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Abstract

Protein folding disorders of aging like Alzheimer’s and Parkin-
son’s diseases currently present intractable medical chal-
lenges. ‘Small molecule’ interventions – drug treatments –
often have, at best, palliative impact, failing to alter disease
course. The design of individual or population level inter-
ventions will likely require a deeper understanding of protein
folding and its regulation than currently provided by con-
temporary ‘physics’ or culture-bound medical magic bullet
models. Here, a topological rate distortion analysis is ap-
plied to the problem of protein folding and regulation that
is similar in spirit to Tlusty’s (2010a) elegant exploration of
the genetic code. The formalism produces large-scale, quasi-
equilibrium ‘resilience’ states representing normal and patho-
logical protein folding regulation under a cellular-level cogni-
tive paradigm similar to that proposed by Atlan and Cohen
(1998) for the immune system. Generalization to long times
produces diffusion models of protein folding disorders in which
epigenetic or life history factors determine the rate of onset of
regulatory failure, in essence, a premature aging driven by fa-
miliar synergisms between disjunctions of resource allocation
and need in the context of socially or physiologically toxic
exposures and chronic powerlessness at individual and group
scales.

Key Words: aging, amyloid, cognitive paradigm, devel-
opment, endoplasmic reticulum, epigenetic, phase transition,
rate distortion, stress

1 Introduction

1.1 The basic conundrum

At this writing, front page articles in major news and scientific
media trumpet the intractability of protein folding disorders
with headlines like “No Magic Bullet Against Alzheimer’s Dis-
ease” (Kolata, 2010). Medical magic bullets are, of course, a
Western, and indeed particularly American, cultural conceit.

∗Affiliation for identification only. Correspondence: Rodrick Wal-
lace, 549 W. 123 St., Apt. 16F, New York, NY, 10027 USA, wal-
lace@pi.cpmc.columbia.edu, rodrick.wallace@gmail.com.

Heine (2001), describing a similar paradigm within psychol-
ogy, writes

The extreme nature of American individualism
suggests that a psychology based on late 20th cen-
tury American research not only stands the risk of
developing models that are particular to that cul-
ture, but of developing an understanding of the self
that is peculiar in the context of the world’s cul-
tures...

Henrich et al. (2010) have elaborated this point in an in-
stantly famous critique titled “The Wierdest people in the
world?”. Given the fundamental biological nature of protein
folding itself, a magic bullet perspective on it’s disorders may
be analogously wierd, and inference based on American per-
ceptions of current research similarly suspect (e.g., Kolata,
2010). Qui et al. (2009), based in Stockholm, present a dif-
ferent view:

Alzheimer’s dementia is a multifactorial disease
in which older age is the strongest risk factor... [that]
may partially reflect the cumulative effects of dif-
ferent risk and protective factors over the lifespan,
including the complex interactions of genetic suscep-
tibility, psychosocial factors, biological factors, and
environmental exposures experienced over the lifes-
pan.

Qiu et al. (2009) explain that mutation effects account for
only a small fraction of observed cases, and that the APOE ε4
allele – the only established genetic factor for both early and
late onset disease – is a susceptibility gene, neither necessary
nor sufficient for disease onset. They further describe how
many of the same factors implicated in diabetes and cardio-
vascular disease predict onset of Alzheimer’s as well: tobacco
use, high blood pressure, high serum cholesterol, chronic in-
flammation, as indexed by a higher level of serum C-reactive
protein, and diabetes itself. Highly significant protective fac-
tors include high educational and socioeconomic status, regu-
lar physical exercise, mentally demanding activities, and sig-
nificant social engagement.

Qui et al. conclude:
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Epidemiological research has provided sufficient
evidence that vascular risk factors in middle-aged
and older adults play a significant role in the
develolpment and progression of dementia and
[Alzheimer’s disease], whereas extensive social net-
work and active engagement in mental, social, and
physical activities may postpone the onset of the
dementing disorder. Multidomain community inter-
vention trials are warranted to determine to what
extent preventive strategies toward optimal control
of multiple vascular factors and disorders, as well as
the maintenance of an active lifestyle, are effective
against dementia and [Alzheimer’s disease].

Similarly, Fillit et al. (2008) find that lifestyle risk factors
for cardiovascular disease, such as obesity, lack of exercise,
smoking, and certain psychosocial factors, have been associ-
ated with an increased risk for cognitive decline and dementia,
concluding that current evidence indicates an association be-
tween hypertension, dyslipidemia and diabetes and cognitive
decline and dementia.

Here we will take what Heine and colleagues might describe
as an ‘East Asian’ approach to protein folding disorders, and
examine their embedding context from a new perspective, as
opposed to perceiving them as separated from their backcloth,
and hence ‘naturally’ amenable to magic bullets.

1.2 Implications of protein folding disorders

High rates of protein folding and aggregation diseases, in con-
junction with observations of the elaborate cellular folding
regulatory apparatus associated with the endoplasmic reticu-
lum and other cellular structures that compare produced to
expected protein forms (e.g., Scheuner and Kaufman, 2008;
Dobson, 2003), presents a clear and powerful logical challenge
to simple physical ‘folding funnel’ free energy models of pro-
tein folding, as compelling as these are in vitro or in silico.
This suggests that a more biologically-based model is needed
for understanding the life course trajectory of protein fold-
ing, a model analogous to Atlan and Cohen’s (1998) cognitive
paradigm for the immune system. That is, the intractable
set of disorders related to protein aggregation and misfold-
ing belies simple mechanistic approaches, although free en-
ergy landscape pictures (Anfinsen, 1973; Dill et al., 2007)
surely capture part of the process (but see Chou and Carlacci,
1991). The diseases range from prion illnesses like Creutzfeld-
Jakob disease, in addition to amyloid-related dysfunctions like
Alzheimer’s, Huntington’s and Parkinson’s diseases, and type
2 diabetes. Misfolding disorders include emphysema and cys-
tic fibrosis.

The role of epigenetic and environmental factors in type 2
diabetes has long been known (e.g., Zhang et al., 2009; Wal-
lach and Rey, 2009). Haataja et al. (2008), for example, con-
clude that the islet in type 2 diabetes shows much in common
with neuropathology in neurodegenerative diseases where in-
terest is now focused on protein misfolding and aggregation
and the diseases are now often referred to as unfolded protein
diseases.

Scheuner and Kaufman (2008) likewise examine the un-
folded protein response in β cell failure and diabetes. Indeed,
their opening paragraph raises the fundamental questions re-
garding the adequacy of simple energy landscape models of
protein folding:

In eukaryotic cells, protein synthesis and secre-
tion are precisely coupled with the capacity of the
endoplasmic reticulum (ER) to fold, process, and
traffic proteins to the cell surface. These processes
are coupled through several signal transduction
pathways collectively known as the unfolded protein
response [that] functions to reduce the amount of
nascent protein that enters the ER lumen, to in-
crease the ER capacity to fold protein through tran-
scriptional up-regulation of ER chaperones and fold-
ing catalysts, and to induce degradation of misfolded
and aggregated protein.

Goldschmidt et al. (2010) describe pathological protein fib-
rillation as follows:

We found that [protein segments with high fibril-
lation propensity] tend to be buried or twisted into
unfavorable conformations for forming beta sheets...
For some proteins a delicate balance between pro-
tein folding and misfolding exists that can be tipped
by changes in environment, destabilizing mutations,
or even protein concentration...

In addition to the self-chaperoning effects de-
scribed above, proteins are also protected from fib-
rillation during the process of folding by molecular
chaperones...

Our genome-wide analysis revealed that self-
complementary segments are found in almost all pro-
teins, yet not all proteins are amyloids. The implica-
tion is that chaperoning effects have evolved to con-
strain self-complementary segments from interaction
with each other.

Many of these processes and mechanisms seem no less ex-
amples of chemical cognition than the immune/inflammatory
responses that Atlan and Cohen (1998) describe in terms of an
explicit cognitive paradigm, or that characterizes well-studied
neural processes.

We will use Tlusty’s (2007a, b, 2008a, b, c, 2010a) anal-
ysis of the emergence of the genetic code as a basis for an
appropriate model, and begin, from the ground up, with a
reconsideration of protein symmetry from his perspective.

2 Protein symmetries

There are, it seems, numerous underlying ‘protein folding
codes’ in the sense of characteristic segments of amino acids
whose ultimate folded structures are a somewhat debatable
matter of formal taxonomy. Figure 1, from Hartl and Hayer-
Hartl (2009), schematically expands the spectrum of final
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Figure 1: From Hartl and Hayer-Hartl, 2009. Energy land-
scape spectrum of protein folding and aggregation, parsed
according to the degree of intra- vs. inter-molecular contact.
Each energy valley defines an equivalence class, and the set of
such classes defines the ‘protein folding groupoid’, in the sense
of Weinstein (1996). Four basic classifications can be seen; na-
tive state, amorphous aggregates, semi-structured oligomers,
and quasi-crystalline amyloid fibrils. Within the native state
and the amyloid fibrils, systematic subclasses can be identi-
fied, leading to a fine structure for protein coding.

protein conformations according to an in vivo ‘folding fun-
nel’ model dispersed across a measure of intra- vs. inter-
molecular contact for hydrophobic-core proteins forming ter-
tiary structure. Intra-molecular conformations involve three-
dimensional assemblages of α-helices and β-sheets, while the
most densely packed inter-molecular form is, perhaps, the
ubiquitous semicrystalline amyloid fibril.

The basic spectrum of figure 1 for proteins having a hy-
drophobic core, in general, explains the necessity of the elab-
orate regulatory structures associated with the endoplasmic
reticulum and its attendant spectrum of chaperone proteins
(e.g., Scheuner and Kaufman, 2008), and the evolutionary
pattern of protein sequences inferred by Goldschmidt et al.
(2010). The inevitable corrosion of the cellular regulatory ap-
paratus with age would then explain the subsequent onset of
amyloid fibril and other aggregation disorders.

Most particularly, the spectrum of valleys in figure 1 char-
acterizes a set of equivalence classes that defines a ‘protein
folding groupoid’, in the sense of Weinstein (1996). As we
will argue below, both the native state and amyloid fibril have
structured subdivisions, internal equivalence classes, that de-
fine a nested set of groupoids. See the Mathematical Ap-
pendix for a summary of standard material on groupoids.

With regard to the disjunction between ‘native’ and ‘amy-
loid’ protein forms, very early on, Astbury (1935) conjectured
that globular proteins could also have a linear state, based on
pioneering x-ray studies. Chiti et al. (1999) argue that

...[P]rovided appropriate conditions are main-
tained over prolonged periods of time, the formation
of ordered amyloid protofilaments and fibrils could
be an intrinsic property of many polypeptide chains,
rather than being a phenomenon limited to a very
few aberrant sequences.

Wang et al. (2008), in a an elegant series of experiments
on bacterial inclusion bodies, conclude that

..[A]myloid aggregation appears to be a com-
mon property of protein segments and consequently
is observed in both eukaryotes and prokaryotes...
[Thus] there must be evolved strategies against amy-
loid formation, which include both quality control
mechanisms through molecular chaperones as well
as sequence-based [evolutionary] prevention of amy-
loid aggregation...

...[E]ach protein may exist, not only in an un-
folded or folded state, but, by containing at least
one amino acid segment that is capable of partici-
pating in a sequence-specific, ordered, cross-β-sheet
aggregated state, may also exist in an amyloid-like
aggregate. The process of protein aggregation can
thus be viewed as a primitive folding mechanism, re-
sulting in a defined, aggregated conformation with
each aggregated protein having its own distinctive
properties.

Krebs et al. (2009), however, in a paper tellingly titled ‘Pro-
tein aggregation: more than just fibrils’, find that the amy-
loid fibril is not the only structure that aggregating proteins
of widely different types may adopt. For example, the occur-
rence of spherulites, which have been found in vivo as well
as in vitro, appears to be generic, although the factors that
determine the equilibrium between free fibril and spherulite
are not as yet clear. That is, we have not fully explained
the spectrum implied by figure 1. Nevertheless, here we will
use Tlusty’s (2007a, b, 2008a, b, c, 2010a) arguments on the
evolution of the genetic code to explore something of that
spectrum.

As Kamtekar et al. (1993) point out, experimental studies
of natural proteins show how their structures are remarkably
tolerant to amino acid substitution, but that tolerance is lim-
ited by a need to maintain the hydrophobicity of interior side
chains. Thus, while the information needed to encode a par-
ticular protein fold is highly degenerate, this degeneracy is
constrained by a requirement to control the locations of po-
lar and nonpolar residues. This is the precise protein folding
analog to Tlusty’s error network analysis of the genetic code,
and his graph coloring arguments should thus apply, in some
measure, to protein folding as well, allowing inference on the
underlying structure of the ‘protein folding codes’ to be asso-
ciated with the horizontal axis of figure 1.

Tyco (2006), likewise, argues that the amyloid fibril is
a generically stable structural state of a polypeptide chain,
competing thermodynamically and kinetically with globular
monomeric states and unfolded monomeric states. Peptides
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and proteins that are known to form amyloid fibrils have
widely diverse amino acid sequences and molecular weights.
He particularly finds that

The near sequence independence of amyloid for-
mation represents a challenge to our understanding
of the physical chemistry of peptides and proteins.

Such sequence independence is, again, very precisely the
degeneracy associated with Tlusty’s error network approach.

Intermediate forms in figure 1 remain to be studied from
this perspective.

Some of these matters have, of course, already been the sub-
ject of considerable attention. A series of elegant experiments
by the Hecht group (e.g., Hecht et al., 2004), extending the
work of Kamtekar et al. (1993), has focused on a basic under-
standing of protein folding through substitution of different
polar and nonpolar amino acids in the construction of normal
and fibril proteins. α-helices are found to be natural outcomes
of amino acid sequences having a 3.6 residue/turn patten, i.e.,
a digital signal of the form 101100100110, where 1 indicates
a polar, and 0 a nonpolar amino acid. The resulting three
dimensional structures are formed by the propensity of the
different residues to interact with an aqueous environment.
β sheets, on the other hand, emerge from a simpler period

2 code, e.g., 1010101, matching the structural repeat of the
sheets. More recent work (Kim and Hecht, 2006) finds that
generic hydrophobic residues of this form are sufficient to pro-
mote aggregation of the Alzheimer’s Aβ42 peptide. However,
while the positioning of hydrophobic residues is more impor-
tant than the exact identities of the hydrophobic side chains
for determining overall geometry, reaction kinetics, the rate
of fibril formation, was profoundly affected by those identi-
ties. This suggests that the ‘protein folding code’ may be, in
no small part, contextual, that is, determined as much by in
vivo cellular regulatory machinery as by in vitro hydropho-
bic/hydrophilic physical interactions. This, we will suggest
below, likely involves the operation of something like the cat-
alytic mechanisms that Wallace and Wallace (2009) and Wal-
lace (2010a) describe.

2.1 Large scale structure

Broadly, figure 1 embraces a four-fold classification (Wallace,
2010b):

1. The ‘native state’ determined, at low concentrations,
entirely by the amino acid sequence in the classic sense of
Anfinsen (1973).

2. Amorphous aggregates.
3. Semi-structured oligomers, as explored by Krebs et al.

(2009).
4. Amyloid/amyloid-like one-dimensional fibrils.
Following the description by Tlusty, (2010b), the genetic

code is a mapping of one codon to one amino acid. By con-
trast, the ‘protein folding code’ is a mapping of genes to folded
amino acid chains, and the complexity gap between the two
codes is very great indeed (e.g., Mirny et al., 2001). The

strategy that allows adaptation of Tlusty’s methods to pro-
tein folding is a coarse-graining of protein structure into a
matrix of larger building blocks, e.g., α-helices and β-sheets.
At this lower resolution a ‘code’ is a mapping between short
DNA stretches, analogous to codons, and the convoluted mo-
tifs of proteins, playing the role of amino acids. As a con-
sequence of the great tolerance to amino acid substitutions
described above, as long as charge and polarity are conserved,
it is possible to cluster all the sequences that encode the same
structural motif. This greatly reduces the size of the resulting
DNA sequence graph and thus limits the number of possible
building blocks.

Generalizing Table 1 of Tlusty (2007, 2010a) according to
the genus γ of the underlying graph, that is, the number of
holes in the error network associated with the proposed code,
we can apply Heawood’s graph genus formula for the coloring
number that identifies the maximal number of first excited
modes of the coding graph Laplacian,

chr(γ) = Int[1/2(7 +
√

1 + 48γ)].

(1)

where Int is the integer value of the enclosed expression and
γ itself is defined from Euler’s formula (Tlusty, 2010) as

γ = 1− 1

2
(V − E + F )

(2)

where V is the number of code network vertices, E the number
of network edges, and F the number of enclosed faces.

Equation (1) produces the table

γ (# network holes) chr(γ) (# prot. syms.)
0 4
1 7
2 8
3 9
4 10
5 11

6, 7 12
8, 9 13

In Tlusty’s scheme, the second column represents the max-
imal possible number of product classes that can be reliably
produced by error-prone codes having γ holes in the underly-
ing coding error network.
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Figure 2: From Chou and Zhang, 1995. Standard equivalence
classes for inexact protein symmetries according to Levitt and
Chothia, 1976: (a) All-α helices. (b) All-β sheets. (c) α+ β.
(d) α/β. More recent work identifies a minimum of seven, and
possibly as many as ten, such classes (Chou and Maggiora,
1998).

From Tlusty’s perspective, then, our four-fold classification
for figure 1 produces a the simplest possible large-scale ‘pro-
tein folding code’, a sphere limited by the four-color problem,
and the simplest cognitive cellular regulatory system would
thus be constrained to pass/fail on four basic flavors, as it
were, of folded proteins.

Within the funnel leading to the native state, however,
chaperone processes would face far more difficult choices.

This suggests a possible two-fold cellular regulatory struc-
ture, and next we consider the two most fully characterized
geometric structures in more detail, the normal and amyloid
forms.

2.2 Normal globular proteins

Normal irregular protein symmetries were first classified
by Levitt and Chothia (1976), following a visual study of
polypeptide chain topologies in a limited dataset of globu-
lar proteins. Four major classes emerged; all α-helices; all
β-sheets; α/β; and α+ β, as illustrated in figure 2.

While this scheme strongly dominates observed irregular
protein forms, Chou and Maggiora (1998), using a much larger
data set, recognize three more ‘minor’ symmetry equivalence

classes; µ (multi-domain); σ (small protein); and ρ (peptide),
and a possible three more ‘subminor’ groupings.

We infer that the normal globular ‘protein folding code er-
ror network’ is, essentially, a large connected ‘sphere’ – pro-
ducing the four dominant structural modes of figure 2 – hav-
ing one minor, and possibly as many as three more ‘subminor’
attachment handles, in the Morse Theory sense (Matsumoto,
2002), a matter opening up other analytic approaches.

2.3 Amyloid fibrils

As described above, Kim and Hecht (2006) suggest that over-
all amyloid fibril geometry is very much driven by the un-
derlying β-sheet coding 1010101, although the rate of fibril
formation may be determined by exact chemical constitu-
tion. Work by Sawaya et al. (2007) parses some of those
subtleties: They identify an eight-fold ‘steric zipper’ symme-
try necessarily associated with the linear amyloid fibrils that
characterize a vast spectrum of protein folding disorders. Fig-
ure 3, adapted from their work, shows those symmetries. In
essence, two identical sheets can be classified by the orienta-
tion of their faces (face-to-face/face-to-back), the orientation
of their strands (with both sheets having the same edge of the
strand up or one up and the other down), and whether the
strands within the sheets are parallel or anti parallel. Five
of the eight symmetry possibilities have been observed. This
suggests, from the text table above, that the ‘amyloid folding
code error network’ is a double donut, that is, has two, differ-
ent sized, interior holes, resembling, perhaps, a toroid with a
smaller attachment handle.

2.4 Amyloid self-replication

Maury (2009) has recently proposed an ‘amyloid world’ model
for the emergence of prebiotic informational entities, based on
the extraordinary stability of amyloid structures in the face
of the harsh conditions of the prebiotic world. From this
perspective, the synthesis of RNA, and the evolution of the
RNA-protein world, were later, but necessary events for fur-
ther biomolucular evolution. Maury further argues that, in
the contemporary DNA⇔RNA⇒protein world, the primor-
dial β-conformation-based information system is preserved in
the form of a cytoplasmic epigenetic memory.

Falsig et al. (2008) examine the many different strains of
prions, finding that differences in kinetics of the elementary
steps of prion growth underlie the differential proliferation of
prion strains, based on differential frangibility of prion fibrils.
They argue that an important factor is the size of the stabi-
lizing cross-β amyloid core that appears to define the physical
properties of the resulting structures, including their propen-
sity to fragment, with small core sizes leading to enhanced
frangibility. In terms of the protein folding funnel approach,
they find that intrinsic frustration implies that several dis-
tinct arrangements favoring a certain subset of globally in-
compatible interactions are possible, reflecting the observed
strain-dependent differences in the parts of the sequence in-
corporated into the fibril core.
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Figure 3: From Sawaya et al., 2007. The eight possible steric
zipper symmetry classifications for amyloid fibrils.

In addition, they argue, there are unexplored similarities
between Alzheimer’s and prion diseases, that is, the analo-
gies between prion and Aβ aggregates could be broader than
initially suspected.

Given the eight-fold symmetry of the amyloid fiber, say ver-
sions A → H, then the simplest ‘frangibility code’ is the set
of identical pairings: {AA,BB, ..., GG,HH}, producing eight
different possible structures and their reproduction by frag-
mentation. More complex prion symmetries, or the possibility
of combinatorial recombination, would allow a much richer
structure, producing quasi-species, in the sense of Collinge
and Clarke (2007). Permitting different sequence lengths or
explicitly identifying different sequence orders would vastly
enlarge what Collinge has characterized as a ‘cloud’ of possi-
bilities, in the case of prion diseases. Indeed, classic studies by
Bruce and Dickinson (1987) found 15 or more different prion
strains in a mouse model.

Recent work on prions appears to support something of
Maury’s hypothesis. Li et al. (2010) find that infectious pri-
ons, mainly what is called PrPSc, a spectrum of β sheet-rich
conformers of the normal host protein PrPC , undergo Dar-
winian evolution in cell culture. In that work, prions show
the evolutionary hallmarks: they are subject to mutation, as
evidenced by heritable changes of their phenotypes, and to
selective amplification, as found by the emergence of distinct
populations in different environments. Figure 4, from Li et
al. (2010), shows a prion energy landscape similar to figure 1.
This suggests the possibility of characterizing the underlying
topology of a ‘prion reproduction code’, in the sense of the
sections above.

One might speculate that prions and prion diseases repre-
sent fossilized remains of Maury’s prebiotic amyloid world.

3 Spontaneous symmetry breaking

We begin the theoretical analysis of protein folding dynamics
with a classic conceptual context:

Landau’s theory of phase transitions (Landau and Lifshitz,
2007; Pettini, 2007) assumes that the free energy of a system
near criticality can be expanded in a power series of some ‘or-
der parameter’ representing a fundamental measurable quan-
tity, that is, a symmetry invariant. The essence of Landau’s
insight was that phase transitions without latent heat – sec-
ond order transitions – were usually in the context of a sig-
nificant symmetry change in the physical states of a system,
with one phase, at higher temperature, being far more sym-
metric than the other. A symmetry is lost in the transition,
a phenomenon called spontaneous symmetry breaking. The
greatest possible set of symmetries in a physical system is
that of the Hamiltonian describing its energy states. Usu-
ally states accessible at lower temperatures will lack sym-
metries available at higher temperatures, so that the lower
temperature phase is the less symmetric: The randomization
of higher temperatures ensures that higher symmetry/energy
states will then be accessible to the system.

At the lower temperature the order parameter must be
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Figure 4: From Li et al. 2010, figure S10. Schematic en-
ergy landscape for prion strains and substrains. The energy
landscape diagram suggests that substrains are distinguish-
able collectives of prions that interconvert reproducibly and
readily because they are separated by low activation energy
barriers. The properties of a strain may vary depending on
the environment in which it replicates, as the proportions of
component substrains may change to favor that replicating
most rapidly, indicated by the arrows. Comparison with fig-
ure 1, and the subsequent argument, suggests an underlying
topological structure for a ‘prion reproduction code’.

introduced to describe the system’s physical states – some
extensive quantity like magnetization. The order parameter
will vanish at higher temperatures, involving more symmetric
states, and will be different from zero in the less symmet-
ric lower temperature phase, where symmetry is measured in
terms of classic group structures.

Two essential features distinguish information systems, like
the translation of a genome into a folded protein, from this
simple physical model.

First, the dynamics of order parameters cannot always be
determined by simplistic minimization procedures in biolog-
ical circumstances (e.g., Levinthal, 1969): embedding envi-
ronments can, within contextual constraints (that particu-
larly include available metabolic free energy), write images of
themselves via evolutionary selection mechanisms, driving the
system toward such structures as the protein folding funnel
(e.g., Levinthal, 1968; Wolynes, 1996).

Second, the essential symmetry of information sources is
quite often driven by groupoid, rather than group, structures
(e.g., Wallace and Fullilove, 2008). One must then engage
the full transitive orbit/isotropy group decomposition, and
examine groupoid representations (e.g., Bos, 2007; Buneci,
2003) configured about the irreducible representations of the
isotropy groups. This observation seems particularly rele-
vant given the usual helix/sheet/connecting loop tilings that
characterize most elaborate protein conformations (Chou and
Zhang, 1995).

4 A little information theory

Here we think of the machinery listing a sequence of codons
as communicating with machinery that produces amino acids,
folds them in a particular real-world physiological context,
and produces the final symmetric protein. We then suppose
it possible to compare what is actually produced with what
should have been produced – what the codon stream proposes,
taking Anfinsen’s (1973) perspective – and what the protein
production machinery disposes – comparing observed folded
proteins with their idealized image, that can now be well de-
scribed using ‘physics’ models like Rosetta. Such comparison
is entirely an empirical matter, and can be done by human
experimenters, but is most often done in real time by internal
cellular machinery: the endoplasmic reticulum and friends.

The average distortion between what is sent by the codon
stream and what is observed in the cell or tissue is an essential
parameter of the transmission channel, and the relation be-
tween the minimum channel capacity needed for some average
distortion measure is a fundamental empirical characteristic
of an information channel, characterized by the Rate Distor-
tion Theorem, one of the basic asymptotic limit theorems of
probability theory. The rate distortion function, R(D), that
measures the minimimum channel capacity ensuring an aver-
age distortion D, by some measure is, in essence, a different
way of looking at the protein folding funnel.

Onuchic and Wolynes (2004) have put something of the
matter fully in evolutionary terms:
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Protein folding should be complex... a folding
mechanism must involve a complex network of el-
ementary interactions. However, simple empirical
patterns of protein folding kinetics... have been
shown to exist.

This simplicity is owed to the global organization
of the landscape of the energies of protein conforma-
tions into a funnel...This organization is not charac-
teristic of all polymers with any sequence of amino
acids, but is a result of evolution...

Evolution achieves robustness by selecting for
sequences in which the interactions present in the
functionally useful structure are not in conflict, as
in a random heteropolymer, but instead are mutu-
ally supportive and cooperatively lead to a low en-
ergy structure. The interactions are ‘minimally frus-
trated’... or ‘consistent’...

It is possible to reframe this mechanism in formal informa-
tion theory terms.

Suppose a sequence of signals is generated by a biologi-
cal information source Y having output yn = y1, y2, ... –
codons. This is ‘digitized’ in terms of the observed behav-
ior of the system with which it communicates, say a sequence
of ‘observed behaviors’ bn = b1, b2, ... – amino acids and their
folded protein structure. Assume each bn is then determinis-
tically retranslated – that is, ‘decoded’ in engineering jargon
– back into a reproduction of the original biological signal,
bn → ŷn = ŷ1, ŷ2, .... To reiterate, such decoding can be done
by human experimenters, taking Anfinsen’s viewpoint that
the codon stream characterizes the intended protein form as
a message that is distorted by transmission along the DNA
→ RNA → Protein channel.

Define a distortion measure d(y, ŷ) that compares the orig-
inal to the retranslated/decoded path. Many distortion mea-
sures are possible. The Hamming distortion is defined simply
as

d(y, ŷ) = 1, y 6= ŷ

d(y, ŷ) = 0, y = ŷ.

For continuous variates the squared error distortion is just
d(y, ŷ) = (y − ŷ)2.

There are many such possibilities. The distortion between
paths yn and ŷn is defined as d(yn, ŷn) ≡ 1

n

∑n
j=1 d(yj , ŷj).

A remarkable fact of the Rate Distortion Theorem is that
the basic result is independent of the exact distortion mea-
sure chosen (Cover and Thomas, 1991; Dembo and Zeitouni,
1998).

Suppose that with each path yn and bn-path retransla-
tion into the y-language, denoted ŷn, there are associated
individual, joint, and conditional probability distributions
p(yn), p(ŷn), p(yn, ŷn), p(yn|ŷn).

The average distortion is defined as

D ≡
∑
yn p(y

n)d(yn, ŷn).
(3)

It is possible, using the distributions given above, to define
the information transmitted from the Y to the Ŷ process using
the Shannon source uncertainty of the strings:

I(Y, Ŷ ) ≡ H(Y )−H(Y |Ŷ ) = H(Y ) +H(Ŷ )−H(Y, Ŷ ),

where H(..., ...) is the standard joint, and H(...|...) the condi-
tional, Shannon uncertainties (Cover and Thomas, 1991; Ash,
1990).

If there is no uncertainty in Y given the retranslation Ŷ ,
then no information is lost, and the systems are in perfect
synchrony.

In general, of course, this will not be true.
The rate distortion function R(D) for a source Y with a

distortion measure d(y, ŷ) is defined as

R(D) = minp(y,ŷ);
∑

(y,ŷ)
p(y)p(y|ŷ)d(y,ŷ)≤D I(Y, Ŷ ).

(4)

The minimization is over all conditional distributions p(y|ŷ)
for which the joint distribution p(y, ŷ) = p(y)p(y|ŷ) satisfies
the average distortion constraint (i.e., average distortion ≤
D).

The Rate Distortion Theorem states that R(D) is the mini-
mum necessary rate of information transmission that ensures
the communication between the biological vesicles does not
exceed average distortion D. Thus R(D) defines a minimum
necessary channel capacity. Cover and Thomas (1991) or
Dembo and Zeitouni (1998) provide details. The rate dis-
tortion function has been calculated for a number of systems.

We reiterate an absolutely central fact characterizing the
rate distortion function: Cover and Thomas (1991, Lemma
13.4.1) show that R(D) is necessarily a decreasing convex
function of D for any reasonable definition of distortion.

That is, R(D) is always a reverse J-shaped curve. This will
prove crucial for the overall argument. Indeed, convexity is
an exceedingly powerful mathematical condition, and permits
deep inference (e.g., Rockafellar, 1970). Ellis (1985, Ch. VI)
applies convexity theory to conventional statistical mechanics.

For a Gaussian channel having noise with zero mean and
variance σ2 (Cover and Thomas, 1991),

R(D) = 1/2 log[σ2/D], 0 ≤ D ≤ σ2

R(D) = 0, D > σ2.
(5)
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Recall, now, the relation between information source un-
certainty and channel capacity (e.g., Ash, 1990):

H[X] ≤ C,
(6)

where H is the uncertainty of the source X and C the
channel capacity, defined according to the relation (Ash, 1990)

C ≡ maxP (X) I(X|Y ),
(7)

where P (X) is chosen so as to maximize the rate of infor-
mation transmission along a channel Y .

Note that for a parallel set of noninteracting channels, the
overall channel capacity is the sum of the individual capaci-
ties, providing a powerful ‘consensus average’ that does not
apply in the case of modern molecular coding.

Finally, recall the analogous definition of the rate distor-
tion function above, again an extremum over a probability
distribution.

Our own work (Wallace and Wallace, 2008) focuses on the
homology between information source uncertainty and free
energy density. More formally, if N(n) is the number of high
probability ‘meaningful’ – that is, grammatical and syntacti-
cal – sequences of length n emitted by an information source
X, then, according to the Shannon-McMillan Theorem, the
zero-error limit of the Rate Distortion Theorem (Ash, 1990;
Cover and Thomas, 1991; Khinchin, 1957),

H[X] = lim
n→∞

log[N(n)]

n

= lim
n→∞

H(Xn|X0, ..., Xn−1)

= lim
n→∞

H(X0, ..., Xn)

n+ 1
,

(8)

where, again, H(...|...) is the conditional and H(..., ...) is the
joint Shannon uncertainty.

In the limit of large n, H[X] becomes homologous to the
free energy density of a physical system at the thermody-
namic limit of infinite volume. More explicitly, the free energy
density of a physical system having volume V and partition
function Z(β) derived from the system’s Hamiltonian – the

energy function – at inverse temperature β is (e.g., Landau
and Lifshitz 2007)

F [K] = lim
V→∞

− 1

β

log[Z(β, V )]

V
≡

lim
V→∞

log[Ẑ(β, V )]

V
,

with Ẑ = Z−1/β . The latter expression is formally similar
to the first part of equation (8), a circumstance having deep
implications: Feynman (2000) describes in great detail how
information and free energy have an inherent duality. Feyn-
man, in fact, defines information precisely as the free energy
needed to erase a message. The argument is surprisingly di-
rect (e.g., Bennett, 1988), and for very simple systems it is
easy to design a small (idealized) machine that turns the in-
formation within a message directly into usable work – free
energy. Information is a form of free energy and the con-
struction and transmission of information within living things
consumes metabolic free energy, with nearly inevitable losses
via the second law of thermodynamics. If there are limits on
available metabolic free energy there will necessarily be limits
on the ability of living things to process information.

Figure 5 presents a schematic of the mechanism: As the
complexity of a dynamic physiological information process
rises, that is, as H increases, its free energy content increases
linearly. The metabolic free energy needed to construct and
maintain the physiological systems that instantiate H should,
however, be expected to increase nonlinearly with it, hence
the ‘translation gap’ of the figure. Section 6 of Wallace
(2010a) gives a fairly elementary derivation of such a relation
in terms of rate distortion theory. Figure 5 suggests that H
may indeed be a good, if highly nonlinear, index of large-scale
free energy dynamics.

Conversely, information source uncertainty has an impor-
tant heuristic interpretation that Ash (1990) describes as fol-
lows:

[W]e may regard a portion of text in a partic-
ular language as being produced by an informa-
tion source. The probabilities P [Xn = an|X0 =
a0, ...Xn−1 = an−1] may be estimated from the avail-
able data about the language; in this way we can
estimate the uncertainty associated with the lan-
guage. A large uncertainty means, by the [Shannon-
McMillan Theorem], a large number of ‘meaningful’
sequences. Thus given two languages with uncer-
tainties H1 and H2 respectively, if H1 > H2, then
in the absence of noise it is easier to communicate
in the first language; more can be said in the same
amount of time. On the other hand, it will be easier
to reconstruct a scrambled portion of text in the sec-
ond language, since fewer of the possible sequences
of length n are meaningful.

In sum, if a biological system characterized by H1 has a
richer and more complicated internal communication struc-
ture than one characterized by H2, then necessarily H1 > H2
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Figure 5: Nonlinear increase in metabolic free energy needed
to maintain and generate linear increase in the information
source uncertainty of a complex physiological process. H is
seen to ‘leverage’ metabolic expenditures, parameterizing a
more complicated nonequilibrium thermodynamics. See Wal-
lace (2010a) for an explicit calculation.

and system 1 represents a more energetic process than system
2, and by the arguments of figure 5, may trigger even greater
metabolic free energy dynamics.

By equations (6-8), the Rate Distortion Function, R(D) is
likewise a free energy measure, constrained by the availability
of metabolic free energy.

5 What ‘decodes the codon’?

A number of commentators have raised the question of what
actually observes the rate distortion function, i.e., what de-
codes the codon and makes a comparison between what is
expected from the sequence of codons and the protein that
is actually produced? The question is, in a different idiom, a
fundamental conundrum in cellular biology, as it appears to
violate the central dogma of molecular biology that informa-
tion flows from DNA to RNA to protein. There is, in fact,
an elaborate cellular level apparatus that does the essential
decoding. Hebert and Molinari (2007) put the matter thus:

Understanding the mechanisms regulating degra-
dation of folding-defective polypeptides expressed in
the [endoplasmic reticulum, ER] is one of the cen-
tral issues of cell biology. Rapid disposal of folding-
incompetent polypeptides produced in the ER lumen
is instrumental to maintain ER homeostasis. The
degradation machinery is easily saturated. Defec-
tive adaptation of the cellular degradation capacity
to the ER load may result in accumulation of aber-
rant polypeptides that eventually impairs the ER

capacity to assist maturation of newly synthesized
secretory proteins.

Thus cells invoke a complicated, highly evolved, internal
regulatory process, incorporating the elaborate machinery of
the endoplasmic reticulum and chaperone proteins, that de-
codes the codon, i.e., compares a produced protein with an
internal (inherited or learned) pattern, and then chooses one
among several possible actions based on the comparison: pass
the protein on to the next stage, attempt to repair a damaged
protein, attempt to recycle or eliminate a protein that cannot
be repaired. After further theoretical development, Section 8
below will rephrase protein folding and regulation in terms of
a cognitive paradigm that formalizes this decision process at
cellular and higher – as opposed to the molecular – levels of
analysis, thus finessing the apparent violation of the central
dogma.

From a broader perspective, however, there is another,
quite relentless if crude, mechanism for decoding the codon,
and that is the continued life of the cell, tissue, or organ-
ism, i.e., Darwin’s survival of the fittest, writ small: protein
misfolding kills.

But the basic question – what decodes the codon – is, in
fact, a misundersdtanding of the regularities inherent in all
information transmission. The rate distortion theorem is, to
any form of information transmission, as basic as the cen-
tral limit theorem is to sums of stochastic variates, and it
is no surprise that many mechanisms exist in nature to de-
code/retranslate the codon. The essential point is that R(D)
is a fundamental empirical characteristic of any information
transmission channel, and it can be measured by internal cel-
lular, or external human, agencies. That is, a clever exper-
imenter could study a cellular process, infer from the codon
stream what protein should be produced, and then compare
the actual with the intended product, calculating a distortion
measure, and determining the minimum channel capacities
needed to map out R(D). This would be as arduous as, but
no more arduous than, measuring the protein folding funnel,
and indeed, the folding funnel and the rate distortion function
appear to be different images of the same phenomenon.

The endoplasmic reticulum and friends appears to do such
measurement in situ and almost in real time, triggering heat
shock protein corrective mechanisms as needed. This is no
small evolutionary accomplishment.

6 The energy picture

Ash’s comment above leads directly to a model in which the
average distortion between the initial codon stream and the fi-
nal form of the folded amino acid stream, the protein, becomes
a dominant force, particularly in an evolutionary context in
which fidelity of codon expression has survival value. The
most direct model is parameterized by the average distortion
between the codon stream and the folded protein structure:

Suppose there are n possible folding schemes. The most fa-
miliar approach, perhaps, is to assume that a given distortion
measure, D, under evolutionary selection constraints, serves

10

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

10
.4

84
7.

2 
: P

os
te

d 
16

 S
ep

 2
01

0



much as an external temperature bath for the possible dis-
tribution of conformation free energies, the set {H1, ...,Hn}.
That is, high distortion, represented by a low rate of trans-
mission of information between codon machine and amino
acid/protein folding machine, permits a larger distribution
of possible symmetries – the big end of the folding funnel –
according to the classic formula

Pr[Hj ] =
exp[−Hj/λD]∑n

i=1
exp[−Hi/λD]

,

(9)

where Pr[Hj ] is the probability of folding scheme j having
conformational free energy Hj .

We are, in essence, assuming that Pr[Hj ] is a one parameter
distribution in the ‘intensive’ quantity D.

The free energy Morse Function associated with this prob-
ability is

FR = −λD log[
∑n
i=1 exp[−Hi/λD]].

(10)

Applying a spontaneous symmetry breaking argument to
FR generates topological transitions in folded protein struc-
ture as the ‘temperature’ D decreases, i.e., as the average
distortion declines. That is, as the channel capacity connect-
ing codon machines with amino acid/protein folding machines
increases, the system is driven to a particular conformation,
according to the ‘protein folding funnel’.

7 The developmental picture

The developmental approach of Wallace and Wallace (2009)
permits a different perspective on protein folding.

We now are concerned with developmental pathways in a
‘phenotype space’ that, in a series of steps, take the amino
acid string S0 at time 0 to the final folded conformation Sf
at some time t in a long series of distinct, sequential, inter-
mediate configurations Si.

Let N(n) be the number of possible paths of length n that
lead from S0 to Sf . The essential assumptions are:

[1] This is a highly systematic process governed by a ‘gram-
mar’ and ‘syntax’ driven by the evolutionarily-sculpted fold-
ing funnel, so that it is possible to divide all possible paths
xn = {S0,S1, ...,Sn} into two sets, a small, high probability
subset that conforms to the demands of the folding funnel
topology, and a much larger ‘nonsense’ subset having vanish-
ingly small probability.

[2] If N(n) is the number of high probability paths of length
n, then the ‘ergodic’ limit

H = limn→∞ log[N(n)]/n
(11)

both exists and is independent of the path x. This is, es-
sentially, a restatement of the Shannon-McMillan Theorem
(Khinchin, 1957).

That is, the folding of a particular protein, from its amino
acid string to its final form, is not a random event, but repre-
sents a highly – evolutionarily – structured (i.e., by the folding
funnel) ‘statement’ by an information source having source
uncertainty H.

7.1 Symmetry arguments

A formal equivalence class algebra can now be constructed by
choosing different origin and end points S0,Sf and defining
equivalence of two states by the existence of a high proba-
bility meaningful path connecting them with the same origin
and end. Disjoint partition by equivalence class, analogous to
orbit equivalence classes for dynamical systems, defines the
vertices of the proposed network of developmental protein
‘languages’. We thus envision a network of metanetworks.
Each vertex then represents a different equivalence class of
developmental information sources. This is an abstract set of
metanetwork ‘languages’.

This structure generates a groupoid, in the sense of the Ap-
pendix. States aj , ak in a set A are related by the groupoid
morphism if and only if there exists a high probability gram-
matical path connecting them to the same base and end
points, and tuning across the various possible ways in which
that can happen – the different developmental languages –
parameterizes the set of equivalence relations and creates the
(very large) groupoid.

There is an implicit hierarchy. First, there is structure
within the system having the same base and end points. Sec-
ond, there is a complicated groupoid structure defined by sets
of dual information sources surrounding the variation of base
and end points. We do not need to know what that structure
is in any detail, but can show that its existence has profound
implications.

We begin with the simple case, the set of dual informa-
tion sources associated with a fixed pair of beginning and end
states.

7.1.1 The first level

Taking the serial grammar/syntax model above, we find that
not all high probability meaningful paths from S0 to Sf are
actually the same. They are structured by the uncertainty of
the associated dual information source, and that has a homo-
logical relation with free energy density.

Let us index possible information sources connecting base
and end points by some set A = ∪α. Argument by abduc-
tion from statistical physics is direct. The minimum channel

11

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

10
.4

84
7.

2 
: P

os
te

d 
16

 S
ep

 2
01

0



capacity needed to produce average distortion less than D in
the energy picture above is R(D). We take the probability of
a particular Hα as determined by the standard expression

P [Hβ ] =
exp[−Hβ/µR]∑
α
exp[−Hα/µR]

,

(12)

where the sum may, in fact, be a complicated abstract inte-
gral.

A basic requirement, then, is that the sum/integral always
converges.

Thus, in this formulation, there must be structure within a
(cross sectional) connected component in the base configura-
tion space, determined by R. Some dual information sources
will be ‘richer’/smarter than others, but, conversely, must use
more available channel capacity for their completion.

7.1.2 The second level

While we might simply impose an equivalence class structure
based on equal levels of energy/source uncertainty, producing
a groupoid – and possibly allowing a Morse Theory approach
– we can do more by now allowing both source and end points
to vary, as well as by imposing energy-level equivalence. This
produces a far more highly structured groupoid.

Equivalence classes define groupoids, by standard mecha-
nisms (Weinstein, 1996), as described in the Appendix. The
basic equivalence classes – here involving both information
source uncertainty level and the variation of S0 and Sf , will
define transitive groupoids, and higher order systems can
be constructed by the union of transitive groupoids, having
larger alphabets that allow more complicated statements in
the sense of Ash above.

Again, given a minimum necessary channel capacity R, we
propose that the metabolic-energy-constrained probability of
an information source representing equivalence class Gi, HGi ,
will again be given by

P [HGi ] =
exp[−HGi/κR]∑
j
exp[−HGj /κR]

,

(13)

where the sum/integral is over all possible elements of the
largest available symmetry groupoid. By the arguments of
Ash above, compound sources, formed by the union of un-
derlying transitive groupoids, being more complex, generally
having richer alphabets, as it were, will all have higher free-
energy-density-equivalents than those of the base (transitive)
groupoids.

Let

ZG =
∑
j exp[−HGj/κR].

(14)

We now define the Groupoid free energy of the system, a
Morse Function FG, at channel capacity R, as

FG[R] = − 1
κR log[ZG[R]].

(15)

These free energy constructs permit introduction of the
spontaneous symmetry breaking arguments above, but now
an increase in R (with corresponding decrease in average dis-
tortion D) permits richer system dynamics – higher source
uncertainty – resulting in more rapid transmission of the ‘mes-
sage’ constituting convergence from S0 to Sf .

7.2 Folding speed and mechanism

Dill et al. (2007) describe the conundrum of folding speeds as
follows:

...[P]rotein folding speeds – now known to vary
over more than eight orders of magnitude – correlate
with the topology of the native protein: fast folders
usually have mostly local structure, such as helices
and tight turns, whereas slow folders usually have
more non-local structure, such as β sheets (Plaxco
et al., 1998)...

A simple rate distortion argument reproduces this result.
Assume that protein structure can be characterized by some
groupoid representing, at least, the disjoint union of the
groups describing the symmetries of component secondary
structures – e.g., helices and sheets. Then, in equation (12),
the set A = ∪α grows in size – cardinality – with increasing
structural complexity. If channel capacity is capped by some
mechanism, so that (at least) R grows at a lesser rate than
A, by some measure, then

P [Hβ ] =
exp[−Hβ/µR]∑
α
exp[−Hα/µR]

(16)

must decrease with increase in the number of possible states
α, i.e., with increase in the cardinality of R, producing pro-
gressively lower rates of convergence to the final state.

In particular, if R is fixed, then the log of the folding rate
will be given as
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log[P [Hβ ]] = log[
exp[−Hβ/µR]∑
α
exp[−Hα/µR]

] =

C(R)−Hβ/µR,
(17)

where C(R) is positive. β indexes increasing topological com-
plexity, using some appropriate measure.

For simplicity, assume Hβ ∝ β. Then, taking an integral
approximation,

P [β] ≈ exp[−mβ/µR]∫ ∞

α=0
exp[−mα/µR]dα

=

(m/µR) exp[−mβ/µR],
(18)

and

log[P [β]] ≈ log[m/µR]−mβ/µR.
(19)

Thus one expects, at a fixed R defining a maximum channel
capacity, that

log[FoldingRate] ≈ C − kβ,
(20)

C, k constant and all values positive.
A standard index of protein complexity is the absolute con-

tact order (Plaxco et al, 1998):

ACO = 1/N
∑N

∆Li,j
(21)

where N is the number of contacts within 6 Angstroms be-
tween nonhydrogen atoms in the protein, and ∆Li,j is the
number of residues separating the interacting pair of nonhy-
drogen atoms.

Adjacent residues are assumed to be separated by one
residue.

Figure 6, adapted from Gruebele (2005), shows the correla-
tion of the log of the folding rate with fold complexity, mea-
sured by the ACO. The upper line estimates folding speed
limited only by fold complexity, following Yang and Gruebele
(2004), and seems clearly to represent a maximum possible

Figure 6: From Gruebele, 2005. Relation of the log of the pro-
tein folding rate to fold complexity. The upper folding speeds
are limited only by fold complexity, without the ‘frustration’
effects of a rough folding funnel. Frustration, in this model, is
equivalent to increasing noise that constrains channel capac-
ity, and drives R irregularly lower than the value implied by
the relation for the fastest folders. Equations (19) and (20)
reproduce something of these results.

rate distortion function/channel capacity, according to equa-
tion (20). The molecular species along the lower curve are
assumed to be ‘frustrated’ by an irregular folding funnel, and
follow a narrow spectrum of relations like equation (20), nec-
essarily below the line defined by maximum channel capacity,
and necessarily somewhat scattered, according to the varia-
tion in R.

It is possible to reproduce something like figure 6 by de-
scribing ‘smooth’ and ‘rough’ folding funnels in terms of a
Gaussian channel, that is, one in which the signal transmis-
sion from initial to final protein state is perturbed by Gaus-
sian noise having a squared-error distortion, so that the rate
distortion function has the standard form of equation (5),
R(D) = (1/2) log[σ2/D]. Again, R(D) is the rate distortion
function at average distortion D, and σ2 represents the ampli-
tude of the imposed random noise. A smooth folding funnel
would have little noise.

Plugging equation (5) into equation (19) gives, over an ap-
propriate range of parameters, the spectrum of linear relations
for log folding rate shown in figure 7. D,m, and µ are fixed,
and β and σ2 increase, as indicated.
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Figure 7: Spectrum of linear relations between log folding rate
and increasing topological complexity for increasing ‘rough-
ness’ of the folding funnel, as measured by noise σ2 for a
Gaussian channel. β increases to the right and σ2 increases
downward, analogous to an increasingly irregular folding fun-
nel.

These matters lead to the next central question: can folding
rates be modulated by other means than noise in the folding
funnel? Can the effects of noise be ‘reversed’? This will lead
toward our cognitive model for protein folding.

7.3 Catalysis of protein folding

Incorporating the influence of embedding contexts – epige-
netic or cellular regulatory chaperone effects, or the impact
of (broadly) toxic exposures – can be done here by invoking
the Joint Asymptotic Equipartition Theorem (JAEPT)(Cover
and Thomas, 1991). For example, given an embedding con-
textual information source, say Z, that affects protein de-
velopment, then the developmental source uncertainty HGi

is replaced by a joint uncertainty H(XGi , Z). The objects
of interest then become the jointly typical dual sequences
yn = (xn, zn), where x is associated with protein folding de-
velopment and z with the embedding context. Restricting
consideration of x and z to those sequences that are in fact
jointly typical allows use of the information transmitted from
Z to X as the splitting criterion.

One important inference is that, from the information
theory ‘chain rule’ (Cover and Thomas, 1991), H(X,Y ) =
H(X) + H(Y |X) ≤ H(X) + H(Y ), while there are approx-
imately exp[nH(X)] typical X sequences, and exp[nH(Z)]
typical Z sequences, and hence exp[n(H(x)+H(Y ))] indepen-
dent joint sequences, there are only about exp[nH(X,Z)] ≤
exp[n(H(X) + H(Y ))] jointly typical sequences, so that the
effect of the embedding context, in this model, is to lower the
relative free energy of a particular protein channel.

Thus the effect of epigenetic/catalytic regulation or toxic

exposure is to channel protein into pathways that might oth-
erwise be inhibited or slowed by an energy barrier. Hence the
epigenetic/catalytic/toxic information source Z acts as a tun-
able catalyst, a kind of second order enzyme, to enable and
direct developmental pathways. This result permits hierar-
chical models similar to those of higher order cognitive neural
function (e.g, Wallace, 2005).

This is indeed a relative energy argument, since, metabol-
ically, two systems must now be supported, i.e., that of the
‘reaction’ itself and that of its catalytic regulator. ‘Program-
ming’ and stabilizing inevitably intertwined, as it were.

Protein folding, in the developmental picture, can be visu-
alized as a series of branching pathways. Each branch point is
a developmental decision, or switch point, governed by some
regulatory apparatus (if only the slope of the folding funnel)
that may include the effects of toxins or epigenetic mecha-
nisms.

A more general picture emerges by allowing a distribution
of possible ‘final’ states Sf . Then the groupoid arguments
merely expand to permit traverse of both initial states and
possible final sets, recognizing that there can now be a possi-
ble overlap in the latter, and the catalytic effects are realized
through the joint uncertainties H(XGi , Z), so that the guid-
ing information source Z serves to direct as well the possible
final states of XGi .

7.4 Extending the model

The most natural extension of the developmental model of
protein folding would be in terms of the directed homotopy
classification of ontological trajectories, in the sense of Wal-
lace and Wallace (2008, 2009). That is, developmental tra-
jectories themselves can be classified into equivalence classes,
for example those that lead to a normal final state Sf , and
those that lead to pathological aggregations or misfoldings,
say some set {Sipath}, i = 1, 2, .... This produces a dynamic
directed homotopy groupoid topology whose understanding
might be useful across a broad spectrum of diseases.

Figure 8 illustrates the concept. The initial developmental
state S0 can, in this picture, ‘fall’ down two different sets
of developmental pathways, separated by a critical period
‘shadow’ preventing crossover between them. Paths within
one set can be topologically transformed into each other with-
out crossing the filled triangle, and constitute a directed ho-
motopy equivalence classes. The lower apex of the triangle
can, however, start at many possible critical period points
along any path connecting S0 and Sf , following the argu-
ments of Section 12 of Wallace and Wallace (2009).

Onset of a path that converges on the conformation Spath
is, according to the model, driven by a genetic, epigenetic,
or environmental catalysis event, in the sense of Section 7.3.
The topological equivalence classes define a groupoid on the
developmental system.
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Figure 8: Given an initial state S0 and a critical period cast-
ing a path-dependent developmental shadow, there are two
different directed homotopy equivalence classes of deformable
paths leading, respectively, to the normal folded protein state
Sf and the pathological state – e.g., amyloid – Spath. These
sets of paths form equivalence classes defining a topological
groupoid.

8 Toward a cognitive paradigm for
protein folding disorders

We now take the developmental perspective as the founda-
tion for generating an empirically-based statistical model –
effectively a cognitive paradigm for normal and pathological
protein folding – that incorporates the embedding contexts
of epigenetic and environmental signals. Atlan and Cohen
(1998), in the context of a study of the immune system, ar-
gue that the essence of cognition is the comparison of a per-
ceived signal with an internal, learned picture of the world,
and then choice of a single response from a large repertoire of
possible responses. Such choice inherently involves informa-
tion and information transmission since it always generates a
reduction in uncertainty, as explained in Ash (1990, p. 21).
Thus structures that process information are constrained by
the asymptotic limit theorems of information theory, in the
same sense that sums of stochastic variables are constrained
by the Central Limit Theorem, allowing the construction of
powerful statistical tools useful for data analysis.

More formally, a pattern of incoming input Si describing
the folding status of the protein – starting with the initial
codon stream S0 – is mixed in a systematic algorithmic man-
ner with a pattern of otherwise unspecified ‘ongoing activity’,
including cellular, epigenetic and environmental signals, Wi,
to create a path of combined signals x = (a0, a1, ..., an, ...).
Each ak thus represents some functional composition of in-
ternal and external factors, and is expressed in terms of the
intermediate states as

Si+1 = f([Si,Wi]) = f(ai)
(22)

for some unspecified function f . The ai are seen to be
very complicated composite objects, in this treatment that
we may choose to coarse-grain so as to obtain an appropriate
‘alphabet’.

In a simple spinglass-like model, S would be a vector, W a
matrix, and f would be a function of their product at ‘time’
i.

The path x is fed into a highly nonlinear decision oscillator,
h, a ‘sudden threshold machine’ pattern recognition structure,
in a sense, that generates an output h(x) that is an element
of one of two disjoint sets B0 and B1 of possible system re-
sponses. Let us define the sets Bk as

B0 = {b0, ..., bk},

B1 = {bk+1, ..., bm}.

Assume a graded response, supposing that if h(x) ∈ B0,
the pattern is not recognized, and if h(x) ∈ B1, the pattern
has been recognized, and some action bj , k+ 1 ≤ j ≤ m takes
place. Typically, the set B1 would represent the final state
of the folded protein, either normal or in some pathological
conformation, that is sent on in the biological process or else
subjected to some attempted corrective action. Corrections
may, for example, range from activation of ‘heat shock’ pro-
tein repair to more drastic clean-up attack.

The principal objects of formal interest are paths x trig-
gering pattern recognition-and-response. That is, given a
fixed initial state a0 = [S0,W0], examine all possible sub-
sequent paths x beginning with a0 and leading to the event
h(x) ∈ B1. Thus h(a0, ..., aj) ∈ B0 for all 0 < j < m, but
h(a0, ..., am) ∈ B1. B1 is thus the set of final possible states,
Sf∪{Spath} from figure 8 that includes both the final ‘physics’
state Sf and the set of possible pathological conformations.

Again, for each positive integer n, let N(n) be the num-
ber of high probability grammatical and syntactical paths of
length n which begin with some particular a0 and lead to the
condition h(x) ∈ B1. Call such paths ‘meaningful’, assuming,
not unreasonably, that N(n) will be considerably less than
the number of all possible paths of length n leading from a0
to the condition h(x) ∈ B1.

While the combining algorithm, the form of the nonlinear
oscillator, and the details of grammar and syntax, can all be
unspecified in this model, the critical assumption that per-
mits inference of the necessary conditions constrained by the
asymptotic limit theorems of information theory is that the
finite limit

H = limn→∞
log[N(n)

n
(23)
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both exists and is independent of the path x.

Call such a pattern recognition-and-response cognitive pro-
cess ergodic. Not all cognitive processes are likely to be er-
godic in this sense, implying that H, if it indeed exists at
all, is path dependent, although extension to nearly ergodic
processes seems possible (e.g., Wallace and Fullilove, 2007).

Invoking the spirit of the Shannon-McMillan Theorem, as
choice involves an inherent reduction in uncertainty, it is
then possible to define an adiabatically, piecewise station-
ary, ergodic (APSE) information source X associated with
stochastic variates Xj having joint and conditional probabili-
ties P (a0, ..., an) and P (an|a0, ..., an−1) such that appropriate
conditional and joint Shannon uncertainties satisfy the classic
relations of equation (8).

This information source is defined as dual to the underlying
ergodic cognitive process.

Adiabatic means that the source has been parameterized ac-
cording to some scheme, and that, over a certain range, along
a particular piece, as the parameters vary, the source remains
as close to stationary and ergodic as needed for information
theory’s central theorems to apply. Stationary means that
the system’s probabilities do not change in time, and ergodic,
roughly, that the cross sectional means approximate long-time
averages. Between pieces it is necessary to invoke various
kinds of phase transition formalisms, as described more fully
in e.g., Wallace (2005).

Structure is now subsumed within the sequential grammar
and syntax of the dual information source rather than within
the set of developmental paths of figure 8 and the added catal-
ysis arguments of Section 7.3.

This transformation in perspective carries heavy compu-
tational burdens, as well as providing deeper mathematical
insight, as cellular machineries, and phenomena of epigenetic
or environmental catalysis, are now included within a single
model.

The energy and development pictures of Sections 6 and 7
were ‘dual’ as simply different aspects of the convexity of
the rate distortion function with average distortion. This
model seems qualitatively different, as we are now invoking
a ‘black box’ information theory statistical model involving
grammar and syntax driven by an asymptotic limit theorem,
the Shannon-McMillan Theorem. The set of nonequilibrium
empirical generalized Onsager models derived from it, as in
Wallace and Wallace (2008, 2009), is based on the informa-
tion source uncertainty H as a free energy-analog (e.g., Wal-
lace and Wallace, 2009), thus having a significantly different
meaning from those above, and are more similar to regression
models fitted according to the Central Limit Theorem. In a
manner similar to the treatment in Wallace (2005), the sys-
tem becomes subject to ‘biological’ renormalizations at criti-
cal, highly punctuated, transitions.

The most evident assumption at this point is that there
may be more than a single cognitive protein folding process
in operation, e.g., that the action of the endoplasmic reticu-
lum, chaperones, and other corrective mechanisms, involves
separate cognitive processes {H1, ...,Hm} that interact via
some form of crosstalk. Following the direction of Wallace

and Wallace (2009) we invoke a complicated version of an in-
ternal system of empirical Onsager relations, assuming that
the different cognitive processes represented by these dual in-
formation sources become each others primary environments,
a broadly, if locally, coevolutionary phenomenon, in the sense
of Diekmann and Law (1996). We write

Hk = Hk(K1, ...,Ks, ...,Hj , ...)
(24)

where the Ks represent other relevant parameters and k 6= j.
In a generalization of the statistical model, we would expect
the dynamics of such a system to be driven by an empirical
recursive network of stochastic differential equations. Letting
the Ks and Hj all be represented as parameters Qj , with the
caveat that Hk not depend on itself, we are able to define an
entropy-analog based on the homology of information source
uncertainty with free energy as

Sk = Hk −
∑
iQi∂Hk/∂Qi,

(25)

whose gradients in the Q define local (broadly) chemical
forces. In close analogy with other nonequilibrium phenomena
we obtain a complicated recursive system of phenomenologi-
cal Onsager relation stochastic differential equations:

dQjt =
∑
i[Lj,i(t, ..., Qk, ...)dt+ σj,i(t, ..., Qk, ...)dB

i
t]

(26)

where, again, for notational simplicity, we have expressed
both parameters and information sources in terms of the same
symbols Qk. The dBit represent different kinds of ‘noise’ hav-
ing particular forms of quadratic variation that may represent
a projection of environmental factors under something like a
rate distortion manifold (Glazebrook and Wallace, 2009a, b).

There are several obvious possible dynamic patterns for the
system of equation (26):

1. Setting equation (26) equal to zero and solving for sta-
tionary points gives attractor states since the noise terms pre-
clude unstable equilibria.

2. This system may converge to limit cycle or pseudoran-
dom ‘strange attractor’ behaviors in which the system seems
to chase its tail endlessly within a limited venue – a traditional
coevolutionary ‘Red Queen’ (Wallace and Wallace, 2009).

3. What is converged to in both cases is not a simple state
or limit cycle of states. Rather it is an equivalence class, or
set of them, of highly dynamic information sources coupled by
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mutual interaction through crosstalk. Thus ‘stability’ in this
structure represents particular patterns of ongoing dynamics
rather than some identifiable static configuration.

Here we become deeply enmeshed in a system of highly
recursive phenomenological stochastic differential equations,
but in a dynamic rather than static manner. The objects
of this dynamical system are equivalence classes of informa-
tion sources, rather than simple ‘stationary states’ of a dy-
namical or reactive chemical system. Imposition of necessary
conditions from the asymptotic limit theorems of communi-
cation theory has beaten the mathematical thicket back one
full layer.

These results are essentially similar to those of Diekmann
and Law (1996), who invoke evolutionary game dynamics to
obtain a first order canonical equation for coevolutionary sys-
tems having the form

dsi/dt = Ki(s)∂Wi(s
′
i, s)|s′i=si .

(27)

The si, with i = 1, ..., N denote adaptive trait values in a
community comprising N species. The Wi(s

′
i, s) are measures

of fitness of individuals with trait values s′i in the environment
determined by the resident trait values s, and the Ki(s) are
non-negative coefficients, possibly distinct for each species,
that scale the rate of evolutionary change. Adaptive dynamics
of this kind have frequently been postulated, based either on
the notion of a hill-climbing process on an adaptive landscape
or some other sort of plausibility argument.

When this equation is set equal to zero, so there is no time
dependence, one obtains what are characterized as ‘evolution-
ary singularities’ or stationary points.

Equation (26) above is similar, although focused on infor-
mation sources representing protein folding regulation, allow-
ing elaborate patterns of phase transition punctuation in a
natural manner.

Champagnat et al. (2006), in fact, derive a higher or-
der canonical approximation extending equation (27) that is
closer to equation (26), i.e., a stochastic differential equation
describing coevolutionary dynamics. Champagnat et al. ex-
tend the argument, using a large deviations approach to ana-
lyze dynamical coevolutionary paths, not merely quasi-stable
singularities. They contend that in general, the issue of evolu-
tionary dynamics drifting away from trajectories predicted by
the canonical equation can be investigated by considering the
asymptotic of the probability of ‘rare events’ for the sample
paths of the diffusion.

By ‘rare events’ they mean diffusion paths drifting far away
from the canonical equation. The probability of such rare
events is governed by a large deviation principle: when a crit-
ical parameter (designated ε) goes to zero, the probability
that the sample path of the diffusion is close to a given rare
path φ decreases exponentially to 0 with rate I(φ), where the

‘rate function’ I can be expressed in terms of the parame-
ters of the diffusion. This allows study of long-time behavior
of the diffusion process when there are multiple attractive
singularities. Under proper conditions the most likely path
followed by the diffusion when exiting a basin of attraction is
the one minimizing the rate function I over all the appropri-
ate trajectories. The time needed to exit the basin is of the
order exp(H/ε) where H is a quasi-potential representing the
minimum of the rate function I over all possible trajectories.

An essential fact of large deviations theory is that the rate
function I which Champagnat et al. invoke can almost always
be expressed as a kind of entropy, that is, in the form I =
−
∑
j Pj log(Pj) for some probability distribution. This result

goes under a number of names; Sanov’s Theorem, Cramer’s
Theorem, the Gartner-Ellis Theorem, the Shannon-McMillan
Theorem, and so forth (e.g., Dembo and Zeitouni, 1998). A
detailed example is given in R. Wallace and R.G. Wallace
(2008).

These considerations lead very much in the direction of
equation (26), seen as subject to internally-driven large devi-
ations that are themselves described as information sources,
providing H-parameters that can trigger punctuated shifts
between quasi-stable modes, in addition to resilience transi-
tions driven by external catalytic events.

Indeed, the direct inclusion of large deviations regularities
within the context of the statistical model of equation (26)
suggests that other factors that can be characterized in terms
of information sources may be directly included within the
formalism. Section 6.1 of Wallace et al. (2009), for exam-
ple, explores the impact of culture, taken as a generalized
language, on the evolution of human pathogens.

The basic statistical model is illustrated by figure 9. Here,
two quasi-equilibria – one normal, one pathological – are char-
acterized by diffusive drift about their singularities in a two
dimensional system, but are coupled by a highly structured
large deviation connecting them. That large deviation excur-
sion is by means of an information source having a ‘grammar’
and a ‘syntax’, rather than representing a random event. Un-
derstanding that grammar and syntax would, in this model,
represent understading the etiology of a protein folding dis-
order.

9 Aging and protein folding: extend-
ing the time scale

9.1 Onsager models

The developmental perspective above, although focused on
the relatively short time frames of protein metabolism – in
the range from microseconds to minutes – is suggestive. The
principal ‘risk factor’ for a large array of protein folding dis-
orders is biological age – for humans, in the range of decades
– and a simplified version of the previous section may provide
a life-course perspective, that is, a developmental model over
a far longer timescale.

Equations (4-8) suggest that the rate distortion function,
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Figure 9: Adapted from Wallace (2010c). Dynamic behavior
of the system obtained by setting equation (26) to zero. Dif-
fusive drift about a ‘normal’ protein folding quasi-equilibrium
is interrupted by a highly structured large deviation leading
to a pathological quasi-equilibrium.

R(D), is itself a free energy measure, as it represents the
minimum channel capacity needed to assure average distor-
tion equal to or less than D. Let us now consider the principal
branch in figure 8, the set of paths from S0 to Sf , represent-
ing normal protein folding, taken as a communication channel
having a given rate distortion function. The arguments of the
previous section suggest that there will be an empirical On-
sager relation in the gradient of the rate distortion disorder,
an entropy-analog,

SR ≡ R(D)−DdR(D)/dD
(28)

such that, over a life-history timeline,

dD/dt = f(dSR/dD)
(29)

for some appropriate function f .
For a Gaussian channel, having R(D) = (1/2) log(σ2/D),

SR(D) = (1/2) log(σ2/D)+1/2, the simplest possible Onsager
relation becomes

dD/dt = −µdSRdD = µ/2D
(30)

with the explicit solution

D =
√
µt.

(31)

For an appropriate timescale – necessarily many orders of
magnitude longer than the time of folding itself – the average
distortion, representing the degree of misfolding, simply grows
as a diffusion process in time. This is the simplest possible ag-
ing model, in which µ represents the accumulated impacts of
epigenetic and broadly environmental effects including toxic
exposures, nutrition, the richness of social interaction, and so
on, over a lifetime.

A somewhat less simplistic model takes the Onsager rela-
tion as constrained by the availability of metabolic free energy,
M , that powers active chaperone processes,

dD/dt = −µdSR/dD − κM = µ/2D − κM
(32)

where κ represents the efficiency of use of metabolic energy.
This equation has the equilibrium solution (when dD/dt = 0)

Dequlib = µ/2κM.
(33)

Here aging is represented by a decay in the efficiency of
those chaperone processes, i.e., a slow decline in κ, that
may involve idiosyncratic dynamics, ranging from punctuated
phase transitions to autocatalytic runaway effects, since D, in
equation (9), acts as a temperature analog for a system able
to undergo symmetry breaking.

More complicated models of this nature can be found in
Wallace and Wallace (2010).

9.2 A metabolic model

Again, the ‘dual’ treatment focuses on R(D), assuming that
the probability density function for R(D) at a given intensive
index of embedding metabolic energy, M , can be described
using an approach like equations (9) and (12):
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Pr[R(D), κM ] = exp[−R(D)/κM ]∫ Dmax
Dmin

exp[−R(D)/κM ]dD

(34)

where κM represents the synergism between the intensity and
physiological availability of the embedding free energy. At a
fixed value of κM , again taking a life course timeframe as
opposed to a folding timeframe, the mean of R is

< R >=
∫Dmax
Dmin

R(D)Pr[R(D), κM ]dD.

(35)

For the Gaussian channel, R(D) = (1/2) log(σ2/D), 0 ≤
D ≤ σ2, we obtain directly

< R >= κM/(1 + 2κM).
(36)

A decline in κ can, again, trigger complicated phase change
dynamics for this system, as R itself, according to equation
(11), can act as a temperature analog in a symmetry break-
ing argument, causing sudden, punctuated, changes in the
underlying protein folding mechanisms.

Note that solving this equation for M in terms of R pro-
duces a ‘metabolic singularity’ much like that proposed in
figure 5.

Note also that taking the nonequilibrium Onsager relation

dD/dt = −µdSR/dD − µ
2σ2 exp[ 2κM

1+2κM ]
(37)

instead of dD/dt− µdSRdD − κM as just above, gives

Req = κM/(1 + 2κM),
(38)

so that the two approaches are indeed dual.

10 Concluding remarks

The fidelity of the translation between genome and final
protein conformation, characterized by an average distor-
tion measure, or its dual, the minimum channel capacity
needed to limit average distortion to a given level, serve as
evolutionarily-sculpted temperature analogs, in the sense of
Onuchic and Wolynes (2004), to determine the possible phase
transitions defining different degrees of protein symmetry.
The protein folding funnel follows a spontaneous symmetry
breaking mechanism with average distortion as the tempera-
ture analog, or, in the developmental picture, greater channel
capacity leads more directly to the final state Sf . These sym-
metries may perhaps be characterized by equivalence class
groupoids like those figure 1.

The various outcomes to in vivo protein folding – nor-
mal, corrected, eliminated, pathological – emerge, in the ex-
panded ‘Onsager equation’ statistical model based on a cog-
nitive paradigm for the process, as distinct ‘resilience’ modes
of a complicated internal cellular ecosystem, subject to punc-
tuated transitions driven, in some cases, by structured sig-
nals from embedding epigenetic and ecological information
sources. Increase in the rate of folding disorders with age
emerges through a long-time generalization of the Onsager
model.

In essence, this work extends Tlusty’s (2010a) elegant topo-
logical exploration of the evolution of the genetic code, sug-
gesting that rate distortion considerations are central to a
broad spectrum of molecular biological phenomena, although
different measures may come to the fore under different per-
spectives.

The in vivo cognitive paradigm introduced here opens a
unified biological vision of protein folding and its disorders
that may relate the etiology of a large set of common mis-
folding and aggregation diseases more clearly to both cellular
and epigenetic processes and environmental stressors (e.g.,
Schnabel, 2010). This would be, in the current reductionist
sandstorm (e.g., Kolata, 2010), no small thing. A cognitive
paradigm subsumes epigenetic and environmental catalysis of
protein conformation ‘development’ within a single grammar
and syntax, and allows both normal folding and its patholo-
gies to both be viewed as ‘natural’ outcomes, a perspective
more consistent with rates of folding and aggregation disor-
ders observed within an aging population.

Such a cognitive paradigm, as we have constructed it, will
likely serve as the foundation for a new class of statistical
tools – based on the asymptotic limit theorems of information
theory rather than on the Central Limit Theorem alone – that
should be useful in the analysis of data related to protein
misfolding and aggregation disorders.

We have, in the sense of Heine (2001) and Wallace (2007),
focused on the broad physiological context of protein folding
and its disorders, a context that includes epigenetic and life
history stress factors that can act as catalysts to induce highly
structured ‘large deviations’ that accelerate the deterioration
of protein folding regulation. And we have done this from the
ground up, as it were, providing a ‘basic biological’ model of
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what Qui et al. (2009) and others have observed. A narrow
focus on medical magic bullets (Kolata, 2010) is not conso-
nant with the broad scale of protein folding regulation and
its dysfunctions, and a successful search for effective inter-
ventions will necessarily involve far broader perspectives than
seem comfortable to the strongly culture-bound majority of
senior American researchers.
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13 Appendix: Groupoids

Following Weinstein (1996) closely, a groupoid, G, is defined
by a base set A upon which some mapping – a morphism – can
be defined. Note that not all possible pairs of states (aj , ak)
in the base set A can be connected by such a morphism.
Those that can define the groupoid element, a morphism
g = (aj , ak) having the natural inverse g−1 = (ak, aj). Given

such a pairing, it is possible to define ‘natural’ end-point maps
α(g) = aj , β(g) = ak from the set of morphisms G into A, and
a formally associative product in the groupoid g1g2 provided
α(g1g2) = α(g1), β(g1g2) = β(g2), and β(g1) = α(g2). Then
the product is defined, and associative, (g1g2)g3 = g1(g2g3).

In addition, there are natural left and right identity ele-
ments λg, ρg such that λgg = g = gρg (Weinstein, 1996).

An orbit of the groupoid G over A is an equivalence class
for the relation aj ∼ Gak if and only if there is a groupoid
element g with α(g) = aj and β(g) = ak. Following Cannas da
Silva and Weinstein (1999), we note that a groupoid is called
transitive if it has just one orbit. The transitive groupoids
are the building blocks of groupoids in that there is a natural
decomposition of the base space of a general groupoid into
orbits. Over each orbit there is a transitive groupoid, and
the disjoint union of these transitive groupoids is the original
groupoid. Conversely, the disjoint union of groupoids is itself
a groupoid.

The isotropy group of a ∈ X consists of those g in G with
α(g) = a = β(g). These groups prove fundamental to classi-
fying groupoids.

If G is any groupoid over A, the map (α, β) : G→ A×A is
a morphism from G to the pair groupoid of A. The image of
(α, β) is the orbit equivalence relation ∼ G, and the functional
kernel is the union of the isotropy groups. If f : X → Y is a
function, then the kernel of f , ker(f) = [(x1, x2) ∈ X ×X :
f(x1) = f(x2)] defines an equivalence relation.

Groupoids may have additional structure. As Weinstein
(1996) explains, a groupoid G is a topological groupoid over a
base space X if G and X are topological spaces and α, β and
multiplication are continuous maps. A criticism sometimes
applied to groupoid theory is that their classification up to
isomorphism is nothing other than the classification of equiv-
alence relations via the orbit equivalence relation and groups
via the isotropy groups. The imposition of a compatible topo-
logical structure produces a nontrivial interaction between the
two structures. Below we will introduce a metric structure on
manifolds of related information sources, producing such in-
teraction.

In essence, a groupoid is a category in which all morphisms
have an inverse, here defined in terms of connection to a base
point by a meaningful path of an information source dual to
a cognitive process.

As Weinstein (1996) points out, the morphism (α, β) sug-
gests another way of looking at groupoids. A groupoid over
A identifies not only which elements of A are equivalent to
one another (isomorphic), but it also parametizes the different
ways (isomorphisms) in which two elements can be equivalent,
i.e., all possible information sources dual to some cognitive
process. Given the information theoretic characterization of
cognition presented above, this produces a full modular cog-
nitive network in a highly natural manner.

Brown (1987) describes the fundamental structure as fol-
lows:

A groupoid should be thought of as a group with
many objects, or with many identities... A groupoid
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with one object is essentially just a group. So the no-
tion of groupoid is an extension of that of groups. It
gives an additional convenience, flexibility and range
of applications...

EXAMPLE 1. A disjoint union [of groups] G =
∪λGλ, λ ∈ Λ, is a groupoid: the product ab is defined
if and only if a, b belong to the same Gλ, and ab is
then just the product in the group Gλ. There is an
identity 1λ for each λ ∈ Λ. The maps α, β coincide
and map Gλ to λ, λ ∈ Λ.

EXAMPLE 2. An equivalence relation R on [a
set] X becomes a groupoid with α, β : R → X the
two projections, and product (x, y)(y, z) = (x, z)
whenever (x, y), (y, z) ∈ R. There is an identity,
namely (x, x), for each x ∈ X...

Weinstein (1996) makes the following fundamental point:

Almost every interesting equivalence relation on
a space B arises in a natural way as the orbit equiv-
alence relation of some groupoid G over B. Instead
of dealing directly with the orbit space B/G as an
object in the category Smap of sets and mappings,
one should consider instead the groupoid G itself as
an object in the category Ghtp of groupoids and ho-
motopy classes of morphisms.

The groupoid approach has become quite popular in the
study of networks of coupled dynamical systems which can
be defined by differential equation models, (e.g., Golubitsky
and Stewart 2006).
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