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Abstract: The problem of achieving widespread immunity to infectious diseases

by voluntary vaccination is often presented as a public-goods dilemma, as an indi-

vidual’s vaccination contributes to herd immunity, protecting those who forgo vac-

cination. The temptation to free-ride brings the equilibrium vaccination level below

the social optimum. Here we present an evolutionary game-theoretic approach to

this problem, exploring the roles of individual imitation behaviour and population

structure in vaccination. To this end, we integrate an epidemiological process into

a simple agent-based model of adaptive learning, where individuals use anecdotal

evidence to estimate costs and benefits of vaccination. In our simulations, we focus

on parameter values that are realistic for a flu-like infection. Paradoxically, as agents

become more adept at imitating successful strategies, the equilibrium level of vac-

cination falls below the rational individual optimum. In structured populations, the

picture is only somewhat more optimistic: vaccination is widespread over a range of

low vaccination costs, but coverage plummets after cost exceeds a critical threshold.

This result suggests parallels to historical scenarios in which vaccination coverage

provided herd immunity for some time, but then rapidly dropped. Our work sheds

light on how imitation of peers shapes individual vaccination choices in social net-

works.

Key words: vaccination dilemma, peer influence, epidemiology, evolutionary dy-

namics, mathematical biology
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I. INTRODUCTION1

Preemptive vaccination is a fundamental strategy for controlling infectious diseases (CDC2

2009). While there is vigorous debate about the civil liberties implications of mandatory versus3

voluntary vaccination policies (Colgrave 2006), mounting evidence shows that voluntary vaccina-4

tion plans fail to protect populations adequately (Basu et al. 2008, Bauch et al. 2003, Bauch &5

Earn 2004, Bauch 2005, Breban et al. 2007, Cojocaru 2008, Fine & Clarkson 1986, Galvani et6

al. 2007, Reluga et al. 2006, van Boven et al. 2008, Vardavas et al. 2007). A recent example of7

this failure is the sharp decline in take-up of the combined measles-mumps-rubella vaccination in8

Britain soon after administering it to children was made voluntary (Jansen et al. 2003). Because of9

declining familiarity with the disease and rising fears of vaccine complications, parents hoped to10

avoid the alleged vaccination health risk to their own children while implicitly relying on enough11

other children getting vaccinated to provide herd immunity. The “public good” created by herd12

immunity gives rise to an enduring social dilemma of voluntary vaccination.13

Classical game theory predicts that, when individuals act in their own interests with perfect14

knowledge of their infection risk, their vaccination decisions converge toward a Nash equilibrium,15

at which no individuals could be better off by unilaterally changing to a different strategy (Bauch et16

al. 2003, Bauch & Earn 2004). Although this equilibrium is the result of each individual following17

her self-interest, it may lead to suboptimal vaccination coverage for the community (Galvani et al.18

2007). The collective result of vaccination decisions determines the level of population immunity19

and thus the severity of an epidemic strain. With increasing levels of vaccination coverage in20

the community, even the individuals who are unvaccinated are less likely to become infected;21

therefore, they have less incentive to get the vaccine. This scenario naturally leads to the “free22

riding” problem that is commonly observed in public goods studies (Hardin 1968).23

Previous studies of vaccinating dynamics have typically combined a game-theoretic model24

assuming full rationality and complete information with a model of disease transmission in ei-25

ther homogeneously mixed populations (Bauch et al. 2003, Bauch & Earn 2004) or random net-26

works (Perisic & Bauch 2008). In studies where the assumption of rationality is relaxed, determin-27

istic evolutionary dynamics still recover equilibrium states equivalent to those predicted by models28

of rational agents (Bauch 2005). It is worth noting that aggregate population models have been pa-29

rameterized with empirical data to quantitatively predict vaccinating behavior in some cases (Basu30

et al. 2008, Bauch 2005, Galvani et al. 2007). Here we extend this previous work by accounting31
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for decision-makers’ social networks and their use of anecdotal information in making vaccina-32

tion choices. Individuals have incomplete information and tend to rely on salient anecdotes from33

friends and the media in order to form opinions of disease risk and prevention (Johnson et al. 1983,34

Palekar et al. 2008, Tversky & Kahneman 1973). The rise to prominence in the British media of35

isolated cases linking the pertussis vaccine and brain damage triggered a sharp decline in coverage36

in the late 1970s, demonstrating the power of the anecdote (Bauch 2005, Nicoll et al. 1998). Apart37

from these prominent cases, each person can encounter different anecdotal evidence, depending38

on her social network (Eames 2009, Perisic & Bauch 2008). Illness of a close friend can impact39

one’s perception of infection risk and the importance of prevention in far more powerful ways than40

media reports can (Palekar et al. 2008).41

Motivated by the above considerations, we propose a simple agent-based model in the spirit42

of evolutionary game dynamics (Maynard-Smith 1982, Nowak & Sigmund 2004, Nowak 2006a)43

to study the voluntary vaccination dilemma. In order to make precise predictions, we couple the44

vaccination dynamics with an epidemiological model, in particular the SIR model, which tracks45

populations of susceptible, infected, and resistant/vaccinated individuals over time, within a single46

season or epidemic. Such models have been used, for example, to design clinical trials of vaccines47

or to predict whether a vaccination program will halt an epidemic before it spreads to much of the48

population (Diekmann & Heesterbeek 2000, Levin et al. 1999).49

Our model captures the strategic interaction between vaccinating and free-riding individuals50

in the following way. Individuals decide whether to vaccinate during a vaccination campaign,51

before the seasonal epidemic begins. The epidemiological model then determines whether each52

susceptible (unvaccinated) individual becomes infected at some point during the season. Once the53

epidemic ends, individuals can revise their vaccination decision for the next season. Such a model54

is most appropriate for describing infections such as influenza. Flu vaccines are typically available55

prior to a predicted outbreak and are effective for only one season due to mutation of pathogens56

and waning immunity (Breban et al. 2007, Vardavas et al. 2007).57

II. MODEL & METHODS58

Consider a well-mixed population of individuals with a voluntary vaccination option. We model59

the vaccination dynamics as a two-stage game (as illustrated in figure 1). The first stage is a public60

vaccination campaign, which occurs before any infection. At this stage, each individual decides61
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whether or not to vaccinate. Vaccination incurs a cost, V , to the vaccinated individual. For simplic-62

ity, here we assume that vaccination grants perfect immunity from the seasonal infectious disease.63

(To account for imperfect vaccination, one may rescale the cost of vaccination by its effectiveness64

and calculate infection risk based on the effective proportion of the population that is vaccinated.)65

The total cost of vaccination includes the immediate monetary cost, the opportunity cost of time66

spent to get the vaccine, and any perceived or actual adverse health effects. In the second stage,67

the epidemic strain infects an initial number of individuals I0 and then spreads according to SIR68

dynamics, with per-day transmission rate r and recovery rate g (see the electronic supplemen-69

tary material, ESM, for model details). The epidemic continues until there are no more newly70

infected individuals (which occurred in under 200 days for all cases simulated). The final size71

equation (Diekmann & Heesterbeek 2000) gives the infection risk for an infinite population (see72

ESM for derivations):73

w(x) =
R(∞)
1 − x

= 1 − e−R0R(∞), (1)

where R(∞) is the final size of the epidemic (fraction that have been infected at some point in the74

season), which satisfies R(∞) = (1 − x)(1 − e−R0R(∞)); R0 is the basic reproduction ratio; and x is75

the fraction of vaccinated individuals.76

The infection cost I includes health care expenses, lost productivity, and the possibility of pain77

or mortality. After the epidemic, the individuals with the highest payoffs are those who declined78

vaccination but avoided infection. We call these lucky individuals successful free-riders, as they79

benefit from others’ vaccination efforts. The game dynamics remain unchanged if we rescale the80

payoffs by defining the relative cost of vaccination c = V
I (0 < c < 1). The values of c appropriate81

for modeling a particular disease can be estimated from surveys of health opinions, behaviors, and82

outcomes, as done by, e.g., Galvani et al. (2007), but in general vaccination cost should be low83

relative to the cost of infection. The Nash equilibrium of this game can be solved by setting the84

expected cost of vaccination equal to that of non-vaccination, which implies the mixed strategy85

x∗ = 1 +
ln(1 − c)

cR0
. (2)

This level of vaccination uptake falls short of the social optimum xh = 1 − 1
R0

, the level which86

achieves herd immunity (near-elimination of the risk of contacting an infectious individual) and87

thereby minimizes the sum of all individuals’ costs related to both vaccination and infection (see88
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FIG. 1: Inserted here.

ESM). The misalignment between individual and group interests leads to a social dilemma.89

Here, we relax the assumption of rationality and study this vaccination dilemma from an evolu-90

tionary perspective. Each season, an individual adopts a pure strategy, which determines whether91

or not she vaccinates. At the end of the season, each individual decides whether to change her92

strategy for the next season, depending on her current payoff. Specifically, individual i randomly93

chooses individual j from the population as role model. The strategy of a role model with higher94

payoff is more likely to be imitated. We suppose that the probability that individual i adopts indi-95

vidual j’s strategy is given by the Fermi function (Blume 1993, Szabó & Tőke 1998, Traulsen et96

al. 2007; 2010)97

f (P j − Pi) =
1

1 + exp[−β(P j − Pi)]
, (3)

where β denotes the strength of selection (0 < β < ∞).98

This updating dynamic diverges from a fully rational model in two ways. First, individuals ad-99

just their strategies retrospectively, in response only to the observed payoff outcomes and not the100

expected payoffs of strategies. In a population with low vaccination uptake, many non-vaccinators101

fall ill, but if individual i happens to choose one of the few successful free-riders as a role model,102

then she will be more likely to imitate the free-rider’s strategy. Second, the strength of selection103

parameter introduces a stochastic element to the model: for small β (weak selection), individuals104

are less responsive to payoff differences, and an individual with a high payoff may adopt the strat-105

egy of a less successful role model. Large values of β (strong selection) diminish this stochastic106

effect, and individuals reliably switch to (or keep) the strategy with the higher observed payoff,107

even if the payoff difference is small. Previous work using the same update dynamic has char-108

acterized agents with high β as being more rational (Szabó & Tőke 1998). This characterization109
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is not appropriate in our context, as higher β only increases an agent’s sensitivity to the (perhaps110

unrepresentative) observed payoff, not the expected payoff.111

The model presented here can be conveniently extended to structured populations by restricting112

the neighborhood of individuals whom one can infect or imitate. In addition to the well-mixed113

case, we simulated populations structured as square lattices, Erdős-Rényi random graphs (Erdős114

& Rényi 1959), and Barabási-Albert scale-free networks (Barabási & Albert 1999) (see ESM).115

The initial state consists of equal fractions vaccinators and unvaccinators, randomly distributed116

throughout the population. Each two-stage iteration (vaccination strategy updating followed by117

an epidemic process) updates the frequencies of each strategy. Since we are interested primarily118

in the effect of population structure on vaccination coverage (rather than on infection risk), we119

calibrated epidemic parameters to ensure that the infection risk in an unvaccinated population is120

equal across all population structures (Perisic & Bauch 2008) (see ESM). Each simulation was run121

for 3,000 iterations. The long run equilibrium results shown in figures 2–4 represent the average122

of frequencies over the last 1,000 iterations in 100 independent simulations. We present results of123

simulations that use population sizes between N = 500 and N = 10, 000; overall results are robust124

to varying population size for N as small as 200.125

III. RESULTS126

In the vaccination game, if all of one’s neighbors adopt one strategy, then it is advantageous127

to adopt the opposite strategy. We therefore always find persistent polymorphisms of vaccinated128

and unvaccinated individuals for intermediate values of c. Figure 2 plots both the equilibrium129

frequency of (a) vaccinated and (b) infected individuals for different values of c and β in the well-130

mixed imitation dynamics. We find qualitative agreement between stochastic simulations and an131

analytical prediction that uses both the equation for infection risk (1) and an infinite-population132

approximation of the imitation dynamics (described in ESM).133

For weak selection (β = 1 in figure 2), the imitation dynamics approximate the rational equilib-134

rium x∗ given in equation (2). One can understand this observation analytically by noting that the135

strategy update equation (3) is roughly linear for small β. First-order approximation of the imita-136

tion dynamics closely approximates the replicator dynamics (Hofbauer & Sigmund 1998, Schuster137

& Sigmund 1983, Taylor & Jonker 1978), which in this game converge to the unique evolutionarily138

stable strategy–the Nash equilibrium (see ESM). As vaccination falls with increasing c, the final139
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FIG. 2: Inserted Here.

size of the epidemic grows. Above a high cost threshold cH ≈ 0.893, no one chooses vaccination140

and the epidemic reaches its maximum size.141

Strong selection in the imitation dynamics (represented by β = 10 in figure 2) can decrease vac-142

cination uptake below the level predicted by the rational equilibrium. In other words, individuals143

who carefully attend to peers’ health outcomes and reliably copy the behavior of successful peers144

will end up attempting to free-ride more than they rationally “ought” to. If, for example, infection145

is twelve times as costly as vaccination (namely, c = 0.08, a reasonable assumption for influenza,146

see ESM), then strong selection in our model lowers vaccination coverage by 8 percentage points147

versus weak selection (figure 2a), which increases the epidemic size from 4% of the population to148

15% of the population (figure 2b). With increasing cost of vaccination, the equilibrium vaccina-149

tion coverage follows a rotated “S” curve, dropping rapidly (slope ≈ −β2 ) from the herd immunity150

threshold at low values of c, reaching a plateau near 1 − 2 ln 2
R0

for intermediate values of c, and151

then dropping rapidly to zero as c grows large. The threshold cH increases with selection strength152

(figure 2a).153
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Results are qualitatively similar for any basic reproduction ratio R0 > 1 of the infection. Fig-154

ures S5 and S6 in the ESM compare the cases R0 = 2.5 and R0 = 6. The higher value increases155

infection risk, making the population respond with increased vaccination uptake. Increasing R0156

also raises the threshold cH.157

Restricting interaction to local neighborhoods partly ameliorates the free-riding problem, but158

introduces greater sensitivity to the cost parameter c (figure 3). We consider a population of indi-159

viduals arranged on a square lattice where each individual has four immediately adjacent neigh-160

bors. While the vaccination coverage in well-mixed populations drops from herd immunity levels161
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as soon as c increases above zero, restricted spatial interaction promotes near-universal coverage162

at a range of positive c, preventing the epidemic. To give a simple operational definition, we say163

that vaccination “prevents the epidemic” in a structured population if the average final epidemic164

size is less than twice the size of the initial inoculum. Define as cL the critical vaccination cost165

below which the epidemic is prevented. For weak selection on the lattice (β = 1 in figure 3), we get166

cL ≈ 0.022. Above this threshold, the vaccination level drops precipitously, causing an epidemic167

that is even larger than in the well-mixed case.168

At higher selection strength, the threshold cL is lower, and vaccination coverage is even more169

sensitive to costs rising above cL (figure 3a). The high cost threshold cH rises with selection170

strength, meaning that the transitional region between cL and cH, where vaccinated and unvacci-171

nated individuals coexist, widens with larger β. Holding c constant at a value above cL, increasing172

the strength of selection leads to more free-riding attempts, breaking apart clusters of vaccinators,173

thus allowing a larger epidemic to occur (figure 3c versus 3d).174

Most actual populations are heterogeneous in the sense that different individuals may have175

different numbers of neighbors (i.e., degree) (Barabási & Albert 1999). To account for this feature,176

we consider vaccination dynamics on Erdős-Rényi random graphs, which have moderate degree177

heterogeneity; on scale-free networks, which have an even more variable degree distribution, our178

results are similar (see ESM).179

Higher vaccination coverage is typically required to achieve herd immunity in populations with180

greater degree heterogeneity (Pastor-Satorras & Vespignani 2002) (see also figures S2-S4 in ESM).181

This increased vulnerability to epidemic attacks reduces the temptation to free-ride, actually mak-182

ing it easier for a population of selfish imitators to achieve the high vaccination threshold required183

for herd immunity. The threshold cost cL therefore increases versus the lattice case. Vaccina-184

tion coverage drops after cost exceeds this threshold, although the effect is not quite as extreme185

as in lattice populations (figures 4a and 4b). Similarly to lattice populations, increased selection186

strength increases the size of the intermediate region between cL and cH.187

Degree heterogeneity triggers a broad spectrum of individual vaccinating behavior. Specifi-188

cally, an individual’s vaccination strategy is now influenced by her role in the population, and189

“hubs” who have many neighbors are most likely to choose to be vaccinated, as they are at great-190

est risk of infection (figures 4c and 4d). Hubs that do manage to free-ride successfully become191

victims of their own success, as their vaccinated neighbors of smaller degree are likely to imitate192

them and switch strategies, potentially infecting the hubs in the following season.193
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IV. DISCUSSION & CONCLUSION194

Our model shows how incomplete information and strong selection (high payoff-sensitivity, pa-195

rameterized by β) in a population of imitators causes the vaccination coverage to fall well short of196

the social optimum, and even below the Nash equilibrium. Weak selection in a well-mixed popu-197

lation recapitulates the replicator dynamics, converging to the Nash equilibrium. Strong selection,198

on the other hand, drives individuals to imitate successful free-riders based on a single observation,199

even when a rational agent with complete information would realize that attempted free-riding200

does poorly in expectation. This “paradox of imitation” is a very general phenomenon (Schlag201

1998) and may in part explain cases where public vaccination levels are low. In particular, for202
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the range of vaccination cost appropriate to influenza (i.e., c ≈ 0.002 to 0.08, see ESM), the imita-203

tion dynamics with strong selection in the well-mixed case falls well short of the rational optimum,204

leading to over-exploitation of herd immunity and an increase in preventable infections. Our model205

describes the admittedly extreme case in which each individual observes only one randomly cho-206

sen role model each round. Allowing imitators to learn from a somewhat larger group of peers207

could lessen the sampling error, but would not eliminate it.208

This kind of error is reminiscent of, but distinct from, the phenomenon of “information cas-209

cades” that generate rationalized conformism or “groupthink” (Banerjee 1992, Bikhchandani et210

al. 1992). Such cascades may also be obstacles to high vaccination coverage (Barton 2009). To211

explore conformism (or, alternatively, stubbornness) in the context of our model, one might in-212

clude an additional cost τ of switching strategy in the thermal updating rule (Szabó & Hauert213

2002, Traulsen et al. 2010); that is, f (∆P) = 1/[1 + exp(β(∆P + τ))]. A large negative (positive) τ214

would then represent the tendency to copy one’s peers (stick with the current strategy), regardless215

of payoff comparisons. Previous studies have shown in detail how this sort of payoff-neglecting216

imitation can lead to widespread conformism and adoption of sub-optimal strategies (Banerjee217

1992, Bikhchandani et al. 1992).218

It is widely known that population structure can promote the evolution of cooperative behav-219

ior (Hauert & Doebeli 2004, Nowak & May 1992, Nowak 2006b, Nowak et al. 2010, Ohtsuki et220

al. 2006, Tarnita et al. 2009a;b). We have shown, however, that population structure is a “double-221

edged sword” for public health: It can promote high levels of voluntary vaccination and herd222

immunity, but small increases in cost beyond a certain threshold cL cause vaccination to plummet223

– and infections to rise – more dramatically than in well-mixed populations. For example, the224

random network population under strong selection (β = 10) can prevent the epidemic completely225

for costs up to c = 0.04, but 11% of the population become infected at cost c = 0.08. In the226

well-mixed population, the epidemic grows gradually, from 8% to 15%, over the same cost range.227

This threshold effect is robust to changes in population structure and exists in lattice (figures 3a228

and 3b) and scale-free network (figures S7a and S7b in ESM) populations as well.229

In social networks, individuals’ degrees vary greatly, and highly-connected individuals (hubs)230

can spread disease to a large number of peers if infected. The vaccination of hubs can play a vital231

role in containing infections (Pastor-Satorras & Vespignani 2002), and public health programs232

often try to promote herd immunity by allocating vaccinations preferentially to these hubs (Bansal233

et al. 2006). Physicians who are hubs in a disease-transmission network, for instance, have high234
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rates of vaccine uptake (Capolongo et al. 2006). Our model shows that even individuals with235

incomplete information can self-organize to achieve this pro-social outcome (figure 4). Since236

hubs generally face greater infection risk than small-degree individuals do, they have increased237

incentive to vaccinate; hubs’ self-interest is therefore relatively well-aligned with overall welfare.238

Recent work with a detailed model designed to mimic a smallpox outbreak on a random net-239

work (Perisic & Bauch 2008) reaches a complementary conclusion about the fragility of high-240

coverage equilibria: voluntary vaccination can contain a disease in low-degree networks, but as241

the average degree increases, the system reaches a critical threshold past which it behaves like242

a well-mixed population and the epidemic spreads. This work focused on vaccination decisions243

made during the course of an epidemic in response to local disease prevalence, as opposed to244

season-by-season updating of preemptive vaccination decisions. Taken together, our current work245

and this previous result demonstrate how local disease transmission and decision-making based on246

local context change the character of vaccination dynamics. Voluntary vaccination can be a viable247

policy for achieving high coverage and eradicating disease, but the final outcome is sensitive to248

small changes in (actual or perceived) vaccination cost and in the social network. This sensitivity249

may in part explain how anecdotal evidence of vaccine-related health risks has been able to trig-250

ger steep declines in coverage and loss of population immunity (Bauch 2005, Jansen et al. 2003,251

Nicoll et al. 1998). Policy levers that subsidize vaccination can take advantage of these threshold252

effects to promote disease containment and eradication.253

Achieving socially optimal coverage through voluntary vaccination is a problem of cooperation254

with limited information and uncertainty about outcomes. The problem is similar to public goods255

games studied by economists (Palfrey & Rosenthal 1984), as herd immunity provides a communal256

benefit. Individuals’ use of salient anecdotes to cope with uncertainty, however, is not a typically257

studied feature of public goods games. Two sources of uncertainty face an individual deciding258

whether to vaccinate: uncertainty about contracting the infection if unvaccinated, and uncertainty259

regarding adverse reactions to the vaccine itself. Our current work focuses on the former uncer-260

tainty, treating the vaccine cost as a fixed quantity, which is a summary of all expected costs. It261

may also be instructive to treat vaccine cost as a random variable, as a way of explicitly modeling262

public fears concerning vaccine safety. These fears often have a tremendous impact on vaccine263

take-up and public health (Donald & Muthu 2002, Nicoll et al. 1998).264
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Figure legends:366

Figure 1 Schematic illustration of our model. We model the vaccination dilemma as a two-stage game. At367

Stage 1 (vaccination choice), a proportion x of the population decides to vaccinate. Vaccination costs368

V and provides perfect immunity from the infectious disease. At Stage 2 (health outcome), we use the369

Susceptible-Infected-Recovered model to simulate the epidemiological process. Each unvaccinated370

individual faces the risk of infection during the seasonal epidemic outbreak. The cost of infection is371

I. Those unvaccinated individuals who remain healthy are free-riding off the vaccination efforts of372

others, and they are indirectly protected by herd immunity.373

Figure 2 Vaccination dynamics in well-mixed populations. The fractions (a) vaccinated and (b) infected374

are shown as functions of the relative cost of vaccination, c, for the intensity of selection β = 1375

and 10. The lines are analytical predictions from deterministic equations (see ESM). The devia-376

tion between simulation and theory is largely due to stochasticity in disease transmission: holding377

vaccination constant at some level below the herd immunity threshold (1 − 1
R0
= 0.6), simulated378

infection risk is smaller than the prediction in equation (1) (see figure S1b in ESM). Individuals in379

the simulation respond to this decreased risk by vaccinating less than in the theory, which in turn380

leads to a larger epidemic versus the theory. Strong selection magnifies individuals’ responses, pro-381

ducing larger deviations. For vaccination coverage above the theoretical herd immunity level, the382

deterministic approximation underestimates infection risk, leading to an opposite deviation at low383

c. Parameters: population size N = 5000, R0 = 2.5 (realized by setting r = 5
6N day−1person−1 and384

g = 1
3 day−1), number of infection seeds I0 = 5.385

Figure 3 Vaccination dynamics in lattice populations. Left panels (a), (b) show the fractions vaccinated386

and infected, respectively, as functions of c for the intensity of selection β = 1 and 10. Right panels387

(c), (d) show snapshots of the system at equilibrium frequencies with weak and strong selection,388

respectively. Blue denotes vaccinated individuals, red successful free-riders, and yellow infected389

individuals. Strong selection breaks apart clusters of vaccinators: 54% of vaccinated individuals’390

neighbors are also vaccinated in (c), versus only 49% in (d). Parameters: population size N =391

100 × 100 with von Neumann neighborhood, disease transmission rate r = 0.46 day−1person−1,392

recovery rate g = 1
3 day−1, number of infection seeds I0 = 10, (c)(d) c = 0.08, (c) β = 1, (d) β = 10.393

The lines in (a) and (b) are visual guides.394
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Figure 4 Vaccination dynamics in random network populations. Left panels (a), (b) show the fractions395

vaccinated and infected, respectively, as functions of c for the intensity of selection β = 1 and 10.396

Right panels: (c) Snapshot of a single simulation on a random network at equilibrium frequencies.397

The size of a node corresponds to its degree (number of neighbors). Blue nodes are vaccinated,398

yellow are infected, and red are successful free-riders. (d) The frequency of vaccination on a random399

network, as a function of the number of neighbors an individual has. The inset in panel (d) shows400

the degree distribution of the random network. Parameters: (a)-(d) average degree k̄ = 4, disease401

transmission rate r = 0.51 day−1person−1, recovery rate g = 1
3 day−1; (a)(b)(d) N = 1000, I0 = 10;402

(c) N = 500, I0 = 5; (c)(d) c = 0.1, β = 10. The lines in (a) and (b) are visual guides.403
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