility multiple for dividend growth (Dividend Volatility Multiple). Dividend
Consumption Exposure is the magnitude of the impact of the one period consumption shock on

dividend growth. Dividend Leverage is the exposure of dividend growth to long-run risks.
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Table 11

Long Run Risks Moments

Yearly Time Interval Quarterly Time Interval

1930-2008 1947.2-2008.4
Moment Data Model Model Data Model Model

BY BKY BY BKY
E (Ac) 1.93 1.80 1.80 2.01 1.80 1.80
o (Ac) 2.16 2.81 2.50 1.02 2.44 2.26
AC1(Ac) 0.45 0.47 0.40 0.26 0.31 0.27
E (Ad) 1.15 1.80 1.81 2.29 1.82 1.80
o (Ad) 11.05 11.20 14.04 27.61 10.53 14.08
AC1(Ad) 0.21 0.37 0.26 -0.58 0.26 0.22
E(re) 5.47 6.75 6.07 6.36 6.75 6.02
o (re) 20.17 16.70 18.68 16.52 16.54 18.51
AC1(re) 0.02 0.02 0.00 0.08 0.01 0.00
E(ry) 0.56 2.59 1.23 0.89 2.59 1.25
o(ry) 2.89 1.21 0.97 1.82 1.23 0.97
AC1(ry) 0.65 0.81 0.80 0.84 0.94 0.94
E(p—d) 3.36 3.01 3.13 3.46 3.01 3.14
o(p—d) 0.45 0.18 0.18 0.43 0.18 0.17
AC1(p—d) | 0.87 0.66 0.63 0.98 0.89 0.86

The BY and BKY models do a good job matching basic data moments with the primary exception
being the low volatility of log price-dividend ratios in the models. Table II displays moments for the
model and data from the annual and quarterly datasets. Columns 2-4 display the results for a yearly
time interval and columns 5-7 display the results for the quarterly time interval. For each model,
the moment displayed is the median from 100,000 finite sample simulations of equivalent length
to the dataset. The consumption and dividend growth rates are calculated by first aggregating
monthly consumption to yearly or quarterly levels, then computing the growth rate, then taking
logs. The returns on equity and the risk free rate are aggregated to a yearly or quarterly level by
adding log returns within a year or quarter. For the yearly data, the growth rates and returns are
in annualized percentage points. For quarterly data, the means are mulitplied by four and standard
deviation multiplied by two to annualize. For risk free rates, the annualized moments are the mean
and standard deviation of annualized risk free rates (multiplied by four). For the log price-dividend
ratio the yearly or quarterly value is taken from the last month of the year or quarter, with the

price-dividend ratio divided by the previous year’s dividend to match the construction in the data.
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Table III

Variance Ratios for Consumption and Dividends

Consumption Variance Ratio

Moment Vo veon) veox) | % (V) % (V)
data BY BKY BY BKY
V' (2) 1930-2008 1.40 1.47 1.40 0.271 0.505
V' (4) 1930-2008  1.38 2.01 1.78 0.039 0.126
V (6) 1930-2008 0.84 2.32 1.97 0.001 0.007
V' (2) 1948-2008 1.27 1.46 1.39 0.087 0.202
V' (4) 1948-2008  1.29 1.96 1.74 0.047 0.121
V (6) 1948-2008  1.29 2.22 1.88 0.065 0.151
Dividend Variance Ratio
Moment Vo veon) visow) | % (17) % (17)
data BY BKY BY BKY
V' (2) 1930-2008  1.23 1.37 1.26 0.111 0.377
V (4) 1930-2008  0.98 1.71 1.39 0.008 0.069
V (6) 1930-2008  0.59 1.87 1.41 0.000 0.006
V' (2) 1948-2008  1.32 1.36 1.26 0.388 0.696
V' (4) 1948-2008  1.45 1.66 1.36 0.290 0.609
V (6) 1948-2008  1.32 1.79 1.35 0.191 0.469

The longest sample of annual data shows enough evidence of mean reversion in consumption and dividend growth
at long-horizons to statistically reject the persistent cash flow growth of the long-run risks model. Table III displays
consumption and dividend variance ratios in the data and for the BY and BKY calibrations. For the yearly model,
the consumption growth rate and dividend growth rate are calculated by first aggregating monthly consumption to
yearly levels, then computing the growth rate, then taking logs. For the quarterly sample period spanning the years
1948-2008, the quarterly consumption and dividend data are first added to aggregate to the yearly level. Then we
calculate the growth rates and take logs. This removes the issue of dividend seasonality which has a large impact
on quarterly dividend variance ratios. In the model, consumption and dividend growth rates for comparison to the
annualized quarterly data are calculated using the same procedure as for the annual model. The second column
displays the moment in the data, the next two display the medians for the BY and BKY calibrations, followed by the
percentile of the data moment in both calibrations. The medians are from 100,000 samples of equivalent length to
the data (948 or 732 months) and the percentile is the proportion of those samples with an estimate at or below that
of the data. The percentile is in bold when the data moment is rejected by a 5 percent one-sided test or a 10 percent

two-sided test.
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Table IV
Predictability of Excess Returns, Consumption and Dividends

J
Dics Pty —Tpatg) = a+ B(pe—di) + 4

3 ¢ R R (50%) R*(50%) | % (B2) % (R?)

data data data BY BKY BY BKY
1Y -0.093 -1.803 0.044 0.007 0.011 0.918 0.841
3Y -0.264 -3.231 0.170 0.017 0.028 0.980 0.940
5Y -0.413 -3.781 0.269 0.025 0.043 0.990 0.956
4Q -0.119 -2.625 0.090 0.008 0.012 0.980 0.952
12 Q -0.274 -3.191 0.187 0.022 0.033 0.970 0.933
20 Q -0.424 -3.365 0.257 0.033 0.050 0.969 0.926

Sl (Acry)) = a+ B (pr—di) + gy

3 ¢ R R (50%) R (50%) | % (B2) % (R?)

data data data BY BKY BY BKY
1Y 0.011 1.586 0.060 0.324 0.145 0.006 0.202
3Y 0.010 0.588 0.013 0.350 0.109 0.002 0.132
5Y -0.001 -0.060 0.000 0.285 0.085 0.001 0.015
4Q 0.000 0.140 0.000 0.237 0.063 0.000 0.023
12 Q -0.002 -0.296 0.001 0.269 0.068 0.003 0.069
20 Q -0.003 -0.296 0.002 0.213 0.060 0.014 0.089

S (Adi) = o+ B(pr — di) + ey

3 / R? R?(50%) R2(50%) | % (ﬁ?) % (1?22)

data data data BY BKY BY BKY
1Y 0.074 1.977 0.092 0.404 0.194 0.001 0.165
3Y 0.107 1.330 0.059 0.320 0.084 0.015 0.399
5Y 0.089 1.214 0.039 0.255 0.061 0.039 0.401
4Q 0.003 0.112 0.000 0.159 0.026 0.001 0.043
12Q 0.012 0.193 0.001 0.180 0.029 0.011 0.115
20 Q 0.044 0.482 0.011 0.147 0.033 0.084 0.302

The long-run risks model, especially the BY calibration, has much more cash flow predictability and much less excess return predictability
than the data. Columns 2-4 of Table IV display coefficients, t-statistics, and R-squared statistics from predictive regressions of excess
returns, consumption growth and dividend growth on log price-dividend ratios in the 1930-2008 annual and 1947.2-2008.4 quarterly
datasets. Throughout the table, the first part of each panel dsiplays annual results and the second quarterly. The next two columns
following the data moments display the median R-squared statistics from finite sample simulations of the two calibrations. The last two
columns report the percentile of the data moment for the model in both calibrations. Standard errors are Newey-West with 2*(horizon-
1) lags. The medians from 100,000 samples of equivalent length to the data (948 or 741 months) and the percentile is the proportion of
those samples with an estimate at or below that of the data.The percentile is in bold when the data moment is rejected by a 5 percent

one-sided test or a 10 percent two-sided test. 37



Table V
Predictability of Volatility: Excess Returns, Consumption and Dividends

Excess Return Volatility
3 ¢ R R (50%) R (50%) | % (B2) % (R?)

data data data BY BKY BY BKY
1Y -0.084 -0.354 0.001 0.006 0.026 0.251 0.118
3Y -0.027 -0.166 0.001 0.015 0.082 0.114 0.042
5Y 0.017 0.148 0.001 0.022 0.107 0.085 0.032
4Q 0.056 0.337 0.002 0.009 0.106 0.262 0.052
12 Q 0.149 0.939 0.033 0.022 0.177 0.596 0.159
20 Q 0.161 1.732 0.061 0.030 0.183 0.666 0.238

Consumption Volatility
3 / R? R?(50%) R?(50%) %(ﬁ?) %(E?)

data data data BY BKY BY BKY
1Y -0.697 -2.193 0.059 0.006 0.031 0.974 0.687
3Y -0.583 -2.375 0.148 0.013 0.103 0.982 0.623
5Y  -0.560 -2.999 0.204 0.020 0.132 0.980 0.653
4Q -0.619 -4.170 0.226 0.008 0.126 1.000 0.728
12 Q -0.641 -4.667 0.437 0.021 0.197 1.000 0.891
20 Q -0.552 -5.342 0.462 0.030 0.200 0.999 0.894

Dividend Volatility
3 ¢ R? R2(50%) R? (50%) %(ﬁ?) %(fz?)

data data data BY BKY BY BKY
1Y -0.501 -1.503 0.032 0.005 0.034 0.906 0.482
3Y -0.248 -0.681 0.017 0.013 0.105 0.554 0.172
5Y  -0.148 -0.375 0.007 0.020 0.133 0.316 0.096
4Q -0.370 -1.366 0.049 0.009 0.128 0.899 0.274
12 Q -0.247 -0.587 0.027 0.021 0.197 0.557 0.129
20 Q -0.189 -0.412 0.019 0.030 0.199 0.409 0.109

The BKY calibration of the long-run risks model matches the high predictability of consumption volatility in the data but overstates
the predictability of excess return volatility relative to the data. Columns 2-4 of Table VIII display coefficients, t-statistics, and R-
squared statistics from predictive regressions of excess return, consumption or dividend volatility on the log price-dividend ratio for the
1930-2008 annual and 1947.2-2008.4 quarterly datasets. Volatility is measured as the sum of absolute residulas from an AR(1) model
of consumption growth, dividend growth or excess returns. Throughout the table, the first part of each panel dsiplays annual results
and the second quarterly. The next two columns following the data moments display the median R-squared statistics from finite sample
simulations of the two calibrations. The last two columns report the percentile of the data moment for the model in both calibrations.
Standard errors are Newey-West with 2*(horizon-1) lags. The medians from 100,000 samples of equivalent length to the data (948 or
741 months) and the percentile is the proportion of those samples with an estimate at or below that of the data. The percentile is in

bold when the data moment is rejected by a 5 percent one-sided te§ or a 10 percent two-sided test.



Sy Py = Trass) = 0+ By (Pt = 7p) + +B8a (0 — di) + Bar s + E11y

Table VI

Multivariate Predictability

]:32
data

R (50%)
BY

R2 (50%)
BKY

% (12)

BY

%(Eﬂ
BKY

1Y
3Y
oY

0.052
0.171
0.271

0.033
0.050
0.061

0.043
0.086
0.118

0.704
0.947
0.973

0.584
0.812
0.868

YL (Acryy) = a+ BiAc + +85 (pr — di) + Barpe + €44y

§2
data

R (50%)
BY

R (50%)
BKY

% (12)

BY

% (R2)

BKY

1Y
3Y
5Y

0.269
0.080
0.039

0.405
0.392
0.321

0.298
0.268
0.227

0.125
0.010
0.010

0.401
0.067
0.044

Z}]:1 (Adtyj) = a+ B1Ad: + +B9 (pt — di) + By + €t

]?52
data

R? (50%)
BY

R? (50%)
BKY

% (12)

BY

% (R2)

BKY

1Y
3Y
5Y

0.205
0.129
0.104

2

J
i=1

(ry,

0.467
0.341
0.280

0.258
0.138
0.130

0.004
0.036
0.072

0.299
0.465
0.406

t45) = .+ B1Acy + By (pr — di) + Barys + €eyj

]?52
data

R? (50%)
BY

R? (50%)
BKY

% (12)

BY

% (R2)

BKY

1Y
3Y
5Y

0.483
0.333
0.325

0.772
0.539
0.384

0.698
0.500
0.379

0.001
0.056
0.337

0.027
0.132
0.372

Regressions with a larger information set have a greater ability to predict short-term cash flows but not necessarily long-term cash flows.
Column 2 of Table VI displays R-squared statistics for predictive regressions of excess returns, consumption growth, dividend growth or
the risk free rate on predictor variables in the 1930-2008 annual dataset. For consumption growth, dividend growth and excess returns
the predictor variables are the risk free rate, the log price-dividend ratio and lagged consumption growth, dividend growth or excess
returns. For the risk free rate, the predictor variables are the log price-dividend ratio, consumption growth and the lagged risk free
rate. The next two columns following the data moment display the median R-squared statistics from finite sample simulations of the
two calibrations. The last two columns report the percentile of the data moment for the model in both calibrations. The medians from
100,000 samples of equivalent length to the data (948 months) and the percentile is the proportion of those samples with an estimate
at or below that of the data.The percentile is in bold when the data moment is rejected by a 5 percent one-sided test or a 10 percent

two-sided test.



Table VII
Term Structure Moments

BY Calibration

Maturity 1m 3m 6m ly 2y oy 10y 20y 30y
Zero Coupon Term Structure

Yield 258 255 249 238 219 1.74 130 091 0.75

Yield Spread -0.04 -0.10 -0.20 -0.40 -0.84 -1.28 -1.68 -1.84

Excess Return -0.08 -0.19 -0.39 -0.74 -1.39 -1.84 -2.05 -2.08

Ex Ret. Volatility 0.16 038 0.79 148 280 3.77 431 441

BKY Calibration

Maturity Im 3m 6m ly 2y oy 10y 20y 30y
Zero Coupon Term Structure

Yield 1.22 119 115 107 091 051 -0.02 -0.88 -1.65

Yield Spread -0.03 -0.07 -0.15 -0.31 -0.70 ~-1.22 -2.09 -2.85

Excess Return -0.06 -0.14 -0.29 -0.57 -1.24 -2.09 -3.47 -4.68

Ex Ret. Volatility 0.13 0.32 0.66 1.21 2.28 3.37 5.40 7.40

The long-run risks model has a downward sloping term structure with very low long-term yields.
Table VII displays moments for the real zero coupon term structure for the BY and BKY calibra-
tions. The median moments from 100,000 simulations of equivalent length to the annual dataset are
diplayed. The zero coupon yield is the average monthly log yield on a zero coupon bond of a given
maturity multiplied by 12 to annualize. The zero coupon yield spread is the difference between the
yield on the long maturity zero coupon bond and that on the one month bond, also annualized.
Excess returns are calculated on the strategy of buying a long bond each month and selling it the
following month to buy a new bond of the same maturity. Then yearly excess returns are calculated
by adding monthly log excess returns. The excess return on long term bonds is the average of these
yearly excess returns plus one half the variance of yearly excess returns. The standard deviation of

yearly excess returns is displayed in the final row of the first panel.
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Table VIII
Long Run Risks and the EIS

Acpp1 =7i +rier1 + (G

(8 ¥(50%) P (50%) %o(v) %o(v)
Asset  Sample data BY BKY BY BKY
rrev1 1930-2008 -0.123 1.654 1.324 0.000 0.020
1947.2-2008.4 0.306 1.495 1.343 0.001 0.017
Tm,+1  1930-2008 -0.041 0.041 0.018 0.395 0.310
1947.2-2008.4 0.004 0.030 0.008 0.471 0.484

Tit41 = My + (i) Aciy1 + 15441
1 1 1 1 1
Asset  Sample data BY BKY BY BKY
rri+1 1930-2008 -0.679 1.816 1.871 0.001 0.025
1947.2-2008.4 0.504 1.613 1.694 0.000 0.007
Tm+1  1930-2008 -0.137 0.428 0.160 0.445 0.399
1947.2-2008.4 1.970 0.428 0.115 0.845 0.928

Regression estimates of the EIS in the model are close to the true value of 1.5 while estimates in
the data are close to 0. Table VIII displays the EIS estimates using both the risk free rate and the
market return as the asset for the BY and BKY calibrations. Medians are from a series of 100,000
samples of equivalent length to the data (948 and 741 months). The percentile is the proportion of
the 100,000 samples with an estimate at or below that of the data. The instruments are consumption
growth, the log price-dividend ratio and returns for the asset, all lagged twice. In the model, the
EIS is 1.5. The percentile is in bold when the data moment is rejected by a 5 percent one-sided test

or a 10 percent two-sided test.
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Figure I Predictability of Yearly Consumption with Leads or Lags
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Figure 1 displays the coefficients and R-squareds from a regression of consumption
growth over a 1, 3 or 5 year horizon on the log price-dividend ratio at different leads
and lags. Solid lines are the BY model, dashed lines the BKY model and dotted lines
are the data. Each datapoint on the graph represents a different regression for that time
horizon and lead or lag. Model regressions are the medians from 100,000 simulations of

equivalent length to the data. The data is the 1930-2008 yearly dataset.
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Figure II Predictability of Quarterly Consumption with Leads or Lags
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Figure 2 displays the coefficients and R-squareds from a regression of consumption
growth over a 4, 12 or 20 quarter horizon on the log price-dividend ratio at different
leads and lags. Solid lines are the BY model, dashed lines the BKY model and dotted
lines are the data. Each datapoint on the graph represents a different regression for
that time horizon and lead or lag. Model regressions are the medians from 100,000
simulations of equivalent length to the data. The data is the 1947.2-2008.3 quarterly

dataset.
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