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Quantum correlation in disordered spin systems:

entanglement and applications to magnetic sensing

P. Cappellaro and M. D. Lukin
ITAMP – Harvard-Smithsonian Center for Astrophysics and Physics Department,

Harvard University, Cambridge, MA 02138, USA

We propose a strategy to generate a many-body entangled state in a collection of randomly
placed, dipolarly coupled electronic spins in the solid state. By using coherent control to restrict the
evolution into a suitable collective subspace, this method enables the preparation of GHZ-like and
spin-squeezed states even for randomly positioned spins, while in addition protecting the entangled
states against decoherence. We consider the application of this squeezing method to improve the
sensitivity of nanoscale magnetometer based on Nitrogen-Vacancy spin qubits in diamond.

I. INTRODUCTION

Entangled states have attracted much interest as in-
triguing manifestation of non-classical phenomena in
quantum systems. The creation of a many-body entan-
gled state is a critical requirement in many quantum in-
formation tasks, such as quantum computation and com-
munication, as well as in measurement devices. Here we
outline a novel approach to obtain many-body entangled
states in a solid-state system of dipolarly coupled elec-
tronic spins. In order to achieve the generation of entan-
glement in the presence of disordered couplings we take
advantage of the fine experimental control reached by
magnetic resonance to constrain the evolution to a suit-
able collective subspace [1]. Furthermore, this restriction
to a collective subspace protects the entangled state from
decoherence, thus bringing into experimental reach a par-
ticular class of entangled states (the spin squeezed states)
that are of great practical interest. Spin squeezing in
solid-state systems could have an immediate application
to improve the sensitivity of recently demonstrated spin-
based magnetometers [2, 3, 4]. We show that controlling
the naturally-occurring interactions to obtain a desired
entangled state could yield a high sensitivity magnetome-
ter in a nano-sized system for high-spatial resolution.

The paper is organized as follows. We first describe
in section II entanglement generation in ideal and disor-
dered systems, outlining the control techniques required
to achieve the projection of the evolution to the desired
subspace and its regimes of validity for different geom-
etry distributions of the spins. In section III we then
apply the method to spin squeezing and we show in sec-
tion IV how the projection is also capable of reducing
the noise effects, thus making squeezing advantageous
for metrology. Finally in section V we present a possible
implementation of the squeezing scheme. We focus our
analysis on a system based on spin defects in diamond
(Nitrogen-Vacancy center, NV [5, 6, 7], Fig. 1 a). The
NV electronic spins can be optically polarized and de-
tected, and exhibit excellent coherence properties even
at room temperature, allowing for a remarkable combi-
nation of sensitivity to external magnetic fields and high
spatial resolution. We describe the operating regime of a
spin squeezed NV magnetometer and the achievable sen-

sitivity improvement. We emphasize that the described
techniques are applicable to other spin systems, such as
other paramagnetic impurities or trapped ions [1].

II. ENTANGLEMENT GENERATION

τ(1+ε) SzSz         τ SySy             τ SxSx

-x y(b)(a)

FIG. 1: (a) System model: crystal with randomly placed elec-
tronic spins. (b) Control sequence: The Ising interaction is
rotated along three axis to yield an isotropic interaction; ad-
justing the time delays, a small perturbation along the z di-
rection is retained, to obtain the 1-axis squeezing operator.

A. Entanglement in ideal and disordered systems

We consider a solid-state system of N spin particles
with two relevant internal states (0,1), each described
by Pauli matrix operators σk

α. Interactions among the
spins can be used to generate entanglement. In particu-
lar, evolution of an initially uncorrelated state under the
so-called one-axis squeezing Hamiltonian H1a

sqz = dJ2
z is

known to create the multi-spin GHZ state (here we in-
troduce the collective operator Jα =

∑

k S
k
α, with Sk

α =
1
2σ

k
α). Starting from the fully polarized state along the x-

direction |N/2, N/2〉x =
∑

mz,µCmz ,µ|N/2,mz, µ〉z, the

different mz-components acquire m2
z dependent phases

that lead to collapse and revivals of the collective polar-
ization Jx. At a time t = π/(2d) the system is found in
the collective GHZ state, |ψGHZ〉x = 1√

2
(|N/2, N/2〉x +

(−i)N+1|N/2,−N/2〉x).
In most physical systems, however, the interactions

among spins are not of the type described by the ideal
entangling operator. Quite generally the Hamiltonian
can be written as Hzz =

∑

lj dljSz,lSz,j , where the

http://arxiv.org/abs/0904.2642v1
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FIG. 2: (Color online) Decoupling sequence. The narrow bars are π/2 pulses around different axis in the ms = ±1 manifold,
while the wide bars are π-pulses. The overall pulse sequence comprises 4 MREV8 sequences embedded in a spin echo sequence,
with 34 pulses and a cycle time of 48τ . By varying the length of the time delays and the pulse phases, we obtain the squeezing
Hamiltonians. The modified intervals are indicated by τ+ and τ

−
. For the one-axis squeezing (a) we obtain the first order

Hamiltonian H = (HH + ǫHzz)/3 (neglecting terms ∝ ǫ sin ν2) and the linear Hamiltonian Sz →
√

2(Sz cos ν + Sy sin ν)/3. For

the 2-axes case (b) the first order Hamiltonian is H = (HH + ǫHDQ)/3 and the effective field is (Sy −Sx)/3. H̃ is the direction

of the internal Hamiltonian in the interaction frame. Bz is the AC field to be measured.

couplings dlj are effectively limited to a finite num-
ber of neighbors. If it were possible to precisely en-
gineer the strength of the couplings or the graph con-
nectivity of the spins, it would still be possible to ob-
tain a maximally entangled state such as the GHZ
state [8, 9]. For example, even in the limit of nearest
neighbor couplings only, a particular choice of couplings
(dk,k+1 = 2d0

√

k(N − k)/N , with d0 the maximum cou-
pling strength) in the presence of a spatially-varying mag-

netic field HX =
∑

k

√

(2k − 1)(2N − 2k + 1)Sk
x creates

the N -spin GHZ state in a time d0t = Nπ/8.
In naturally occurring spin systems, where the cou-

plings are usually given by the dipolar interaction scaling
as 1/r3 with distance, it is difficult to engineer the cou-
plings in the desired way and one has to deal with a disor-
dered set of coupling strengths. We assume here an Ising

interaction, Hzz, with dlj =
µ0g2µ2

D

4π~

(3r̂lj.ẑlr̂lj .ẑj−1)

r3
lj

. This

is the case for an ensemble of NV electronic spins, where
the zero-field splitting Hamiltonian ∆S2

z is the largest
quantizing energy scale (here we assume to operate in
the ±1 manifold only, that constitutes an effective spin-
1
2 system). This Hamiltonian will still generate entangled
states, but the amount and type of entanglement may not
be as desired.

B. Creating a global Hamiltonian

To obtain the desired high entangled state, we propose
to create an effective collective Hamiltonian starting from
a local one [1]. Notice that the projection of the Hzz

Hamiltonian onto the J = N/2 subspace is given by:

PN/2[Hzz] =
D

(N − 1)
(J2

z −N11), (1)

with D = 1
N

∑

l,j dlj . This operator can create the GHZ
state, at the expenses of an increased evolution time. The
restriction to the maximum angular momentum manifold
can be achieved if Hzz is only a small perturbation to

a stronger Hamiltonian that conserves the total angular
momentum. In the following, we will show that with
collective coherent control techniques it is possible to let
the system evolve under the interaction:

H1a
H = ǫHzz +HH = ǫ

∑

lj

dljSz,lSz,j +
∑

lj

dlj
~Sl · ~Sj (2)

If ǫ ≪ 1, the Ising Hamiltonian is just a perturbation
to the isotropic Heisenberg Hamiltonian HH , and to first
order approximation, we only retain its projection on the
J = N/2 manifold. Notice however that the squeezing
Hamiltonian strength is now ǫ D

N−1 , so that it is necessary
to apply the squeezing interaction for a time increasing
with the number of spins: t ≈ π

2
N
ǫD .

To obtain the desired Hamiltonian H1a
H , we propose to

apply control techniques based on fast modulation of the
internal Hamiltonian by cyclic sequences of pulses. These
techniques have been used in NMR to obtain a wide range
of desired interactions (see Appendix A). By cyclically
rotating the Ising interaction among three perpendicular
axis, it becomes on average isotropic (Fig. 1-b) . More
complex modulation sequences (such as Mrev8 [10, 11]),
achieve the averaging to higher order in ‖H t‖. By a care-
ful adjustment of the delays between pulses, it is possible
to retain part of the Hzz Hamiltonian, so that the effec-
tive Hamiltonian is H = 1

3H1a
H (see Fig. 2.a).

The validity of the approximation taken in considering
only the projection of Hzz onto the ground state J =
N/2 manifold relies on the existence of an energy gap
between the ground state manifold and the J < N/2
manifolds, induced by the isotropic interaction HH . The
magnitude (and existence) of this gap depends on the
geometry and spin-spin couplings of the system. For a
1D system with constant nearest-neighbor couplings d0

the energy gap Eg decreases as d0/N
2, thus we must take

ǫ ∝ 1/N2 to always remain in the regime of validity of
the approximation: the time required to achieve the GHZ
state increases rapidly with the number of spins. The
nearest-neighbor, 1D model is the worst case scenario;
more generally, the time required will be a function of

2



the dependence of Eg and D on N . For example, for a
dipolarly coupled regular 1D system, D = ζ(3)d0 and the
gap scales as Eg ∼ (d0/N

2) logN , with d0 the coupling
at the minimum distance r0.

Better scaling can be achieved in a quasi-2D system,
consisting of layers of spin impurities. Already a nearest-
neighbor square lattice will have Eg ∼ d0/N (it is in

general Eg ∼ N−2/dim, where dim is the system dimen-
sionality), while for couplings decaying with distance as

r−3, D ≈ 7d0 and the gap is Eg ∼ d0/
√
N . In this case,

the evolution time must increase with the spin number
as t ∼ N3/2. A similar scaling is predicted if the spins
have random spatial locations with density ns. The gap
can be estimated from the minimum coupling strength
Eg ∼ dmin

N
2 with dmin ∼ (ns

N )3/dim (where we assumed
all the couplings to be positive). Thus we obtain again

the same scaling of the gap energy Eg ∼ 1/
√
N in 2D

and a constant gap in 3D. This last result, however,
must be taken with caution, since the angular depen-
dence of the dipolar couplings in 3D unavoidably gives
rise to negative couplings; in that case not only the gap
could even disappear, but the average coupling strength
D is zero for an isotropic spatial distribution. For finite
size systems, however, because of the large variance of
the couplings, a better estimate for D is given not by
the average but by the median of the dipolar coupling:
D ≈ median

[

(3 cosϑ2 − 1)d0r
3
0/r

3
]

≈ 2π
3 d0r

3
0

ns

N+2 , and
we expect to obtain a non-zero gap with high probabil-
ity. Still, the times required to obtain the GHZ state
increase rapidly with the spin number in all the possible
configurations presented. We thus turn our attention to
a different class of entangled states, whose preparation
time under ideal conditions decreases with the number
of spins. A set of states that possess this property are
the so-called spin squeezed states, which are of particular
interest in metrology tasks.

III. SPIN SQUEEZING

Spin squeezed states are many-body states showing
pairwise entanglement [12] and reduced uncertainty in
the collective spin moment in one direction [13]. This re-
duction in the measurement uncertainty, achieved with-
out violating the minimum uncertainty principle by
a redistribution of the quantum fluctuations between
non-commuting variables, can be exploited to perform
metrology beyond the Heisenberg limit. One-axis twist-
ing (H1a

sqz) and two-axis twisting [H̃2a
sqz = i d(J2

+ −
J2
−)/2] Hamiltonians have been proposed to achieve this

goal [13].
The degree of squeezing of a spin ensemble is evalu-

ated by the squeezing parameter ξ. Several definitions
have been proposed, depending on the context [14]. If
the focus is simply to describe a non-uniform distribution
of the quantum fluctuations, the appropriate quantity is
ξh = ∆Ji/

√

Jj/2, where ∆Jα is the uncertainty in the
α ∈ {x, y, z} direction of the collective angular momen-

tum and Jβ its expectation value in a different direction.
When spin squeezing is instead used in the context of
quantum limited metrology [15], the squeezing param-
eter should measure the improvement in signal-to-noise
ratio for the measured quantity ϕ,

ξ = ∆ϕsqz/∆ϕ0 =
√
N

∆Jz

‖∂〈Jz〉
∂ϕ ‖

(3)

This definition is associated to Ramsey-type experi-
ments, in which an external magnetic field is measured
via the detection of the accumulated phase ϕ due to the
Zeeman interaction and the phase uncertainty for a prod-
uct state is ∼ 1/

√
N .

In the limit of large spin numbers, using the one and
two-axis squeezing operator, the optimal squeezing pa-

rameters are ξ1a = 31/3
√

2N1/3
, at a time t1a = 31/6

d N2/3 [13],

and ξ2a ∼
√

1+2
√

3
2N at t2a ≈ 1

d N log 2N√
3

[16, 17], respec-

tively. The one-axis squeezing operator reduces the vari-
ance of the collective magnetic moment along a direction
at a variable angle ν ≈ 0 in the y-z plane, while for the
two-axis operator the uncertainty reduction is in the x-
direction.

An arbitrary Hamiltonian Hzz can generate a squeezed
state [18], although the squeezing would be less than in
the ideal case and it becomes difficult to predict the op-
timal squeezing time and direction. For example, in the
limit where the interaction is limited to first neighbors,
the maximum squeezing achievable is fixed (independent
of N) and bounded by ξnn ≈ 0.73 [19]. We can nonethe-
less apply the techniques presented in the previous sec-
tion to project out the ideal squeezing Hamiltonian from
the natural occurring disordered interaction.

The same control techniques described above can also
generate two-axis squeezing. A different choice of time
delays (Fig. 2.b) will produce the Hamiltonian: H2a

H =
(ǫHdq+HH)/3, where we introduced the so-called double
quantum Hamiltonian Hdq =

∑

lj dlj(Sx,lSx,j−Sy,lSy,j).
This operator creates squeezing by a two-axis twisting
mechanism: for ǫ ≪ 1, we only retain the projection of
Hdq on the J = N/2 manifold, P [Hdq] = D

(N−1) [(J
2
x −

J2
y )−N11], which is equivalent to H2a

sqz = d(J2
x −J2

y )/2 (a
2-axis squeezing operator with optimum squeezing direc-
tion along the π/4 axis in the x-y plane). With this oper-

ator a squeezing parameter ξ2a ∼ 2/
√
N can be achieved

in a time t2a ≈ (N−1)
ǫD N log

(

2N√
3

)

: notice that the two-axis

squeezing operator provides not only a better optimal
squeezing, but also in a shorter time than the one-axis

operator (t1a ≈ 31/6

ǫD N1/3). It is also possible to em-
bed the control sequence within a spin-echo scheme, as
needed for the control of dephasing due to a quasi-static
spin bath [2], as well as to adjust the pulse phases in
order to obtain an average external field operator acting
on the direction of maximal squeezing.

3



IV. PROTECTION AGAINST THE NOISE

Entangled states are known to decay more rapidly due
to dephasing than separable states, so that in practice
the improvement in sensitivity is often counterbalanced
by the need to reduce the interrogation time [20, 21]. In
particular, if the system is prepared in the maximally
entangled state (an N-particle GHZ state) the sensitivity
improvement is completely lost in the presence of some
classes of decoherence (single particle dephasing) [20], as
the system is N -time more sensitive both to the signal
and the noise. A partially entangled state, such as a spin
squeezed state, can instead provide an advantage over
separable states [22].

In the solid-state systems here considered the source
of decoherence is usually the interaction of the electronic
spins with other paramagnetic impurities and with nu-
clear spins. In the case of the NV electronic spins, the
noise is caused by nitrogen electronic spins and by 13C
nuclear spins. Since the couplings to these spins are much
smaller than the zero-field splitting, they can only cause
dephasing but not spin flips. The noise can be modeled
as a fluctuating local magnetic field and represented by a
single-spin dephasing stochastic Hamiltonian, Hnoise =
∑

k ω
k
N (t)Sk

z ; ωk
N (t) are assumed to be independent sta-

tionary Gaussian random variables with zero mean and

correlation function ωk
N (t1)ωh

N (t2) = Ωkfk(t2 − t1) δk,h.
This noise leads to a decay of the average magnetiza-
tion in the transverse direction: 〈Jx(t)〉 = e−NΓtJ id

x (t)
with respect to the ideal case J id

x (t). Here we defined

Γ = 1
2t

∫ t

0
dt1

∫ t

0
dt2ωN(t1)ωN (t2) and the average noise:

ωN (t) = 1/N
∑

k ω
k
N (t). This decay affects both product

and 1-axis squeezed states in the same way (since the
squeezing operator commute with the noise). The angu-
lar momentum uncertainty for the squeezed state is also
affected, so that the squeezing parameter has now the
value:

ξ21a =
1 + N−1

4 e−NΓt[(1 − e−NΓt) + 1/R]P (R− 1)

cos (dt)
2N−2

where R = P/
√

P 2 +Q2 [with P = 1−cosN−2 (2dt) and
Q = 4 sin (dt) cosN−2 (dt), see appendix B].

For small enough noise, such that the optimal squeez-
ing time is shorter than the decoherence time, the squeez-
ing parameter scales with the number of spins and decay

rate as ξ1a ∼ 31/3

N1/3

√

1+(Γ/ǫD)2

2 . Only if the decoherence

rate is such that Γ/ǫD ∼ 1 we retain the ideal dependence
of the squeezing parameter ξ1a ∼ N−1/3. For stronger
noise, the optimal time must be reduced and the maxi-
mum squeezing does not reach its optimal value.

The isotropic Hamiltonian HH offers protection
against the noise, provided this is smaller than the gap to
the J < N/2 manifolds [1]. To first order approximation,
the only part of the noise operator that has an effect on
the system is its projection on the J = N/2 subspace:
Hnoise → ωN(t) Jz. Not only the signal decays N -times

0 50 100 150 200 250
0.3

0.4
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0.6

0.7

0.8
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1.0

1.1

t (µs)

ξ2

300 350 400

FIG. 3: (Color online) Simulations (8 spins) of the squeezing
parameter squared ξ2 under 1-axis (squares) and 2-axis (cir-
cles) squeezing control schemes, with (solid lines) and without
(dotted lines) the presence of noise. The noise was modeled
by a random magnetic field in the z direction acting inde-
pendently on each spin; noise parameters where Γ = 3kHz,
τc = 100µs. The spins were distributed randomly on the lat-
tice of a quasi-2D diamond slab of depth 9nm and area 30×30
nm. The density was 1018cm−3 resulting in D = .4 MHz and
Egap = 50kHz. The control sequence of Fig. 2 was used, with
time delays of 1.4µs and 1 to 12 cycles.

slower, 〈Jx(t)〉 = e−ΓtJ id
x (t), but also the uncertainty is

less affected. To provide a fairer comparison, we calcu-
late a squeezing factor in which the non-squeezed state
is also protected by the isotropic Hamiltonian:

ξ21a = cos (dt)
2−2N {

1 + N−1
4 e−Γt

×[(1 − e−Γt) − 2 sinh (Γt)/P + 1/R]P (R− 1)
}

The optimal squeezing now scales as ξ1a ∼ 31/3
√

2N1/3
+

√

Γ
N d . We obtain a lower bound for the decoherence

rate, Γ/ǫD = o[N1/3], that still allows optimal squeezing.

To take into account corrections to the truncation of
the noise operator, we can follow the analysis in [1] to
find the leakage rate to the N/2 − 1 subspace. Because
of the energy gap from the J = N/2 to the J = N/2− 1
manifold (which can be populated by the flipping of one
spin caused by the single-spin noise) the leakage outside
the protected space is negligible, unless the energy gap
to the first excitation is comparable with the cut-off en-
ergy ωc of the noise (notice that ωc = 1/τc, the noise
correlation time.)

While there is no analytical solution for the noise ef-
fects on the squeezing under the 2-axis Hamiltonian, we
expect a similar advantage from the reduction of the noise
to its collective part only. It is known that even the max-
imally entangled (GHZ) state does not exhibit a faster
dephasing under collective noise [23]. Simulations for 8
spins show the expected improvement (Fig. [3]).
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FIG. 4: Magnetometer measurement scheme. a) A possible
magnetometer setup, with NV center implanted in a slab of
diamond. b) Optical and microwave control of a single NV
center. Squeezing control sequences: c) A squeezed state is
prepared before applying an external magnetic field to mea-
sure. d) Squeezing and Ramsey experiment are done simul-
taneously

V. APPLICATION TO METROLOGY:

MAGNETIC SENSING AND DECOHERENCE

We now describe an application of electronic spin
squeezed states to precision magnetometry. Electronic
spins in the solid state can be used to sense external
magnetic fields, by monitoring the Zeeman phase shift
between two sublevels via a Ramsey experiment. For
small phase angle (weak fields) the signal measured (the
total magnetization in the field direction) is proportional
to the field.

The ideal sensitivity to the measured magnetic field for
M = T/t measurements and N spins is given by

∆Bz =
~

gµB

√
M

∆Jz

‖∂〈Jz〉
∂Bz

‖
=

~

gµB

1√
N t T

ξ(t,N) (4)

For sake of concreteness, we consider the recently pro-
posed diamond-based magnetometer [2, 3, 4] (Fig. 4-a).
The electronic spin associated to the NV in diamond is a
sensitive probe of external, time-varying magnetic fields,
due to its long coherence time and optical detection [5, 6].
The electronic spin triplet can be polarized under appli-
cation of green light and controlled by ESR pulses even
at zero external magnetic field, thanks to the large zero-
field splitting (∆ = 2.87GHz) (Fig. 4-b). In order to
increase the interrogation time, a spin-echo based oper-
ating regime has been proposed, thus making the mag-
netometer sensitive to AC fields. The operating scheme
of the magnetometer is depicted in Fig. 4. High spatial
resolution is achieved by using for example a crystal of
nanometer scales, which could be operated as a scanning
tip. Sensitivity can be improved by increasing the num-
ber of NV’s in the tip, but this comes at the cost of errors
introduced by the NV-NV couplings. Instead of refocus-
ing these couplings [2], here we propose to use them to
create a squeezed state.

Unfortunately, the coherence properties of high NV-
density diamonds or nanocrystals [3] are currently worse

than for bulk, pure diamonds. NV’s are usually cre-
ated by nitrogen implantation, followed by annealing
that makes vacancies migrate and combine to the ni-
trogens [26, 27]. The current conversion efficiency f
is quite low (between 10% and 23% [24]), thus inter-
actions with the epr bath (in particular P1 nitrogen
centers [28]) limit the coherence time and bound the
allowed NV densities. The spin-echo signal is a func-
tion of the root-mean-square coupling among impuri-
ties and it decays exponentially as e−t/Tepr . We find

Tepr ≈ 4/[µ0

4π
(gµB)2

~
nepr] [2], where the density of param-

agnetic impurities is nepr = ns(1−f)/f (with ns the NV
center density). Not only the coherence time is short,
but also the internal dynamics of the epr bath is fast,
so that the protection provided by the gap created with
the introduction of the isotropic Hamiltonian is not effec-
tive, as the condition ωc ≪ Egap is no longer valid. Im-
proved implantation schemes [29], coherent control tech-
niques [2], polarization of the nitrogen, either at low tem-
perature [30] or by optical pumping, can reduce the ef-
fects of epr spins, up to the point where NV-NV couplings
are the most important interactions. This is the regime
suitable for squeezing. A conversion efficiency of 50% (or
equivalently a 3 fold increase in the relaxation time due
to the paramagnetic impurities) is needed to start see-
ing an advantage of the squeezing scheme over a simpler
scheme based on repeated echoes (CPMG sequence [31])
as shown in Fig. 5(a).

VI. IMPLEMENTATION IN A DIAMOND

NANO-CRYSTAL

If the material properties of NV-rich diamonds can be
improved, a sizable squeezed state could be obtained in a
nanocrystal (or in a suitably implanted portion of a bulk
diamond, if surface effects are to be avoided). The resid-
ual decoherence mechanism is due to couplings to the nu-
clear spin bath (1% abundance of 13C), while spin relax-
ation occurs on timescales much longer than milliseconds
and is thus neglected. The resultant decay of the signal,
with a T2 time on the order of 200−600µs [3, 30], is about
the same for a product state and for a squeezed state pro-
tected by the isotropic interaction. Errors in the creation
of the average squeezing Hamiltonian H̄ by the multiple
pulse sequence can be taken into account as a decaying
term calculated from the third order average Hamilto-
nian [32] and a moment expansion to second order [33]
(see Appendix A). For the Mrev8 sequence of Fig. 2,
we obtain a decay term exp

(

−α̃n6
st

2
)

, where t is the to-

tal averaging time and the coefficient α̃ ∼ (µ0

4π
(gµB)2

~
)6τ4

depends on the actual NV-NV couplings (τ is the delay
between pulses, see Fig. 2).

Taking into account the described effects, as well as
the scaling of the field due to the control sequence and
subunit efficiency C of the optical read-out process, the
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FIG. 5: Sensitivity to an AC field with 22kHZ frequency, in a quasi 2D geometry [V = (300nm)2 × 10nm]. Left: Sensitivity
for conversion efficiency f = 50% (dotted lines) and f = 23% (solid lines). Notice that only for f & 50%, the 2-axis squeezing
approach (black lines) is preferable to the echo-only sequence (red lines). Right: Sensitivity for f = .90 (or equivalently, for
a 30-fold increase in T2 time thanks to refocusing, with respect to the T2 at the highest conversion achieved [24, 25]). Green
line (dash-dotted): Sensitivity under spin-echo, without any refocusing of the spin-spin coupling. Blue dashed line: Sensitivity
under Mrev8 sequence. The control sequence was repeated nc = 6 times with a delay between pulses of δτ = 1.5µs. Red
line: Sensitivity under 1-axis squeezing, obtained with the same sequence parameters as above. Black dotted line: Sensitivity
under 2-axis squeezing. The time delays τ+, τ

−
(see Fig. 2) were chosen in order to get an ǫ as small as needed to restrict the

evolution to the protected manifold and the number of cycles increased as needed to obtain the optimal squeezing time.

sensitivity per root averaging time η = ∆Bz

√
T is:

η =
~

gµB

3πe[T/T2]
3

eT/Tepr

C
√

2nV t
eα̃n6

sT 6

ξ(tsqz , nsV ) (5)

where T = t + tsqz is the total experimental time and t
is chosen to maximize the signal t = topt.

In order to reduce the total experiment time, to avoid
decoherence, we would like to create squeezing while ap-
plying the external magnetic field. The total time would
then be T = max(tsqz , topt) instead of their sum and the
interrogation time t = T (See Fig. 4 c-d). For the 1-
axis squeezing, if νopt were 0, we could squeeze the spins
while acquiring a phase from the external field since the
two Hamiltonians would commute. More generally, since
Dt1a and the accumulated phase ϕ due to the external
field are both small, we can approximate the desired evo-
lution as

e−iϕJze−iνJxe−iH1a
sqzt1a ≈

e−iνJx exp
[

−iϕ(Jz cos ν + Jy sin ν) − iH1a
sqzt1a

]

.

Provided one can rotate the external field in the z-y plane
by an angle ν, the squeezing can be performed while
the field is on. The error caused by this procedure is
∝ ϕDt1a sin (ν) ∼ ϕD/N for large N . In the case of the
two axis squeezing, as well, we can let the system rotate
under the external field while squeezing provided the field
is rotated in the x-y direction; the error we introduce in
this case is ∝ ϕD log (N)/N .

In Fig. (5) we compare the sensitivity achievable with
an uncorrelated state to the sensitivity provided by a
1-axis and 2-axis squeezed state. In particular, we can
identify a region of parameters where the squeezing se-
quence offer an advantage over the simple echo control.
We assumed to have implanted with a varying density
of NV centers a quasi-2D region of a diamond of vol-
ume V = (300nm)2×10nm (as this gives the best scaling
with density). NV densities between 4×1014cm−3 and

8×1016cm−3 occupying a small 2D layer could be ob-
tained via geometrically controlled ion implantation [34]
of high purity diamond.

Notice that although the requirements for squeezing
seem to be daunting, since the time to obtain an optimal
squeezing could be long, the control needed is not more
complex than what would be in any case required to sim-
ply refocusing the couplings. The many-body protected
manifold succeeds into protecting the squeezed state in
the environment envisioned (mainly composed by nuclear
spins), since the noise correlation time is slow - on the or-
der of millisecond as given by nuclear dipole-dipole inter-
actions - while the couplings among NV centers can range
up to hundreds of kHz because of the higher gyromag-
netic ratio of electronic spins. In this situation, the gap
offers a good protection against the noise; with the cur-
rent implantation techniques, however, the nuclear bath
effects are overwhelmed by the noise created by param-
agnetic impurities, with much faster internal dynamics
and we would expect the protection to fail there.

VII. CONCLUSIONS

We described how spin squeezed states can be created
in dipolarly coupled electronic spin systems and used for
precision measurement of external magnetic fields. The
key features of the method proposed are its applicabil-
ity even to spin systems with random couplings and an
intrinsic protection against single-spin noise. Although
squeezed states are known to be more fragile to deco-
herence, in the present scheme the squeezing operator
is in fact always accompanied by a many-body operator
that provides protection to the squeezed state, reducing
its dephasing rate to the rate of unsqueezed states. We
studied the projected sensitivity gains for a particular
application, an NV-based nanoscale magnetometer. As
the control scheme needed to create an entangled state is

6



not more demanding than the one required for the simple
refocusing of the couplings, spin squeezing will provide
a practical sensitivity enhancement in very high quality
materials.
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IX. APPENDIX

A. Coherent averaging

Multiple pulse sequences (MPS) achieve the dynam-
ical decoupling of unwanted interactions, or the cre-
ation of a desired one, using coherent averaging. By
means of an external control the internal Hamiltonian
is made time-dependent; using cyclic MPS and consid-
ering only stroboscopic measurements, the evolution is
described by an effective Hamiltonian that, to leading
order in time, is given by the time average of the modu-
lated internal Hamiltonian. The evolution during a cycle
can be better analyzed in the frame defined by the ex-
ternal control, where the internal Hamiltonian appears
time-dependent and periodic: H̃int(t) = Uc(t)

†HintUc(t).
At times when Uc(t) = 11, the evolution is given by

U(nctc) = (T e−i
R tc
0

H̃int(t)dt)nc (where tc is the cycle
time and nc the number of cycles). The propagator can
be rewritten using the Magnus expansion [35]:

U(tc) = T e−i
R tc
0

H̃int(t)dt = e−i[H̄(1)+H̄(2)+.....]tc , (6)

where H̄(k) are time-independent average Hamiltonians
of order k [32]. The MPS is tailored to produce the de-
sired evolution usually up to the first or second order,
and higher order terms lead to errors.

In the case of the Mrev8 sequence [11] shown in
Fig. (2) time symmetrization brings to zero the second

order terms [32]. The leading order error H̄(3)
zz cause

dephasing of the spins. Its effects are captured by a
moment expansion [33] to second order of the effective
Hamiltonian, 〈T 2

ϕ,6〉 = Tr
[

[H̄(3), J⊥]2
]

/Tr
[

J2
⊥

]

, where
J⊥ =

∑

k S⊥,k is the collective spin in a direction per-
pendicular to z. 〈T 2

ϕ,6〉 has actually the character of a
sixth moment and its value is a function of the sixth
power of the local field generated by the dipolar interac-
tion. The sensitivity decay rate is thus proportional to

the sixth order of the density and the square of the total

time, with a coefficient α̃ = 〈T 2
ϕ,6〉/n6

s ∼ (µ0

4π
(gµB)2

~
)6τ4.

Note that the Mrev8 sequence entails a large number of
control pulses. For many typical errors (phase-lag and
overshoot/undershoot) the refocusing is only affected at
higher order. However, depolarizing pulse errors occur-
ring with probability p lead to a reduction of contrast:
C′ = C(1 − p)k for k pulses. Using Mrev8 with echo
gives k = 34 and a requirement p . 0.002 for contrasts
near unity.

B. One axis-squeezing: analytical solution

Here we provide an analytical solution to the one-axis
squeezing dynamics [13], which has been used to calculate
the behavior in the presence of dephasing noise.

The one axis squeezing operator reduces the variance
of the collective magnetic moment along a direction at a
variable angle ν in the y-z plane. Defining χ = d t, we
obtain :

〈Jx〉 =
N

2
cosχN−1, 〈Jy〉 = 〈Jz〉 = 0

∆J2
x =

N

4
[N − N − 1

2
P ] −

(

N

2
cosχN−1

)2

∆J2
z (ν) =

N

4
{1+

N − 1

4
[P−

√

P 2 +Q2 cos (2ν + atan
Q

P
)]}

where by Jz(ν) we indicate the operator eiνJxJze
−iνJx

and we have set

P = 1 − cosN−2 2χ, Q = 4 sinχ cosN−2 χ

The optimal value for ν (which minimize ∆Jz(ν)) is
ν = − 1

2atan(Q/P ) [while ν = π/2 − 1
2atan(Q/P ) would

minimize ∆Jy(ν)]. Also notice that 〈Jy(ν)Jx〉 = 0.
The squeezing parameter for this ideal case is:

ξ2 =
[1 + N−1

4 (P −
√

P 2 +Q2)]

(cosχN−1)2
(7)

For large spin systems and short times such that
Nχ2 ≪ 1 but Nχ > 1, the optimal squeezing is ob-

tained for χ1a = 31/6

N2/3 , (ν ∼ N−3 ≈ 0) and it scales with

the number of spins as ξ1a = 31/3
√

2N1/3
.

[1] A. M. Rey, L. Jiang, M. Fleischhauer, E. Demler, and
M. D. Lukin, Phys. Rev. A 77, 052305 (2008).

[2] J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang,

D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and
M. D. Lukin, Nat. Phys. 4, 810 (2008), ISSN 1745-2473.

[3] J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M.

7



Taylor, P. Cappellaro, L. Jiang, A. Zibrov, A. Yacoby,
R. Walsworth, et al., Nature 455, 644 (2008).

[4] G. Balasubramanian, I.-Y. Chan, R. Kolesov, M. Al-
Hmoud, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer,
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