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Probing the Superfluid to Mott Insulator Transition at the Single Atom Level

Waseem S. Bakr, Amy Peng, M. Eric Tai, Ruichao Ma, Jonathan Simon,

Jonathon I. Gillen, Simon Fölling,∗ Lode Pollet, and Markus Greiner†

Department of Physics, Harvard University, Cambridge, Massachusetts, 02138, USA
(Dated: June 7, 2010)

Quantum gases in optical lattices offer an opportunity to experimentally realize and explore
condensed matter models in a clean, tunable system. We investigate the Bose-Hubbard model
on a microscopic level using single atom–single lattice site imaging; our technique enables space-
and time-resolved characterization of the number statistics across the superfluid–Mott insulator
quantum phase transition. Site-resolved probing of fluctuations provides us with a sensitive local
thermometer, allows us to identify microscopic heterostructures of low entropy Mott domains, and
enables us to measure local quantum dynamics, revealing surprisingly fast transition timescales.
Our results may serve as a benchmark for theoretical studies of quantum dynamics, and may guide
the engineering of low entropy phases in a lattice.

Microscopic measurements can reveal properties of
complex systems that are not accessible through statisti-
cal ensemble measurements. For example, scanning tun-
neling microscopy has allowed physicists to identify the
importance of nanoscale spatial inhomogeneities in high
temperature superconductivity [1], and single molecule
microscopy [2] has enabled studies of local dynamics in
chemical reactions revealing e.g. the importance of multi-
ple reaction pathways [3]. While previous ultracold quan-
tum gas experiments have focused primarily on statistical
ensemble measurements, the recently introduced single
atom-single lattice site imaging technique in a Quantum
Gas Microscope (QGM) [4] opens the door for probing
and controlling quantum gases on a microscopic level.
Here we present a microscopic study of an atom-lattice
system that realizes the bosonic Hubbard model and ex-
hibits a quantum phase transition from a superfluid to
a Mott insulator [5–7]. In the weakly interacting super-
fluid regime, the many-body wavefunction factorizes into
a product of states with well-defined phase on each lattice
site, known as coherent states, with Poissonian number
fluctuations. As the strength of the interaction increases,
the number distribution is narrowed, resulting in a fixed
atom number state on each site deep in the Mott insula-
tor regime. We study this change in the number statistics
across the transition; these microscopic studies are com-
plementary to previous experiments that have focused
on measuring ensemble properties such as long range
phase coherence, excitation spectra or compressibility [7–
9]. Local properties such as onsite number statistics [10]
were accessible only indirectly [8, 11, 12] and averaged
over several shells of superfluid and Mott insulating do-
mains in the inhomogeneous system, complicating quan-
titative interpretation. More recently, the shell structure
was imaged through tomographic [13], spectroscopic [14],
and in-situ imaging techniques, coarse-grained over sev-
eral lattice sites [15].

We start with a two-dimensional 87Rb Bose-Einstein
condensate of a few thousand atoms confined in a sin-
gle well of a standing wave, with a harmonic oscillator
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FIG. 1. Single-site imaging of atom number fluctuations
across the superfluid-Mott insulator transition. (A – D) Im-
ages within each column are taken at the same final 2D lattice
depth of (A) 6Er, (B) 10Er, (C) 12Er and (D) 16Er. Top
row: in-situ fluorescence images from a region of 10 × 8 lat-
tice sites within the n = 1 Mott shell that forms in a deep
lattice. In the superfluid regime (A,B), sites can be occu-
pied with odd or even atom numbers, which appear as full or
empty sites respectively in the images. In the Mott insulator,
occupancies other than 1 are highly suppressed (D). Middle
row: results of the atom detection algorithm [16] for images
in the top row. A full (empty) circle indicates the presence
(absence) of an atom on a site. Bottom row: time of flight
fluorescence images after 8ms expansion of the cloud in the
2D plane as a result of non-adiabatically turning off the lat-
tice and the transverse confinement (averaged over 5 shots
and binned over 5 × 5 lattice sites).

length of 130nm[16]. The condensate resides 9µm from
an in-vacuum lens that is part of an imaging system with
a resolution of ∼ 600nm. This high resolution system is
used to project a square lattice potential onto the pan-
cake cloud with a periodicity of a = 680nm, as described
in previous work [4]. The lattice depth is ramped ex-
ponentially with a time constant of 81ms up to a max-
imum depth of 16Er, where Er is the recoil energy of
the effective lattice wavelength given by h2/8ma2, with
m being the mass of 87Rb and Planck’s constant h. In
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a homogeneous system in two dimensions, the transition
to a Mott insulator with one atom per site occurs at a
ratio of interaction energy to tunneling of U/J = 16.7
[17–19], corresponding to a lattice depth of 12.2Er. Dur-
ing this ramp, the initial transverse confinement of 9.5Hz
is increased such that the cloud size remains approxi-
mately constant. After preparing the many-body state,
we image the atoms by increasing the lattice depth sev-
eral hundred-fold, and then illuminate the atoms with an
optical molasses that serves to localize the atoms while
fluorescence photons are collected by the high resolution
optics. As a result of the imaging process, the many-
body wavefunction is projected onto number states on
each lattice site. In addition, light-assisted collisions im-
mediately eject atoms in pairs from each lattice site, leav-
ing behind an atom on a site only if its initial occupation
was odd [20]. Remaining atoms scatter several thousand
photons during the exposure time and can be detected
with high fidelity. By preparing the sample repeatedly
under the same conditions, we deduce the probability
podd of having an odd number of atoms on a site before
the measurement.

For a coherent state on a lattice site with mean atom
number λ, podd is given by 1/2(1 − e−2λ) < 1/2. In a
Mott-insulating region in the zero temperature and zero
tunneling limit, podd is 1 (0) for shells with an odd (even)
atom number per site. Fig. 1 shows fluorescence images
in a region of the cloud as the final depth of the lattice
is increased. The initial superfluid density is chosen to
obtain an insulator with two shells on the Mott side of
the transition, and the region shown is in the outer shell
containing one atom per site. For high filling fractions,
the lattice sites in the images are barely resolved, but the
known geometry of the lattice and imaging system point
spread function obtained from images at sparser fillings
allow reliable extraction of site occupations [16].

We determine podd for each site using 24 images at
each final lattice depth. The transverse confining poten-
tial varies slowly compared to the lattice spacing and the
system is to good approximation locally homogeneous.
We make use of this to improve the error in our determi-
nation of podd , by averaging over a group of lattice sites,
in this case 51 (30) sites for regions in the first (second)
shell (Fig. 2). In the n = 1 shell, we detect an atom on
a site with probability 94.9 ± 0.7% at a lattice depth of
16Er. We measure the lifetime of the gas in the imaging
lattice and determine that 1.75 ± 0.02% of the occupied
sites are detected as unoccupied due to atoms lost during
the imaging exposure time of 1s because of background
gas collisions. We correct for this effect in the given av-
erage occupation numbers and errorbars.

Measuring the defect density in the Mott insulator
provides sensitive local thermometry deep in the Mott
regime. Thermometry in the Mott state has been a
long-standing experimental challenge [21, 22] and has
acquired particular significance as experiments approach
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FIG. 2. Measured value of podd vs. the interaction to tun-
neling ratio (U/J). Data sets, with statistical error bars, are
shown for regions that form part of the n = 1 (squares) and
n = 2 (circles) Mott shells in a deep lattice. The lines are
based on finite temperature Monte-Carlo simulations in a ho-
mogeneous system at constant temperature to interaction ra-
tio (T/U) of 0.20 (dotted red), 0.15 (solid black) and 0.05
(dashed blue). The axis on the right is the corresponding
odd-even variance given by podd (1 − podd ).

the regime of quantum magnetism [23–25] where the tem-
perature scale should be on the order of the superex-
change interaction energy. We directly image excitations
of the n = 1 Mott insulator, holes and doublons, as
they both appear as missing atoms in the images. Sim-
ilarly, for Mott insulators with higher fillings n, sites
with excitations (n + 1, n − 1) can be detected through
their opposite parity signal. For finite tunneling rate J
much smaller than the interaction energy U , the admix-
ture fraction of coherent hole-doublon pairs excitations
is ∼ (J/U)2, whereas any other excitations are due to
incoherent thermal fluctuations and are suppressed by a
Boltzmann factor e−U/T .

The theory curves presented in Fig. 2 are the pre-
dicted podd in the two shells for different values of T/U .
The curves are obtained using a quantum Monte-Carlo
“worm” algorithm [26, 27], and the average temperature
extracted using the data points at the three highest U/J
ratios is T/U ∼ 0.16 ± 0.03. At the transition point
for n = 1, this corresponds to a temperature of 1.8nK.
Assuming this value of T/U to be the overall temper-
ature, the thin layer between the Mott shells should be
superfluid, and the transition to a normal gas is expected
around a critical temperature of zJ = 2.8nK, where z is
the number of nearest neighbors in the lattice [28].

Next we study the global structure of the Mott insu-
lator. The high resolution images provide an atom-by-
atom picture of the concentric shell structure, including
the transition layers in between the insulating shells. In
Fig. 3A to D, the formation of the various shells, up to
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FIG. 3. Single-site imaging of the shell structure in a Mott
insulator. (A – D) The images show podd on each site de-
termined by averaging 20 analyzed fluorescence images. The
lattice depth is 22Er and the transverse confinement is 45Hz.
As the atom number is increased from (A) to (D), the num-
ber of shells in the insulator increases from one to four. The
value of podd for odd (even) numbered shells is close to one
(zero). The atom numbers, determined by in-situ imaging of
clouds expanded in the plane, are (A), 120±10, (B), 460±20,
(C), 870 ± 40 and (D), 1350 ± 70. (E–F) Long wavelength
disorder can be corrected by projecting an appropriate com-
pensation light pattern onto the atoms, resulting in nearly
circular shells. (E) shows podd (average of 20 analyzed im-
ages) and (F) is a single shot raw image (arbitrary units).

the fourth, is shown as the atom number in the trap is in-
creased. Slowly varying optical potential disorder causes
deviation from circular symmetry in the shells. The con-
tour lines of the potential are directly seen in the images
in Fig. 3. In Fig. 3E and F, we have compensated this
disorder by projecting a light pattern generated using a
digital micromirror device through the objective[16], re-
sulting in a nearly circular shell structure.

In a second series of experiments, we use on-site num-
ber statistics to probe the adiabaticity timescale for the
transition, focusing on the local dynamics responsible for
narrowing the number distribution. We start by increas-
ing the lattice depth adiabatically to 11Er, still in the
superfluid regime, using the same ramp described previ-
ously. Next the depth is ramped linearly to 16Er where,
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FIG. 4. Dynamics of on-site number statistics for a fast ramp
from the superfluid regime to the Mott regime. podd at the
end of the ramp vs. ramp time is shown in the n = 1 (squares)
and n = 2 (circles) shells, averaged over 19 datasets with
statistical errorbars. Red lines are exponential fits. Inset:
the two-part ramp used in this experiment. The first part is
a fixed adiabatic exponential ramp (t = 81ms) and the second
is a linear ramp starting at 11Er and ending at 16Er. The
duration of the second ramp is varied in the experiment.

for an adiabatic ramp, a Mott insulator should form. The
ramp time is varied from 0.2ms to 20ms, and podd is mea-
sured in the first and second shells as before (Fig. 4); we
find that the data fits well to exponential curves that
asymptote to the value of podd obtained in the adiabatic
case. The fitted time constant in the first (second) shell
is 3.5 ± 0.5ms (3.9 ± 1.3ms).

Compared to the critical value of the tunneling time
h/Jc = 68ms for the first shell, the observed dynamics are
counter-intuitively fast. This can be understood using a
simple picture of two atoms in a double well. In this sys-
tem, as the tunneling is varied, the minimal gap between
the ground state and the first excited state is U , which
sets the adiabaticity timescale. It is an open question
whether this argument can be generalized to a lattice. In
an infinite system, the appearance of Goldstone modes
in the superfluid regime leads to a vanishing gap at the
transition point, but the density of states is low for en-
ergies much less than U [29]. In fact, the 1/e timescale
observed experimentally is comparable to h/Uc = 4.1ms,
where Uc is the critical interaction energy for an n = 1
insulator.

Although the local number statistics change on a fast
timescale of h/U , entropy redistribution in the inhomoge-
neous potential should occur on a much slower timescale
of h/J . Because superfluid and normal domains have a
larger specific heat capacity than Mott domains, in an in-
homogeneous system, entropy is expelled from the Mott
domains and accumulates in the transition regions after
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FIG. 5. Low entropy Mott domains observed in a steep poten-
tial gradient. (A) Single shot in-situ image of a Mott insulator
in a 16Er deep lattice with 25Hz transverse confinement. The
ring is an n = 1 insulator enclosing an n = 2 region. (B) Av-
erage podd over 24 images. Each pixel corresponds to a single
lattice site. The red rectangle encloses a region containing a
Mott insulator with n = 1, a few lattice sites wide. (C) Col-
umn average of podd over the sites within the red rectangle in
(B), with statistical errorbars.

crossing the phase transition if the system is in ther-
mal equilibrium [30]. It was found, however, that in
bulk Mott regions the insulating behavior makes entropy
transport difficult, and global thermalization is slow on
experimental timescales [31]. In our system, optical po-
tential corrugations produce sizable potential gradients
in some regions, leading to a heterostructure of almost
one-dimensional Mott domains, about 1-2 lattice sites
thick, surrounded by transition layers (Fig. 5). We find
remarkably low defect densities and sharp transitions be-
tween superfluid and Mott states in these regions. The
measured defect probability per site in the domain shown
is 0.8±0.8%. In these microscopic domains, each site of a
Mott domain is in contact with a superfluid region. Such
a configuration is likely to lead to fast thermalization,
which would explain the low defect density we observe.
This suggests that the lowest entropies in a Mott insula-
tor might be obtained under conditions where the chem-
ical potential is engineered so as to obtain alternating
stripes (2D) or layers (3D) of insulating and superfluid
regions [19, 32].

In addition to the number statistics studied in this
work, single-site imaging could be applied to study spa-
tial correlations in strongly correlated quantum gases[33],
and to directly measure entanglement in a quantum in-
formation context. The low defect Mott states we de-
tect would provide an ideal starting point for quantum
magnetism experiments; if the low entropy in the Mott
domains can be carried over to spin models, it should
be possible to realize magnetically ordered states such as
antiferromagnets, which could be directly detected with
single-site imaging.

Materials and Methods

Preparation of the two-dimensional condensate

A nearly pure Bose-Einstein condensate of 5 × 104
87Rb atoms is prepared in the F = 1,mf = −1
state in a magnetic trap by radiofrequency (rf) evapo-
ration. The Thomas-Fermi radii of the condensate are
(3.1,3.1,27)µm. The condensate is transferred into a sin-
gle well of a 1D standing wave with periodicity 9.2µm
created by a beam reflected from the flat glass surface of
an in-vacuum hemispheric lens. The light for this stand-
ing wave is centered at 755nm, has a 3nm spectral width
and is incident at an angle of 2.3◦ relative to the sur-
face. The condensate is loaded into the first nodal plane
from the surface. The harmonic oscillator width of the
condensate at full lattice depth along the direction per-
pendicular to the surface is 360nm. By increasing the
bias field the confinement in the 2D plane is relaxed, re-
sulting in an elliptic cloud with Thomas-Fermi radii (18,
36)µm in the 2D plane.

In order to obtain a suitable initial density for creat-
ing a Mott insulator, the atom number in the 2D plane
must be reduced to a few thousand atoms in a repro-
ducible way. For this, a red-detuned (840nm) beam with
an 8µm waist is focused through the objective onto the
center of the pancake and creates a “dimple” potential in
the magnetically confined cloud. The magnetic confine-
ment is then removed and the number of atoms remain-
ing in the dimple trap is proportional to its depth, with
a residual RMS fluctuation of 6%. A second collinear
840nm beam with a 27µm waist is then turned on, and
the dimple is adiabatically ramped down to expand the
cloud into the larger beam. The transverse confinement
of the condensate provided by this beam is 9.5Hz. The
840nm light source used for creating these beams has a
spectral width of 12nm. The short coherence length elim-
inates unwanted interferences which would corrugate the
confining potential.

The interaction between the atoms is then further en-
hanced by increasing the axial trapping frequency by a
factor of eight. This is achieved by turning on a second
1D standing wave at an angle of 14◦ to the glass surface,
with a lattice spacing of 1.54µm. The maximum axial
trapping frequency is 7.1kHz. The condensate resides in
the sixth well from the surface. At this point, the 9.2µm
standing wave is ramped down. The surface provides a
reproducible way to overlap the nodes of these two stand-
ing waves. In addition, the proximity of the atoms to the
glass surface enhances the resolution of the imaging sys-
tem by the index of refraction of glass, resulting in a
measured point spread function (PSF) with full width at
half maximum of ∼ 600nm.
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Preparation and imaging of the Mott insulator

To bring the cloud into a strongly-correlated regime,
a two-dimensional square lattice with 680nm periodicity
is created in the plane by projecting a mask through the
objective onto the atoms, as described in [4]. The lattice
light, like the light used for producing the 1D standing
waves, is centered at 755nm and has a spectral width of
3nm to reduce disorder in the potential.

The lattice depth is increased linearly to 0.4Er in 50ms,
and from there ramped exponentially to its final value
(16Er for most experiments) with a time constant of
81ms. During the lattice ramp, the transverse confine-
ment is increased so as to keep the size of the cloud con-
stant, compensating for the increasing inter-atomic inter-
action and deconfinement due to the blue lattice. This al-
lows for faster ramps while maintaining adiabaticity, be-
cause the density redistribution during the lattice ramp is
minimized. Lattice depths are calibrated to 5% accuracy
using Kapitza-Dirac scattering, and the tunneling matrix
element and interaction energy at different depths are
obtained from a band structure calculation. The domi-
nating loss process in the lattice is three-body collisions
in Mott shells with n > 2, as observed in other experi-
ments [31]. The rate for such losses is γn(n− 1)(n− 2),
with γ = 2 × 10−3Hz for a lattice depth of 22Er [34].
Due to the relatively large lattice spacings, such losses
are negligible in our lattice even for the fourth Mott shell
(< 1%).

For imaging the atoms, the same procedure as de-
scribed in [4] is used. Briefly, the lattice depth is in-
creased over three hundred-fold by changing the light
source illuminating the mask to a monochromatic source
detuned 50GHz to the blue of the D1 line. The frozen
atom distribution, now projected onto number states in
each well, is illuminated with a cooling molasses on the
D2 line. Within the first 100µs, light assisted collisions
eject atoms in pairs, leaving behind an atom only if the
initial atom number on the site was odd. The remaining
atoms are imaged in fluorescence by collecting the scat-
tered molasses photons during a 1s exposure, resulting in
∼ 2, 000 photons registered by the camera for each atom.

Atom numbers are measured by switching off the trans-
verse confinement and letting the cloud expand in the 2D
plane for 5ms before turning on the deep lattice used for
fluorescence imaging. This ensures that the probability
of two atoms being on the same site is negligible, avoiding
photo-assisted losses for accurate atom number determi-
nation.

Image analysis

A sparse atom cloud image is used to extract the PSF.
The geometry of the lattice is then extracted from such
an image. First, the lattice spacing is obtained and then

the region of interest is fitted in blocks of 10 by 10 lat-
tice sites. The block centers are allowed to vary to ex-
tract any distortions of the lattice pattern due to imaging
aberration over the field of view. A histogram of atom
brightness is used to set a threshold that identifies the
presence or absence of an atom on a site. The informa-
tion about the PSF, lattice geometry and threshold ob-
tained from these sparse images is then used to fit other
images with much higher lattice filling, only allowing for
a single global offset in the lattice phase determined by
fitting atoms at the edges of the cloud.

During imaging, a small fraction of the atoms are lost
due to background gas collisions. If this occurs before
they scatter enough photons to surpass the detection
threshold, they are not counted. The mean fraction of
such uncounted atoms is 1.75 ± 0.02%, determined from
15 movies (30 frames, 0.5s exposure per frame) of the
atom population decay in the near-resonant lattice.

Correction of disorder in optical potentials

Scatterers on optical surfaces produce ring-like pat-
terns on the optical potentials used to trap the atoms.The
spatial pattern of the disorder is static in time and
for a lattice depth of 22Er, has an RMS gradient of
(0.13± 0.01)U per lattice site and a characteristic length
scale of 10 lattice sites. The contour lines of the potential
are directly extracted from the shell structure boundaries
in the Mott regime. Different contour lines are obtained
by varying the atom number. The ability to observe these
contour lines enables us to correct the potential by pro-
jecting an appropriate light pattern through the objec-
tive. This pattern is produced by illuminating a digital
micromirror device (DLP Discovery 4100, Texas Instru-
ments) with incoherent light of spectral width 1nm, cen-
tered at 840nm. A block of 14 × 14 mirrors maps onto a
single lattice site in the plane of the atoms, allowing the
creation of grayscale patterns, with the aperture of the
objective providing Fourier filtering. An error diffusion
algorithm [35] is used to convert the desired grayscale
image to a binary pattern. Potential corrections of ei-
ther sign are possible by operating the micromirror de-
vice with a bias light level produced by flattening the
profile of the Gaussian illumination beam.

We would like to thank G. Jotzu, E. Demler, D. Pekker,
B. Wunsch, T. Kitagawa, E. Manousakis, and M. D.
Lukin for stimulating discussions. This work was sup-
ported by a grant from the Army Research Office with
funding from the DARPA OLE program, grants from
AFOSR MURI, NSF, the Swiss National Science Founda-
tion, and an Alfred P. Sloan Fellowship to M.G. The sim-
ulations were run on the Brutus cluster at ETH Zurich.
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