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ABSTRACT 30	
  

Many dynamical systems, including lakes, organisms, ocean circulation patterns, or financial 31	
  

markets, are now thought to have tipping points where critical transitions to a contrasting state 32	
  

can happen. Because critical transitions can occur unexpectedly and are difficult to manage, 33	
  

there is a need for methods that can be used to identify when a critical transition is 34	
  

approaching. Recent theory shows that we can identify the proximity of a system to a critical 35	
  

transition using a variety of so-called ‘early warning signals’, and successful empirical 36	
  

examples suggest a potential for practical applicability. However, while the range of proposed 37	
  

methods for predicting critical is rapidly expanding, opinions on their practical use differ 38	
  

widely, and there is no comparative study that tests the limitations of the different methods to 39	
  

identify approaching critical transitions using time-series data. Here, we summarize a range of 40	
  

currently available early warning methods and apply them to two simulated time series that are 41	
  

typical of systems undergoing a critical transition. In addition to a methodological guide, our 42	
  

work offers a practical toolbox that may be used in a wide range of fields to help detect early 43	
  

warning signals of critical transitions in time series data. 44	
  

 45	
  

KEYWORDS: leading indicator; resilience; critical transition; catastrophic shift; regime shift; 46	
  

alternative states; autocorrelation; variance; skewness; kurtosis; spectral reddening; detrended 47	
  

fluctuation analysis; conditional heteroskedasticity; time-varying autoregressive models; 48	
  

threshold autoregressive models; drift-diffusion-jump models; BDS test; potential analysis; 49	
  

time-series analysis; nonlinearity 50	
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INTRODUCTION 51	
  

The Earth’s past has been characterized by rapid and often unexpected punctuated shifts in 52	
  

temperature and climatic conditions [1], lakes and coral reefs have shifted among alternative 53	
  

states [2], neural cells move regularly between different dynamical regimes [3], and financial 54	
  

markets are notorious for abrupt shifts. The gradual change in some underlying condition (or 55	
  

driver), such as the accumulation of phosphorus in a lake or the increasing flux of freshwater 56	
  

from melting ice sheets into the ocean, can bring a system closer to a catastrophic bifurcation 57	
  

point (a ‘tipping point’) causing a loss of resilience in the sense that even small perturbations 58	
  

can invoke a shift to an alternative state [2,4]. In most cases, however, information about the 59	
  

drivers or the values at which systemic responses are so easily triggered (critical thresholds) is 60	
  

difficult to acquire (but see [5]). Nonetheless, these sudden transition incur large costs as 61	
  

restoration to the previous conditions is difficult or sometimes even impossible [2]. 62	
  

To overcome these challenges, numerous studies have suggested the use of generic 63	
  

early warning signals (or leading indicators) that can detect the proximity of a system to a 64	
  

tipping point [6]. Such indicators are based on common mathematical properties of phenomena 65	
  

that appear in a broad range of systems as they approach a catastrophic bifurcation [6]. An 66	
  

important application of these leading indicators is their potential real-time use as warnings of 67	
  

increased risk for upcoming transitions. However, they also may be used to rank instances of a 68	
  

system (e.g. different patients, individual coral reefs, different markets etc.) according to their 69	
  

proximity to a critical threshold. 70	
  

Several empirical studies have now demonstrated that leading indicators can be found 71	
  

in a variety of systems. Increases in autocorrelation has been documented prior to past climatic 72	
  

transitions [7,8], increased variability has been shown before extinction in zooplankton lab 73	
  

experiments, and before an experimentally induced regime shift in a lake foodweb [9], whereas 74	
  

decreases in recovery rates have been demonstrated in chemical reactions [10], lasers [11], or 75	
  

in the plankton [12]. However, the statistical detection of leading indicators in both past events 76	
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and in real time remains challenging for at least two reasons. First, there is a lack of 77	
  

appropriate data. High frequency sampling and designed experimentation have been proposed 78	
  

as potential solutions that can improve the detection of leading indicators [6,13]. In many 79	
  

important cases, however, high frequency sampling or experiments are impossible. 80	
  

Furthermore, in many systems, sampling schemes are designed explicitly to avoid temporal 81	
  

autocorrelation, which is, in fact, needed for the accurate application and assessment of leading 82	
  

indicators (see worked examples below). 83	
  

Second, there is no clear framework for the application and detection of leading 84	
  

indicators. Different approaches have emerged in different fields [14] and have been applied to 85	
  

different types of transitions [15]. For instance, most leading indicators are based on detecting 86	
  

changes in the stability properties of a system around its equilibrium under a weak stochastic 87	
  

regime [6], whereas alternative approaches have been developed for systems experiencing 88	
  

highly noisy regimes [16]. As the literature is rapidly expanding, there is an urgent need for a 89	
  

coherent methodological framework and a comparison between approaches. 90	
  

Here we present a methodological guide for using leading indicators for detecting 91	
  

critical transitions in time series. For this, we apply available leading indicators to two example 92	
  

datasets generated from a simple ecological model that is known to undergo a critical transition 93	
  

to an alternative state. While most of these methods have been applied to real-world data in 94	
  

papers that we cite, such applications inevitably depend on specific details (e.g. missing values, 95	
  

data transformation, coping with too-long sampling intervals or too-short time series) that 96	
  

make it difficult to compare the methods themselves. The exact location and nature of the 97	
  

critical transition is also ambiguous for real-world data. Therefore we gather issues of data 98	
  

preprocessing in a separate section (see “Step 1. Preprocessing” below), and illustrate the 99	
  

methods with simulated data with known, clearly defined critical transitions. The structure of 100	
  

the paper is as follows. First, we describe two categories of leading indicators: metric-based 101	
  

and model-based indicators. Second, we present the ecological model we use to generate the 102	
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time series we use to detect critical transitions. Third, we show how each indicator is applied to 103	
  

the two simulated time series. We provide computer code alongside the worked-out examples. 104	
  

Last, we review the sensitivity and limitations of each indicator and discuss their interpretation. 105	
  

We trust that the framework and the tools we provide will encourage testing the ability of these 106	
  

indicators to detect upcoming transitions in real systems. 107	
  

 108	
  

LEADING INDICATORS 109	
  

We group leading indicators of critical transitions into two broad categories: metric-based and 110	
  

model-based indicators (Table 1). Both types of indicators reflect changes in the properties of 111	
  

the observed time series of a system that is generated by a general process: 112	
  

dWxgdtxfdx ),(),( θθ +=         (eq.1) 113	
  

where x is the state of the system, f(x,θ) describes the deterministic part of the system, and 114	
  

g(x,θ)dW determines how stochasticity interacts with the state variable; dW is a white noise 115	
  

process. A slow change in the underlying conditions (drivers), θ, moves the system close to a 116	
  

threshold where a transition may occur. Metric-based indicators quantify changes in the 117	
  

statistical properties of the time series generated by equation 1 without attempting to fit the 118	
  

data with a specific model structure. Model-based methods quantify changes in the time series 119	
  

by attempting to fit the data to a model that is based on the general structure of equation 1. The 120	
  

ultimate goal of both types of indicators is to capture changes in the ‘memory’ (i.e. correlation 121	
  

structure) and variability of a time series and to determine if they follow patterns as predicted 122	
  

by models of critical transitions, while the system is approaching a transition into an alternative 123	
  

dynamic regime (Table 1).  124	
  

 125	
  

Metric-based Indicators 126	
  

Autocorrelation and spectral properties 127	
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The rate of return to equilibrium following a (small) perturbation slows down as systems 128	
  

approach critical transitions [17]. This slow return rate has been termed “critical slowing 129	
  

down” [18] and can be detected by changes in the correlation structure of a time series. In 130	
  

particular, critical slowing down causes an increase in the ‘short-term memory’ (=correlation at 131	
  

low lags) of a system prior to a transition [19,20]. 132	
  

Autocorrelation is the simplest way to measure slowing down: an increase in 133	
  

autocorrelation at-lag-1 indicates that the state of the system has become increasingly similar 134	
  

between consecutive observations [19]. There are at least three alternative ways to measure 135	
  

autocorrelation at-lag-1. The most straightforward is to estimate the first value of the 136	
  

autocorrelation function, 
2

1
1

)])([(

z

tt ZZE
σ

µµρ −−
= + , where µ is the mean and σ the variance of 137	
  

variable zt [21]. Alternatively one can use a conditional least-squares method to fit an 138	
  

autoregressive model of order 1 (linear AR(1)-process) of the form; xt+1 = α1xt + εt, , where εt is 139	
  

a Gaussian white noise process, and α1 is the autoregressive coefficient [21]. ρ1 and α1 are 140	
  

mathematically equivalent [21]. Slowing down can also be expressed as return rate: the 141	
  

inverse of the first-order term of a fitted autoregressive AR(1) model [1/α1] [22,23]. The return 142	
  

rate has also been expressed as [1-α1], which reflects the proportion of the distance from 143	
  

equilibrium that decays away at each time step [13]. 144	
  

Whereas autocorrelation at-lag-1 ignores changes in correlation structure at higher lags, 145	
  

power spectrum analysis can reveal changes in the complete spectral properties of a time series 146	
  

prior to a transition. Power spectrum analysis partitions the amount of variation in a time series 147	
  

into different frequencies [21]. A system close to a transition tends to show spectral reddening: 148	
  

higher variation at low frequencies [20]. Changes in the power spectra of a time series also can 149	
  

be expressed in different ways: by estimating the entire power spectrum and observing a shift 150	
  

in the power of spectral densities to lower frequencies [20]; by estimating the spectral 151	
  

exponent of the spectral density based on the slope of a linear fitted model on a double-log 152	
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scale of spectral density versus frequency [24]; or by estimating the spectral ratio of the 153	
  

spectral density at low frequency (e.g. 0.05) to the spectral density at high frequency (e.g. 0.5) 154	
  

[25]. 155	
  

Detrended fluctuation analysis 156	
  

Detrended fluctuation analysis (DFA) can be used to measure increases in short- and mid-term 157	
  

‘memory’ in a time series of a system close to transition. Instead of estimating correlations at a 158	
  

given lag (like autocorrelation at-lag-1), DFA estimates a range of correlations by extracting 159	
  

the fluctuation function of a time series of size s. If the time series is long-term power-law 160	
  

correlated, the fluctuation function F(s) increases as a power law; assF ∝)( , where a is the 161	
  

DFA fluctuation exponent [26]. The DFA fluctuation exponent is then rescaled to give a DFA 162	
  

indicator, which is usually estimated in time ranges between 10 and 100 time units, and which 163	
  

reaches value 1 (rescaled from 1.5) at a critical transition [7]. Although, the DFA captures 164	
  

similar information as autocorrelation at-lag-1, it is more data demanding (it requires > 100 165	
  

points for robust estimation) [27,28]. 166	
  

Variance 167	
  

Slow return rates back to a stable state close to a transition also can make the system state drift 168	
  

widely around the stable state. Moreover, strong disturbances potentially can push the system 169	
  

across boundaries of alternative states – a phenomenon termed flickering. Both slowing down 170	
  

and flickering will cause variance to increase prior to a complete transition [6]. Variance is the 171	
  

second moment around the mean µ of a distribution and serves as early warning measured 172	
  

either as standard deviation: ∑
=

−
−

=
n

t
tzn

SD
1

2)(
1
1 µ  or alternatively as the coefficient of 173	
  

variation 
µ
SDCV =  [29]. 174	
  

Skewness and Kurtosis 175	
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In some cases disturbances push the state of the system towards values that are close to the 176	
  

boundary between the two alternative states. Because the dynamics at the boundary become 177	
  

slow [6], we may observe a rise in the skewness of a time series- the distribution of the values 178	
  

in the time series will become asymmetric [30]. Just like variance, skewness can also increase 179	
  

because of flickering [6]. Skewness is the standardized third moment around the mean of a 180	
  

distribution and it is given by 

∑

∑

=

=

−

−
=

n

t
t

n

t
t

z
n

z
n

1

2

1

3

)(1

)(1

µ

µ
γ . Note that skewness may increase, or 181	
  

decrease, depending on whether the transition is towards an alternative state that is larger or 182	
  

smaller than the present state. 183	
  

Flickering or strong perturbations also make it more likely that the state of a system 184	
  

may reach more extreme values close to a transition. Such effects can lead to a rise in the 185	
  

kurtosis of a time series prior to the transition [25]; the distribution may become ‘leptokurtic’: 186	
  

the tails of the time series distribution become fatter due to the increased presence of rare 187	
  

values in the time series. Kurtosis is the standardized fourth moment around the mean of a 188	
  

distribution estimated as: 
2

1

2

1

4

)(1

)(1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
=

∑

∑

=

=

n

t
t

n

t
t

z
n

z
n

µ

µ
κ . 189	
  

Conditional heteroskedasticity 190	
  

Another measure of change in the pattern of variability in a time series is conditional 191	
  

heteroskedasticity. Conditional heteroskedasticity means that variance at one time step has a 192	
  

positive relationship with variance at one or more previous time steps. This implies that 193	
  

periods of high variability will tend to follow periods of high variability and periods of low 194	
  

variability will tend to follow periods of low variability [31,32]. As variability tends to increase 195	
  

prior to a transition, conditional heteroskedasticity can serve as a leading indicator because the 196	
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portion of a time series near an impending shift will appear as a cluster of high variability 197	
  

while the portion of the time series away from the shift will appear as a cluster of low 198	
  

variability [33]. Conditional heteroskedasticity is based on a Langrange multiplier test [31,32], 199	
  

which is calculated by first extracting the residuals of a fitted model to the time series. Usually 200	
  

an autoregressive model of selected order is selected according to a measure of relative 201	
  

goodness of fit (e.g. the Akaike Information Criterion); then the residuals are squared, and 202	
  

finally the residuals are regressed on themselves lagged by one time step. A positive slope of 203	
  

the linear regression of the lagged residuals suggests conditional heteroskedasticity. The 204	
  

coefficient of determination of the regression r2 is compared with a χ2 distribution of one 205	
  

degree of freedom to assign the significance for the r2. The χ2 value can be divided by the 206	
  

sample size to make it directly comparable to the r2 value.  207	
  

 208	
  

BDS test 209	
  

The BDS test (after the initials of W. A. Brock, W. Dechert and J. Scheinkman) detects 210	
  

nonlinear serial dependence in time series [34].The BDS test was not developed as a leading 211	
  

indicator, but it can help to avoid false detections of critical transitions due to model 212	
  

misspecification. After detrending (or first-differencing) to remove linear structure from the 213	
  

time series by fitting any linear model (e.g. ARMA(p,q), ARCH(q) or GARCH(p,q) models), 214	
  

the BDS tests the null hypothesis that the remaining residuals are independent and identically 215	
  

distributed (i.i.d.) [9]. Rejection of the i.i.d. hypothesis implies that there is remaining structure 216	
  

in the time series, which could include a hidden nonlinearity, hidden nonstationarity or other 217	
  

type of structure missed by detrending or model fitting. As critical transitions are considered to 218	
  

be triggered by strong nonlinear responses, the BDS test is expected to reject the i.i.d. 219	
  

hypothesis in the residual time series from a system that is approaching a critical transition. 220	
  

The BDS test can be helpful as an ad-hoc diagnostic test to detect nonlinearities in time series 221	
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prior to transitions: if the BDS test rejects the i.i.d. hypothesis and there is another strong 222	
  

leading indicator, then the detected early warning is less likely to be a false positive. 223	
  

 224	
  

Model-based Indicators 225	
  

Nonparametric drift-diffusion-jump models (DDJ models) 226	
  

Often we do not know the underlying processes that generate the time series that we are 227	
  

analyzing for early warnings. Nonparametric drift-diffusion-jump models address this problem 228	
  

by fitting a general model that can approximate a wide range of nonlinear processes without 229	
  

the need to specify an explicit equation. Drift measures the local rate of change. Diffusion 230	
  

measures relatively small shocks that occur at each time step. Jumps are large intermittent 231	
  

shocks. Total variance combines the contributions of diffusion and jumps. 232	
  

The approach is to estimate terms of a drift-diffusion-jump model as a surrogate for the 233	
  

unknown data generating process [16]: 234	
  

tttttt dJdwxgdtxfdx ++= ),(),( θθ        (eq 2) 235	
  

Here x is the state variable, f(·) and g(·) are nonlinear functions, dW is white noise, and J is a 236	
  

jump process. Jumps are large, one-step, positive or negative shocks that are uncorrelated in 237	
  

time. Equation 2 is assumed to be subject to a critical transition at a critical parameter value Cθ , 238	
  

just as in equation 1. We assume that xt can be observed at discrete intervals of time Δt that can 239	
  

be short, i.e. very high-frequency observations are possible.  240	
  

The data-generating process (eq 2) is unknown in the sense that the expressions for f(·) 241	
  

and g(·) are not known, θt is neither known nor measured, the critical value θc where x 242	
  

undergoes a catastrophic change is not known, and the parameters of the jump process are not 243	
  

known. From the time series, however, we can estimate drift, diffusion and jump statistics that 244	
  

may serve as leading indicators of the transition. We do this by assuming that high-frequency 245	
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observations of the system in equation 2 can be approximated by fitting the drift-diffusion-246	
  

jump model 247	
  

)(),(),(
1
∑
=

−− ++=
tN

n
nttDttt ZddWxdtxdx θσθµ      (eq 3) 248	
  

In this fitted model (eq. 3), the drift, diffusion, and jump functions track the slow and unknown 249	
  

changes in θt. The drift function ),( ttx θµ − measures the instantaneous deterministic change in 250	
  

the time series. The diffusion function ),( ttD x θσ − 	
  measures the standard deviation of 251	
  

relatively small shocks that occur at each time step. Jumps, the last term of equation 3, are 252	
  

relatively large shocks that occur intermittently. Jumps are characterized by an average 253	
  

magnitude )( tZ θσ  (where Ζn ~ ))(,0( 2
tZN θσ ) and the probability of a jump arriving in a small 254	
  

time increment dt is dtx tt ),( θλ . The subscript t- in µ(·) and σD(·) indicates that these functions 255	
  

are evaluated just before the time step. In practice, the drift, diffusion, and jump functions are 256	
  

estimated using nonparametric regression [35,36]. The regression yields estimates of drift 257	
  

),(ˆ tx θµ , total variance ),(ˆ tt x θσ , jump intensity ),(ˆ tx θλ , and the diffusion variance is given 258	
  

by ),(ˆ),(ˆ),(ˆ),(ˆ 222
tZttTtD xxxx θσθλθσθσ −= , where ),(ˆ 2 tZ x θσ  is the jump-variance function. In 259	
  

addition, we can estimate the conditional variance of x using standard nonparametric regression 260	
  

techniques. This conditional variance rises to infinity at a critical point caused by bifurcation in 261	
  

f(·), g(·) or both. The conditional variance function, );(ˆ nin aS Δ , can be estimated as the 262	
  

difference between the second conditional moment and the square of the first conditional 263	
  

moment as 212 )};(ˆ{)};(ˆ{);(ˆ ninninnin aMaMaS Δ−Δ≡Δ  [16,37]. An interesting feature of the 264	
  

drift-diffusion-jump model is that conditional variance and diffusion estimates may be useful 265	
  

for distinguishing bifurcations that occur in the drift from bifurcations that occur in the 266	
  

diffusion (so-called noise-induced transitions: an abrupt shift in the shape of the stationary 267	
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distribution as in [38]). A bifurcation in the drift only may be indicated in advance by 268	
  

conditional variance but not diffusion. A bifurcation in the diffusion may be indicated by 269	
  

increases in both conditional variance and diffusion.  270	
  

Time-varying AR(p) models 271	
  

Time-varying autoregressive models provide a model-based approach for estimating time-272	
  

dependent return rates in time series [39], which as we noted in the earlier section can act as an 273	
  

early warnings of a critical transition. In time-invariant AR(p) models, the inverse of the 274	
  

characteristic root, λ, of a fitted AR(p) model [40] is similar in magnitude to the dominant 275	
  

eigenvalue of the Jacobian matrix computed at a stationary point of a deterministic discrete-276	
  

time model [18,41]. Values of λ near zero imply that the state variable returns rapidly towards 277	
  

the mean; this central tendency diminishes as values approach one [22]. 278	
  

Time-varying AR(p) models assume that the coefficients of the AR(p) model can 279	
  

change through time, thereby allowing estimation of the time-dependent characteristic root as it 280	
  

varies along a time series up to a transition [39]. The general form of time-varying AR(p) 281	
  

models is 282	
  

∑
=

+−−−−+−=
p

i
i ttbitxtbtbtx

1
00 )())1()()(1()1()( ε    (eq 4a) 283	
  

)()1()( ttbtb iii φ+−=        (eq 4b) 284	
  

Equation 4a is a standard AR(p) model with coefficient b0 determining the mean of the time 285	
  

series, autoregressive coefficients bi determining the dynamics around the mean, and ε(t) 286	
  

giving the environmental variability associated with changes in the state variable; ε(t) is 287	
  

assumed to be a Gaussian random variable with mean zero and variance σ2
ε. Equation 4b 288	
  

allows the coefficients bi to vary as random walks, with rates dictated by the variances σ2
i of 289	
  

ϕi(t).  290	
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 We incorporate measurement error using the measurement equation 291	
  

)()()(* tatxtx +=   (eq 5) 292	
  

in which x*(t) is the observed value of the state variable, x(t) is the "true" modeled value, and 293	
  

α(t) is a Gaussian random variable with mean zero and variance σ2
α. This makes it possible to 294	
  

factor out measurement error that could potentially obscure underlying dynamical patterns 295	
  

[39].  296	
  

 Together, equations 4a and 4b are a state-space model that can be fit using a Kalman 297	
  

filter [42]. Although we present the model assuming that data are sampled at equidistant points 298	
  

through time, the state-space structure allows for missing points. Fitting with a Kalman filter 299	
  

gives maximum likelihood parameter estimates, and likelihood ratio tests (LRT) can be used 300	
  

for statistical inference about the parameter estimates. Likelihood-based model selection such 301	
  

as Akaike's Information Criterion (AIC) can also be used [39]. Because the variance 302	
  

components of the model, σ2
i, are constrained to be zero, a standard LRT is overly 303	
  

conservative; the calculated P-values are too large, leading to acceptance of the null hypothesis 304	
  

that σ2
i = 0 even when it is false. To correct for this, the LRT can be performed using the 305	
  

relationship that the twice the difference in log likelihoods between models differing by q in 306	
  

the number of terms σ2
i they contain is given asymptotically by a 50:50 mixture distribution of 307	
  

χ2
(q-1) and χ2

q.[43,44]. Therefore, the corrected P-value is the average of P-values calculated 308	
  

from the two χ2 distributions.  Since P(χ2
(q-1) < x) is less than P(χ2

q < x), this always leads to 309	
  

lower P-values than would be obtained from a standard LRT based on χ2
q alone. 310	
  

Threshold AR(p) models 311	
  

As described above, flickering occurs when a time series repeatedly crosses the domains of 312	
  

attraction of two alternative states. Identifying flickering can serve as an early warning for a 313	
  

permanent shift to an alternative state [6]. The difficulty lies in robustly estimating that a time 314	
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series is jumping among two (or more) distinct states. Threshold AR(p) models are designed to 315	
  

identify these occasional transitions [39]. These models assume there are two underlying 316	
  

processes governing the dynamics in a time series, with the possibility that the state variable 317	
  

switches between them when it crosses a threshold. The two processes are described by two 318	
  

AR(p) models 319	
  

∑
=
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p

i
i ctxtbitxbbtx

1
00 )1(  when )())(()( ε  (eq 6a) 320	
  

∑
=

>−+−−+=
p

i
i ctxtbitxbbtx

1

'
0

''
0 )1(  when )())(()( ε   (eq 6b) 321	
  

where bi and bi' (i = 0, …, p) denote separate sets of coefficients. As with the time-varying 322	
  

AR(p) models (eqs 4), equation 5 is used to incorporate measurement error, and the Kalman 323	
  

filter is used to compute likelihoods in eqs 6, which in turn can be used for parameter 324	
  

estimation and model selection. In addition to the two sets of autoregression parameters bi and 325	
  

bi', parameters to be estimated are the threshold c, and the variance of the process error σ2
ε. 326	
  

Potential analysis 327	
  

An alternative way of probing the existence of alternative regimes in a time series is potential 328	
  

analysis. Just like threshold AR(p) models, this method in essence identifies flickering and 329	
  

serves as warning of the existence of alternative states. Potential analysis [45,46] is a technique 330	
  

for deriving the shape of the underlying potential of a system. Potential analysis assumes that a 331	
  

time series may be approximated by a stochastic potential equation 332	
  

dWdt
dz
dUdZ σ+−=          (eq 7) 333	
  

where dU/dz is a polynomial potential of even order (2nd for one-well potential, 4th for 334	
  

double-well potential, etc.), dW is white noise of unit variance and intensity σ. The order of the 335	
  

best-fit polynomial in essence reflects the number of potential system states identified along 336	
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the time series [45,46]. 337	
  

 Threshold AR(p) models and potential analysis are not, strictly speaking, early 338	
  

warnings for critical transitions, as flickering implies that the system already has undergone 339	
  

repeated state changes. Nonetheless flickering detection methods can robustly indicate the 340	
  

presence of alternative regimes during the period that the system has not permanently shifted to 341	
  

the alternative attractor. 342	
  

 343	
  

DATASETS 344	
  

We applied all methods to simulated time series-in which we are certain that a critical 345	
  

transition was crossed – rather than on real-world time series to illustrate the application of the 346	
  

methods across identical datasets. There are few available real-world time series that exhibit 347	
  

transitions, and for most of them there is no clear evidence that the transition is of the critical 348	
  

type we are treating here. Thus, for the illustrative purposes of our methodological paper, 349	
  

simulated datasets allowed us to compare the methods independently of uncertainties in the 350	
  

presence of a critical transition, data limitations, or insufficient data resolution that are 351	
  

common in empirical time series. 352	
  

The two time series used were generated by a well-studied ecological model that 353	
  

describes the shift of a harvested resource to overexploitation [47,48]. In the model, resource 354	
  

biomass x grows logistically and is harvested according to 355	
  

xdWdt
hx

xc
K
xrxdx σ+

+
−−= ))1(( 22

2

  (eq. 8) 356	
  

where r is the growth rate, K is the population’s carrying-capacity, h is the half-saturation 357	
  

constant, c is the grazing rate and dW is a white noise process with intensity (σx)2/dt. In the 358	
  

deterministic case, when c reaches a certain threshold value (c ≈ 2.604), the ecosystem 359	
  

undergoes a critical transition to overexploitation through a fold bifurcation (Fig. 1A). 360	
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We simulated time series for two cases. In the first case (which we henceforth call the 361	
  

critical slowing down or ‘CSD’ dataset), we increased grazing rate c linearly in 1,000 time 362	
  

steps from 1 to 2.6771 (just after the bifurcation). At approximately time step 970 the system 363	
  

shifted to overexploitation (Fig. 1B). Parameter values used were r=1, h=1, K=10, σ=0.03. The 364	
  

values were not parameterized for specific cases, but are similar to ones typically used in the 365	
  

literature (e.g. [47,49,50]). In the second case (which we henceforth call the ‘flickering’ 366	
  

dataset), we again increased grazing rate c linearly from 1 to 2.6771 but in 10,000 time steps 367	
  

(Fig. 1C). In the ‘flickering’ dataset, we additionally assumed a small time-correlated inflow i 368	
  

of resource biomass that was generated by a simple equation for red noise scaled to the 369	
  

resource biomass x [51]: tttt xi
T

i ))11((1 βη+−=+ , where T is a parameter that represents the 370	
  

time scale over which noise becomes uncorrelated (=20), and β the standard deviation (=0.07) 371	
  

of the normally distributed error term ηt. Parameter values used were r=1, h=1, K=10, σ=0.15. 372	
  

For both scenarios we also included measurement error in the derived time series 373	
  

  
xobs,t = xt +σ obserrεt , where  σ obserr  is the standard deviation of the normally distributed error 374	
  

term εt. We used  σ obserr =0.1 for both the CSD and ‘flickering’ datasets. 375	
  

All simulated time series were produced in MATLAB R2011a using the software 376	
  

package GRIND (freely available at http://www.aew.wur.nl/UK/GRIND/). The estimation of 377	
  

the leading indicators was performed in R v.2.12.0 (http://www.r-project.org/), except for the 378	
  

DFA and potential analysis, which were performed in MATLAB R2011a using Fortran and C 379	
  

computational kernels with shell scripts, and the time-varying AR(p) and threshold AR(p) 380	
  

models that were performed in MATLAB R2011a. We provide an R package earlywarnings 381	
  

(that can be downloaded at http://earlywarnings.r-forge.r-project.org/) and MATLAB code for 382	
  

the estimation of early warning signals in the Supplementary Material. Further worked out 383	
  

examples can be also found at http://www.early-warning-signals.org. 384	
  

 385	
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ANALYSIS AND RESULTS 386	
  

We present results here assuming that the only available information to a practitioner is a time 387	
  

series derived from a system, which may be approaching a critical transition. The analysis is 388	
  

presented as a step-by-step procedure that starts with the preparation of the simulated time 389	
  

series (step 1, 2), the estimation of the leading indicators (step 3), and the testing of their 390	
  

sensitivity (step 4) and significance (step 5). 391	
  

Step 1 Preprocessing 392	
  

To sensibly apply leading indicators, we first selected the part of the time series that preceded 393	
  

the potential transition. For most methods the estimation of the indicators takes place within 394	
  

rolling windows of predetermined size up to the end of the time series prior to the transition. 395	
  

We selected data up to time-step 970 in the CSD dataset (Fig. 1B). We used the whole time 396	
  

series of the ‘flickering dataset, as it was difficult to clearly identify when the transition took 397	
  

place. We ensured that there were no missing values and that all data were equally spaced in 398	
  

time (i.e., a regular time series). Regular time series are especially important in the case of 399	
  

leading indicators such as autocorrelation that estimate memory in time series. Interpolation 400	
  

can solve issues of missing values and irregular time series, but it can also result in spurious 401	
  

correlations, and checking interpolated records against the original time series to ensure that 402	
  

the density of interpolated points is constant along the time series should be considered [8]. 403	
  

Alternatively, points can also be dropped to obtain a regular time series. However, all the 404	
  

methods we used in this paper can also be applied to irregular time series as well as regular 405	
  

ones. 406	
  

Equally important is the frequency of observations, that is, the time interval between 407	
  

values in the time series. In many cases data are recorded at different frequencies from the ones 408	
  

needed for the methods we illustrate. In principle, one needs data that are sampled at intervals 409	
  

shorter than the characteristic time scales of the slowest return rate of the system, especially 410	
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when measuring indicators of critical slowing down [19,52]. Averaging within non-intersecting 411	
  

windows of a given length results in records of longer time scales that may match the 412	
  

underlying dynamics of interest in the studied system [19,27,28]. Choosing the length of the 413	
  

window to aggregate, however, depends on a fairly deep understanding of the dynamics of the 414	
  

system. In addition, aggregation also may solve the issue of missing values, although at the 415	
  

cost of losing data. Here, we did not need to aggregate our datasets because both were sampled 416	
  

in time scales that represented the characteristic time scale of the system we simulated. 417	
  

We also transformed data where necessary. For example, we log-transformed (using 418	
  

log(Y+1)) and in some cases also standardized [
Y

trans
YYY

σ
ˆ−= ] the ‘flickering’ dataset, because 419	
  

of the presence of values close to zero or extreme values, respectively. We checked that data 420	
  

transformations did not change fundamentally the distribution of the original data, as it is 421	
  

exactly the deviations from constant normal distributions that the early warnings are sensitive 422	
  

to. 423	
  

Step 2 Filtering-Detrending 424	
  

Non-stationarities in the mean of the time series can cause spurious indications of impending 425	
  

transitions, especially for the metrics that are estimated within rolling windows. Additionally, 426	
  

time series may be characterized by strong seasonal periodicities, which, if not removed, 427	
  

impose a strong correlation structure on the time series. For all metrics that were estimated 428	
  

within rolling windows, we removed trends or filtered out high frequencies using Gaussian 429	
  

smoothing (autocorrelation, variance, skewness), simple linear detrending (DFA), or by fitting 430	
  

linear autoregressive models (conditional heteroskedasticity). When applying these or any 431	
  

other type of detrending or filtering (i.e. first-differences, removing running means, loess 432	
  

smoothing), care should be taken to not over-fit or filter out the slow dynamics (of interest) 433	
  

from the dataset [8]. Alternatively, one could also detrend within the rolling windows rather 434	
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than the entire dataset. Lenton et al [27,28] have shown that results from the two approaches do 435	
  

not significantly differ. 436	
  

Step 3 Probing the Signals 437	
  

Metric-based Indicators 438	
  

Autocorrelation, Variance and Skewness 439	
  

We estimated autocorrelation, variance (as standard deviation), and skewness within rolling 440	
  

windows half the size of the datasets (window sizeCSD=485 points, window sizeflickering=5,000 441	
  

points) (Fig. 2). We did that after detrending the ‘CSD’ dataset using Gaussian smoothing with 442	
  

bandwidth size 10% of the time series length (Fig. 2A). We used a sliding (overlapping) 443	
  

moving window based on the idea that indicators should be estimated as data are becoming 444	
  

available. Using nonoverlapping moving windows, however, would give similar results [28]. 445	
  

Autocorrelation at-lag-1 increased almost linearly up to the transition with a strong trend as 446	
  

estimated by Kendall’s τ (rank correlation) both for the original (τ=0.911) and the residual 447	
  

(after detrending) datasets (τ=0.944) (Fig. 2E). Standard deviations also increased in both 448	
  

original and detrended records as expected (Fig. 2G), while skewness generally decreased (τ = 449	
  

-0.436 for the original data, τ = -0.475 for the residuals after detrending), but in a somewhat 450	
  

irregular fashion (Fig. 2I). All indicators behaved according to our expectations for systems 451	
  

gradually approaching a critical transition, as may be seen in detail for all rolling window 452	
  

metrics associated to critical slowing down in Figures S1, S2 in the Supplementary Material. 453	
  

 We estimated the same indicators for the ‘flickering’ dataset on raw and log-454	
  

transformed and standardized data (Fig. 2B, D). Autocorrelation (Fig. 2F) and skewness (Fig. 455	
  

2J) increased, whereas standard deviation increased up to near time-step 8,000, after which it 456	
  

started to decline (Fig. 2H). In the ‘flickering’ dataset, as the system was approaching the 457	
  

transition, excursions to the alternative attractor became more frequent (after time-step 2,000; 458	
  

Fig. 2B). The time series consisted of segments belonging to one or the other state (Fig. 1A). 459	
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Autocorrelation was close to 1 and increased weakly (Fig. 2F). Progressively, segments 460	
  

belonging to the overexploited state became longer. As a result, standard deviation increased, 461	
  

but only up to the point where frequent transitions across the two attractors persisted (approx. 462	
  

up to time-step 8,000). After this point, the standard deviation decreased as only few points 463	
  

belonged to the underexploited state. Standardizing the data did not change the declining trend 464	
  

towards the end of the dataset, but only reduced its magnitude (Fig. 2H). The same few 465	
  

excursions to the underexploited state in the last part of the time series were responsible for the 466	
  

rise in skewness. 467	
  

Autocorrelation at-lag-1 captured in a parsimonious way the changes in the correlation 468	
  

properties of a time series approaching a transition with respect to critical slowing down. A 469	
  

more complete picture of the changes in the spectral properties of the two datasets was also 470	
  

obtained by estimating the full variance spectrum using wavelet analysis (Fig. S3, S4 in the 471	
  

Supplementary Material). 472	
  

Detrended fluctuation analysis 473	
  

The DFA indicator signaled an increase in the short-term memory for both datasets (Fig. 3B, 474	
  

D). It was estimated in rolling windows of half the size of the original record after removing a 475	
  

simple linear trend for both datasets. Despite its oscillating trend [27,28], we could quantify its 476	
  

trend using Kendall’s τ. The values of the DFA indicator suggested that the ‘CSD’ dataset was 477	
  

approaching the critical value of 1 (transition), whereas it was just below and above 1 in the 478	
  

‘flickering’ dataset (at the transition) implying that the latter system had exceeded the critical 479	
  

point and was nonstationary. These values resembled the approaching 1 (Fig. 2E) and close to 480	
  

1 (Fig. 2F) values of autocorrelation at-lag-1. 481	
  

Conditional heteroskedasticity 482	
  

Conditional heteroskedasticity (CH) was estimated in rolling windows of 10% the size of the 483	
  

time series (Fig. 4). Within each rolling window we fit an autoregressive model selected using 484	
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AIC from a suite of AR(p) models applied to the original data (Fig. 4A, B). Although 485	
  

measurement and process error remained constant in our datasets, we chose a relatively small 486	
  

rolling window size to minimize the chance of estimating an artificially large CH caused by 487	
  

increasing noise along the time series. We found significant CH (at P=0.1) along the ‘CSD’ 488	
  

dataset, which became consistently significant at the last part of the record (close to the 489	
  

transition) (Fig. 4C). In the ‘flickering’ dataset, CH was always significant and its value even 490	
  

showed an increasing trend towards the end of the record (Fig. 4D). 491	
  

BDS test 492	
  

We removed the underlying linear structure by first-differencing, fitting an AR(1), or fitting a 493	
  

GARCH(0,1)) to the entire datasets after log-transforming. The remaining detrended data or 494	
  

the residuals were used to estimate the BDS statistic for embedding dimensions 2 and 3, and ε 495	
  

values 0.5, 0.75, and 1 times the observed standard deviation of the time series (Table 2). For 496	
  

each case, the significance of the BDS statistics was calculated using 1,000 bootstrap 497	
  

iterations. Results for both datasets showed significant BDS tests based on bootstrapping 498	
  

(Table 2). The only exception was the case of the residuals from the GARCH(0,1) model with 499	
  

embedding dimension 2 in the ‘flickering’ dataset (Table 2). Thus, in general, the BDS statistic 500	
  

provided strong evidence for nonlinearity. In principle, we could have also applied the BDS 501	
  

statistic within rolling windows to flag a potentially increasing nonlinearity in a time series that 502	
  

is approaching a transition. However, when we tested this hypothesis, we did not get consistent 503	
  

results (not shown). The fact that the BDS test requires a large number of observations for a 504	
  

reliable estimate and that it is sensitive to data preprocessing and filtering choices are the main 505	
  

reasons that limit its use as a rolling window metric. 506	
  

Model-based Indicators 507	
  

Nonparametric drift-diffusion-jump models 508	
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The nonparametric DDJ model was not applied on rolling windows, but rather was applied to 509	
  

the entire time series after log-transforming the data. We found an increase in conditional and 510	
  

total variance as well as in jump intensity in the ‘CSD’ dataset (Fig. 5B, C, E) and a decrease 511	
  

in the diffusion term (Fig. 5D). The trends were noisy, but they became very clear when plotted 512	
  

against biomass values (due to smoothing) (Fig. 5F-I). For log-transformed values between 1.6 513	
  

and 1.8, the indicators started to signal the upcoming transition. In the ‘flickering’ dataset the 514	
  

indicators were very noisy and quite uninformative when plotted against time (Fig. 6B-E). 515	
  

However, after time-step 2,000, conditional variance, total variance, and jump intensity peaked 516	
  

and fluctuated between their maximum and minimum values. When we plotted the indicators 517	
  

versus biomass; the nonparametric variance related functions (Fig. 6F, G, I) increased as 518	
  

biomass declined from 2 to 0. These values corresponded roughly to the limit between the two 519	
  

alternative states (log biomass of zero and 2) (Fig. 6A). This example shows that plotting 520	
  

nonparametric indicators versus the monitored variable may be more informative than plotting 521	
  

indicators over time. 522	
  

Time-varying AR(p) models 523	
  

We fitted time-varying AR(p) models with p = 1, 2, and 3 to the ‘CSD’ dataset after log-524	
  

transforming and standardizing the data. For all cases, we computed time-varying AR(p) 525	
  

models for which only the mean, b0, was allowed to vary through time and compared them to 526	
  

AR(p) models for which both the mean and the autoregressive coefficients (bi , i ≥ 1) were 527	
  

allowed to vary with time. The log-likelihood ratio test (LRT) indicated that the models with 528	
  

varying autoregressive coefficients were significantly better than the mean-varying-only 529	
  

models (χ2
0 + χ2

1 = 37.1, P < 0.0001 for AR(1); χ2
1 + χ2

2 = 44.3, P < 0.0001, for AR(2); and χ2
2 530	
  

+ χ2
3 = 46.1, P < 0.0001, for AR(3)). Comparing across models, the best fit was derived with 531	
  

the time-varying AR(1) model (ΔAIC = 2.2758 and 0.8059 for p = 2 and 3, respectively) (Fig. 532	
  

7A); the difference in the AIC between the time-varying AR(1) and AR(3) models, however, 533	
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was small (Fig. 7B). We therefore computed the inverse of the characteristic root λ of both 534	
  

time-varying AR(1) and AR(3) models at each point in the time series from the estimates of 535	
  

their autoregressive coefficients bi(t) (Fig. 7C, D). Values of λ approaching 1 imply critical 536	
  

slowing down, while values of λ > 1 imply loss of stationarity. We found a clear increasing 537	
  

trend in λ (τ = 0.736) in the case of the time-varying AR(1) model (Fig. 7C), as the time series 538	
  

approached the transition. The trend in λ for the time-varying AR(3) model was weaker (τ = 539	
  

0.164), less smooth, and in some cases exceeded 1, indicating strong excursions to 540	
  

nonstationarity (Fig. 6D). This suggests that the results of fitting time-varying AR(p) models 541	
  

might be more clear if simpler models (with lower p) can be used. 542	
  

Threshold AR(p) models 543	
  

We fitted the threshold AR(p) model to only the ‘flickering’ dataset as the method was 544	
  

developed to detect transitions in time series that jump between multiple states (Fig. 1B) [39]. 545	
  

The threshold AR(p) model was applied on log-transformed and standardized data. To simplify 546	
  

the analysis, we only used a subset of the original dataset, specifically observations between 547	
  

time step 7,200 and 7,700 (n = 500 points) (Fig. 8). We assumed that the time series was 548	
  

produced by two AR(p) processes of the same order. We tested orders of p = 1, 2, and 3 and 549	
  

found that the best-fitting model was an AR(3), with less-good fits for p = 1 (ΔAIC = 36.67) 550	
  

and p = 2 (ΔAIC = 1.75). The fit of the threshold AR(3) model was significantly better than the 551	
  

fit of a simple AR(3) (χ2
4 + χ2

5 = 27.79, P < 0.0001). The tests of the same comparison were 552	
  

similarly significant for the AR(1) (χ2
2 + χ2

3 = 18.07, P < 0.0004) and AR(2) (χ2
3 + χ2

4 = 20.88, 553	
  

P < 0.0003) (Fig. 8). The consistent results from the fitted threshold AR(p) models confirmed 554	
  

that the dataset was characterized by two distinct states, which suggests that in the future the 555	
  

system may eventually stabilize in the alternative state. 556	
  

Potential analysis 557	
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Contrary to the threshold AR(p) model fitting, potential analysis was performed within rolling 558	
  

windows of different size (ranging from10 to half the size of the dataset). We applied it on 559	
  

untransformed data for both ‘CSD’ and ‘flickering’ datasets (Fig. 9). In the ‘CSD’ dataset, we 560	
  

found that the method detected a predominant 1 state along the entire time series regardless of 561	
  

window size (red color Fig. 9A), but, interestingly, also identified two states especially for 562	
  

large size rolling windows (green color Fig. 9A). In the ‘flickering’ dataset, one state was 563	
  

largely identified for most of the time series, except from the last 2,000 points where multiple 564	
  

states where identified (Fig. 9B). Such high number of detected states meant that, in principle, 565	
  

the data were on the edge of having no clear potential. 566	
  

Step 4 Sensitivity analysis 567	
  

The utility of each of the leading indicators depends on the characteristics of the particular 568	
  

datasets we explored, and the specific choices made when performing the analyses, e.g., data 569	
  

transformations or detrending/filtering. Thus, it is necessary to check the robustness of our 570	
  

results to such choices. Here we did this for autocorrelation, standard deviation and skewness 571	
  

in the ‘CSD’ dataset to illustrate that assumptions over specific parameters in the estimation of 572	
  

leading indicators need to be accompanied by a sensitivity analysis. In particular, we 573	
  

investigated the robustness of our rolling window metric results to the size of rolling windows 574	
  

and the degree of smoothing (filtering bandwidth). For this, we estimated autocorrelation, 575	
  

standard deviation and skewness in window sizes ranging from 25% to 75% of the time series 576	
  

length in increments of 10 points, and for bandwidths ranging from 5 to 200 in increments of 577	
  

20 [8]. We quantified trends for all combinations of these two parameters using Kendall’s τ - 578	
  

although other quantifications of the trends can also be used. It is important to note that 579	
  

increasing but oscillating trends in the indicators can produce weak or even negative τ’s, and 580	
  

thus special care should be taken in the interpretation of the results of the sensitivity analysis. 581	
  

We found that autocorrelation at-lag-1 increased rapidly regardless of the bandwidth choice 582	
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and the size of the rolling window (Fig. 10A, B). We found similar strong trends for standard 583	
  

deviation, even if there were negative trends identified for small bandwidths (Fig. 10C, D). 584	
  

This was probably due to the fact that small bandwidths over-fit the data and removed most of 585	
  

the variability, which the standard deviation was expected to capture. Trends in skewness were 586	
  

weaker, but mostly as expected (Fig. 10E, F). Although such sensitivity plots can guide in 587	
  

selecting the bandwidth and rolling window size to maximize the estimated trend, the specific 588	
  

choices of these two parameters should always be done according to the characteristics of the 589	
  

time series used. For instance, the choice of the rolling window size depends on a trade-off 590	
  

between availability of data and reliability of the estimation of the indicators [8]. We also did a 591	
  

sensitivity analysis for DFA exponents for both datasets (Fig. 3 E, F). The DFA exponent 592	
  

showed strong positive trends for both datasets. Similar sensitivity analysis on specific choices 593	
  

of parameters used should be conducted for any leading indicator applied to any time series. 594	
  

Step 5 Significance testing 595	
  

Although sensitivity analysis was important for testing the robustness of our results, it was 596	
  

equally important to test the significance of our results. Significance testing is especially 597	
  

relevant for identifying false positives (or type I errors): that trends in the indicators are not due 598	
  

to random chance. Some of the methods have built-in significance testing procedures (like 599	
  

conditional heteroskedasticity and the BDS test). The model-based indicators also allow for 600	
  

formal significance testing and model selection (e.g., the time-varying and threshold AR(p) 601	
  

models, and the potential analysis). The nonparametric DDJ model can be simulated after 602	
  

fitting to produce pseudo-data in Monte Carlo simulations that can be refitted to compute error 603	
  

estimates for total variance and jump intensity from the ensemble of fits [16].  604	
  

For the remainder of the rolling window metrics, there is no built-in way to test a null 605	
  

hypothesis. The problem lies in the difficulty of specifying the exact null hypothesis, as it is 606	
  

not clear which particular data generating process could be used as the null model. Here, we 607	
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suggest that the simplest null hypothesis one could imagine is that the trend estimates of the 608	
  

indicators are due to chance alone. To test this null hypothesis, we produced surrogate datasets 609	
  

to compare trend estimates in the original record with trend estimates obtained from records 610	
  

that have the same correlation structure and probability distribution as the original dataset, but 611	
  

that were produced by linear stationary processes [8]. Surrogate datasets can be obtained by 612	
  

different approaches, including generating data with the same Fourier spectrum and amplitudes 613	
  

[8,53], or generating data from the simplest fitted linear first-order autoregressive model. 614	
  

Although these are only some of the ways surrogate data can be produced to test for trends 615	
  

[54], we used here a more general approach. We fit the best linear autoregressive moving 616	
  

average model (ARMA(p,q)) based on AIC to residuals (after detrending/filtering), then 617	
  

generated 1,000 simulated datasets of the same length as the residual time series. For each 618	
  

simulated dataset, we estimated the trend of the rolling window metric (in particular we only 619	
  

tested for autocorrelation at lag 1, standard deviation, and skewness) using Kendall’s τ. We 620	
  

compared τ of the original data to the number of cases in which the statistic was equal to or 621	
  

smaller than the estimates of the simulated records, P (τ*≤τ). We estimated this probability for 622	
  

all combinations of bandwidth and rolling window size as we did for the sensitivity analysis 623	
  

(Fig. 10). 624	
  

We found that the increasing trends for autocorrelation at-lag-1 were significant 625	
  

(P<0.025) for any combination of rolling window size and filtering bandwidth (Fig. 11A, D), 626	
  

and P ≤ 0.001 for the parameters we used in Fig. 1. Similar significant trends were estimated 627	
  

for the standard deviation with a few exceptions (Fig. 11B, E, P=0.073 for original choice of 628	
  

parameters in the ‘CSD’ dataset). Skewness trends were not significant, however (Fig. 11C, F, 629	
  

P=0.8 for original choices of ‘CSD’ dataset). Whatever statistical testing is used, the 630	
  

conclusions will depend on the specific model chosen either to fit data in the case of model-631	
  

based approaches, or to produce simulated records for metric-based approaches. Thus, when 632	
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interpreting significance testing of leading indicators estimates, one needs to take these 633	
  

considerations into account. 634	
  

 635	
  

DISCUSSION 636	
  

In this paper we applied a range of proposed early warning signals for critical transitions to two 637	
  

simulated time series. We presented a framework of combining metric-based indicators and 638	
  

model-based indicators to time series data to successfully identify an upcoming critical 639	
  

transition (Fig. 12). We found that there was no single best indicator or method for identifying 640	
  

an upcoming transition in line with previous studies [16,50,55]. Also, all methods required 641	
  

specific data-treatment to yield sensible signals (Table 3). This observation across all methods 642	
  

for the same datasets stresses that a combination of approaches is the best way to determine if 643	
  

there is a robust sign of an imminent transition in a time series. 644	
  

We only analyzed time series of a simulated ecological variable (resource biomass), 645	
  

however, our methods can equally be applied for time series representing any other response of 646	
  

interest: biological (e.g. gene expression), climatic (e.g. daily temperature), physiological (e.g. 647	
  

respiratory rhythm), social (e.g. numbers of tweets), or financial (i.e. price of a stock). In all 648	
  

these cases, if the system in question undergoes a critical transition through a fold bifurcation, 649	
  

we expect the indicators to behave in a similar way as we presented here. It is worthwhile 650	
  

testing this expectation on simulated data from such disparate systems, or even testing the 651	
  

indicators for other types of critical transitions than the ones we treated here. The big challenge 652	
  

for the future, though, is to test the indicators on real-world time series. Most studies so far 653	
  

have treated only subsets of indicators on real time series. Using our framework to test 654	
  

indicators on real-world time series will highlight limitations in the application and 655	
  

interpretation of the indicators other than the ones we presented here. Future work is needed 656	
  

towards this direction. 657	
  



	
   29	
  

Nonetheless, our framework of combining metric-based and model-based indicators to 658	
  

detect critical transitions is encouraging as it may reduce the chance of false alarms. For 659	
  

instance, a systematic increase in the external noise over the period leading up to a shift can 660	
  

signal an increase in variance indicators [30], but not memory indicators (Table 1). However, 661	
  

cross-validation does not exclude the possibility of ‘missed alarms’ - cases where the indicators 662	
  

will not signal an approaching transition. Missed alarms can occur especially for transitions 663	
  

between attractors induced by major perturbations, or chaotic dynamics far from local 664	
  

bifurcation points [15]. Importantly, early warnings can only signal an upcoming transition if 665	
  

conditions slowly move the system towards a bifurcation. This excludes their applicability for 666	
  

instance to situations in which external forcing changes are faster than the response rate of the 667	
  

system [14]. 668	
  

Clearly the possibility of false alarms or missed signals is difficult to eliminate. Even in 669	
  

the case of a simulated time series that is known to be approaching a transition, certain 670	
  

methods may not be very informative [50]. By using single realizations from model-generated 671	
  

time series, we have been able to compare different methods on typical dynamical behaviors 672	
  

that occur before a critical transition. It will be worthwhile to robustly evaluate the 673	
  

performance of the different methods to quantify their reliability in signaling upcoming 674	
  

transitions. This could be done either statistically, by estimating indicators on multiple 675	
  

realizations of model generated time series, or by blind-testing the different methods on 676	
  

multiple datasets (e.g. [56]). Our results caution, however, that in all cases the performance of 677	
  

any method and the interpretations derived from it will strongly depend on characteristics of 678	
  

the actual time series tested. 679	
  

In view of the limited scope of generic early warning signals, specific knowledge of the 680	
  

system may be of great use to reduce uncertainty. For instance, information about the noise 681	
  

level can help adjust early warning estimates [57], or information on measurement error can be 682	
  

incorporated in the time-varying and threshold AR(p) model-based methods to improve early 683	
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warning estimation [39]. However, the most important source of information is insight about 684	
  

the drivers (or slow variables) that affect the stability properties of the system. For example, 685	
  

incorporating dynamics of drivers in the general model structure of time-varying AR(p) or 686	
  

Drift-Diffusion-Jump nonparametric model-based methods can greatly improve the estimation 687	
  

of early warnings. In other cases, information on drivers may offer evidence in support of 688	
  

concordant indicators, or can help explain why different indicators give different results [5]. 689	
  

In addition, driver-response relationships can help build mechanistic models of how the 690	
  

system works. On the one hand, such models can be used for estimating early warnings 691	
  

directly. For instance, generalized models in the presence of limited data can help measure 692	
  

critical slowing down [58]. Early warnings combined with dynamic linear modeling also can 693	
  

improve the estimation of indicators when information on mechanisms is limited [29]. On the 694	
  

other hand, such models can be used for building null models to statistically test the 695	
  

significance of most indicators.  696	
  

Unfortunately, knowledge to build such specific mechanistic models is limited in most 697	
  

cases. In the extreme case, the only source of information available is a time series of a 698	
  

response variable, as in the datasets we analyzed here. Of course, in practice there are typically 699	
  

some other available data on drivers, triggers, or other processes, but mechanistic 700	
  

understanding differs widely between systems. The families of metric- and model-based 701	
  

generic early warnings offer the opportunity to identify upcoming transitions even in the 702	
  

absence of any specific knowledge over the underlying generating process. Moreover, 703	
  

advances in data collection and high frequency monitoring can increase confidence in the 704	
  

potential of using early warnings in cases where mechanistic understanding is limited.  705	
  

Such high frequency observations might also lead to considering alternative methods. 706	
  

For instance, for high frequency data with inherent periodicities, such as electroencephalogram 707	
  

(EEG) traces of neural activity, Fourier decomposition approaches or wavelet analysis may 708	
  

prove useful. In the Appendix (Fig. A4), we illustrate the potential application of wavelet 709	
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analysis for such data, but such period decomposition techniques have not yet been fully tested 710	
  

for detecting critical transitions. 711	
  

In other cases, observations of multiple time series may be available. Monitoring >1 712	
  

species in a community, or measuring the activity of numerous neural cells yields multivariate 713	
  

time series that could enhance our ability to detect approaching transitions. In such case, 714	
  

multivariate indices (like covariances) can be used [23], or extensions of the univariate time-715	
  

varying AR(p) models to multivariate analogs have been proposed [39]. Similarly, spatial data 716	
  

can be of great added value as spatial information may also provide early warning signals. 717	
  

Some of these signals are in fact mathematical analogs of the signals in time series indicators 718	
  

(spatial variance [59], spatial skewness[60], spatial autocorrelation [61]), while others can be 719	
  

system-specific, such as patch shape [62] and patch size distribution [63,64,65]. These spatial 720	
  

indicators can be combined with the indicators for time series presented here to provide more 721	
  

reliable signals [55]. We will treat spatial indicators in depth in a separate paper. 722	
  

Clearly we face formidable uncertainty when it comes to making decisions in the face 723	
  

of potential upcoming transitions. This uncertainty stems from multiple factors including 724	
  

imprecise forecasts, insufficient data, and hidden nonlinearities [66,67] as well as from the 725	
  

peculiarities in perception and tolerance of risk. Our framework for using early warning signals 726	
  

may help pave the way to a more robust evaluation of the risk of imminent transitions. Testing 727	
  

our framework in real world datasets is the next step towards that direction. 728	
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Figure legends 917	
  

Figure 1. (A) Bifurcation diagram of an ecological model of a logistically growing resource 918	
  

under harvesting. As grazing rate c increases (x axis), resource biomass gradually declines up 919	
  

to a critical grazing threshold that the resource undergoes a critical transition through a fold 920	
  

bifurcation (F1). At this bifurcation the resource collapses to the alternative overexploited state. 921	
  

If grazing rate c is restored, resource biomass returns to the previous underexploited state at 922	
  

another threshold (F2). [solid lines represent equilibria, dashed line marks the boundary 923	
  

between the two basins of attraction between the underexploited (cyan) and overexploited 924	
  

(yellow) states] (B) ‘Critical slowing down’ simulated dataset of resource biomass (blue line) 925	
  

for gradually increasing grazing rate (green line). (C) ‘Flickering’ simulated dataset of resource 926	
  

biomass (blue line) for gradually increasing grazing rate (green line). 927	
  

 928	
  

Figure 2. Metric-based rolling window indicators estimated on the ‘critical slowing down’ and 929	
  

‘flickering’ datasets. (A, B) Time series of the state variable. (C) Residual time series after 930	
  

applying a Gaussian filtering. (D) Standardized time series after log-transforming the 931	
  

‘flickering’ dataset. (E-I) Autocorrelation at-lag-1 (AR1), standard deviation, and skewness 932	
  

estimated within rolling windows of half the size of either the original, filtered or transformed 933	
  

time series. The Kendall τ indicate the strength of the trend in the indicators along the time 934	
  

series. [red line is the Gaussian filtering; black lines correspond to the metrics estimated on the 935	
  

original data, blue lines correspond to the metrics estimated on the residual or transformed 936	
  

data]. 937	
  

 938	
  

Figure 3. Detrended fluctuation analysis exponents (DFA) estimated on the ‘critical slowing 939	
  

down’ and ‘flickering’ datasets. (A, C) Time series of the state variable. (B, D). DFA estimated 940	
  

within rolling windows of half the size of the original time series applied after linear 941	
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detrending. (E, F) Distributions of Kendall τ rank correlations indicate a positive trend in the 942	
  

indicators along the time series for different sizes of rolling windows. 943	
  

 944	
  

Figure 4. Conditional heteroskedasticity estimated on the ‘critical slowing down’ and 945	
  

‘flickering’ datasets. (A, B) Time series of the state variable. (C, D) CH estimated within 946	
  

rolling windows of 10% the size of the original time series. CH was applied to the residuals of 947	
  

the best fit AR(p) on the original datasets. Values of CH above the dashed red line are 948	
  

significant (P=0.1). 949	
  

 950	
  

Figure 5. Nonparametric drift-diffusion-jump metrics in the ‘critical slowing down’ dataset. 951	
  

(A) Time series of the state variable (resource biomass). (B, F) Conditional variance versus 952	
  

time and resource biomass respectively. (C, G) Total variance versus time and resource 953	
  

biomass respectively. (D, H) Diffusion versus time and resource biomass respectively. (G, I) 954	
  

Jump intensity versus time and resource biomass respectively. 955	
  

 956	
  

Figure 6. Nonparametric drift-diffusion-jump metrics in the ‘flickering’ dataset. (A) Time 957	
  

series of the state variable (resource biomass). (B, F) Conditional variance versus time and 958	
  

biomass respectively. (C, G) Total variance versus time and resource biomass respectively. (D, 959	
  

H) Diffusion versus time and resource biomass respectively. (G, I) Jump intensity versus time 960	
  

and resource biomass respectively. 961	
  

 962	
  

Figure 7. (A) Time-varying AR(1) model fit to the ‘critical slowing down’ dataset. Differences 963	
  

between the fitted trajectory (blue line) and the simulated data (black dots) are attributed to 964	
  

measurement error. The green line gives the time-varying estimate of b0(t) from the AR(1). 965	
  

Parameter estimates are: b0 = 1.263, b1 = 0.278, σε = 0.154, σα = 0.113, and σ1 = 0.015, and the 966	
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log likelihood is 150.838. (B) Time-varying AR(3) model fit to the ‘critical slowing down’ 967	
  

dataset. Parameter estimates are: b0 = 1.284, b1 = 0.342, b2 = 0.02, b3 = 0.139, σε = 0.116, σα = 968	
  

0.141, σ1 = 0.019, σ2  = 0.015, and σ3 < 0.001, and the log likelihood is 154.102. (C, D) The 969	
  

inverse of the characteristic root for the AR(1) and AR(3) time-varying models respectively. 970	
  

 971	
  

Figure 8. Threshold AR(3) model fit to the ‘flickering’ dataset. Differences between the fitted 972	
  

trajectory (blue line) and the simulated data (black dots) are attributed to measurement error. 973	
  

The green line gives the estimates of b0(t) and b0'(t), and the yellow line gives the threshold c 974	
  

which separates the two AR(3) processes. Parameter estimates are: b0 = -0.941, b0' = 0.797, b1 975	
  

= 1.192, b1' = 1.22, b2 = 0.069, b2' = -0.231, b3 = -0.326, b3' = -0.135, c = 0.1, σε = 0.125, and σα 976	
  

= 0.054, and the log likelihood = 238.954. 977	
  

 978	
  

Figure 9. Potential analysis for the ‘critical slowing down’ and ‘flickering’ datasets (A, B). 979	
  

The potential contour plot represents the number of detected wells (states) of the system 980	
  

potential (x-axis corresponds to the time scale of the series, and y-axis is the size of the rolling 981	
  

window for detection). A change in the color of the potential plot along all time scales 982	
  

(vertically) denotes a critical transition in the time series. 983	
  

 984	
  

Figure 10. Sensitivity analysis for rolling window metrics (autocorrelation (AR1), standard 985	
  

deviation, and skewness) for the ‘critical slowing down’ dataset. Contour plots show the effect 986	
  

of the width of the rolling window and the Gaussian filtering on the observed trend in the 987	
  

metrics as measured by the Kendall’s τ (A, C, E). Upside triangles indicate the parameter 988	
  

choice used in the analyses presented in the text. The histograms give the frequency 989	
  

distribution of the trend statistic (B, D, F). 990	
  

 991	
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Figure 11. Significance testing for rolling window metrics (autocorrelation at-lag-1 (AR1), 992	
  

standard deviation, and skewness) for the ‘critical slowing down’ dataset. (A, B, C) Contour 993	
  

plots of P values estimated from distributions of Kendall trend statistics derived from surrogate 994	
  

datasets for different rolling window lengths and sizes of Gaussian filtering. The surrogate 995	
  

datasets were produced from the best-fit ARMA model on the residual records of the ‘critical 996	
  

slowing down’ dataset. P values were derived from probability distributions of the estimated 997	
  

trend statistic for a set of 1,000 surrogate datasets for a combination of a rolling window size 998	
  

and Gaussian filtering. For example, panels D, E, F show the distribution of Kendall trends 999	
  

estimated on 1,000 surrogates of the original residual dataset for rolling window size and 1000	
  

Gaussian filtering as the one presented in the text. Black vertical lines indicate the P = 0.1 1001	
  

significance level and the upside open triangle is the actual Kendall trend estimated on the 1002	
  

original residual dataset for rolling window size and Gaussian filtering as the one presented in 1003	
  

the text (upside solid triangle in A, B, C). 1004	
  

 1005	
  

Figure 12. Flowchart for detecting early warning signals for critical transitions in time series. 1006	
  

Solid arrows represent the procedure presented in the text. Dotted arrows represent interactions 1007	
  

that affect different steps in the detection of early warning and that need to be taken into 1008	
  

account in the interpretation of the signals. 1009	
  

1010	
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Table 1. Summary of early warning signals for critical transitions, the primary underlying 1011	
  

dynamical phenomenon that they are associated with, and the original reference in which the 1012	
  

early warning signal was developed. 1013	
  

1014	
       Phenomenon   

 
Method/ Indicator Rising 

memory 
Rising 

variability 
Flickering Ref. 

m
et

ri
cs

 

Autocorrelation at-lag-1 x   [23] 

Autoregressive coefficient of AR(1) model x   [19] 

Return rate (inverse of AR(1) coefficient) x   [23] 

Detrended fluctuation analysis indicator x   [7] 

Spectral density x   [20] 

Spectral ratio (of low to high frequencies) x   [25] 

Spectral exponent x   [this paper] 

Standard deviation  x x [29] 

Coefficient of variation  x x [29] 

Skewness  x x [30] 

Kurtosis  x x [25] 

Conditional heteroskedasticity  x x [33] 

BDS test  x x [13] 

m
od

el
s 

Time-varying AR(p) models x x  [39] 

Nonparametric drift-diffusion-jump models x x x [16] 

Threshold AR(p) models   x [39] 

Potential analysis (potential wells estimator)   x [45] 
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Table 2. BDS statistic estimated on the ‘critical slowing down’ and ‘flickering’ datasets with 1015	
  

measurement error. In all cases, the BDS test was significantly identifying nonlinearity after 1016	
  

1000 bootstrapping iterations, except for GARCH residuals from the ‘flickering’ dataset. 1017	
  

 1018	
  

BDS 
statistic 

 First-difference detrending AR(1) residuals GARCH(0,1) residuals 
 ε (standard deviation) 

  0.5 0.75 1 0.5 0.75 1 0.5 0.75 1 
'critical slowing down' dataset 
embedding 
dimension 

2 9.434* 9.013* 8.424* 9.499* 8.911* 8.462* 6.748* 6.343* 5.605* 
3 8.346* 8.042* 7.497* 8.379* 7.639* 7.307* 6.089* 5.469* 4.802* 

           

'flickering' dataset 
embedding 
dimension 

2 16.033* 16.33* 16.754* 15.476* 15.866* 16.332*   1.087   0.974   0.820 
3 17.599* 17.821* 18.039* 16.999* 17.304* 17.577* 3.472** 3.389** 3.155** 

*P<0.001     **P=0.001          


