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Abstract 26 

Many questions in comparative biology require that new data be collected, either to build 27 

a comparative database for the first time or to augment existing data. Given resource 28 

limitations in collecting data, which species should be studied to increase the size of 29 

comparative datasets? By taking the hypotheses, existing data relevant to the hypotheses, and 30 

a phylogeny, we show that a method of “phylogenetic targeting” can systematically guide data 31 

collection while taking potentially confounding variables and competing hypotheses into 32 

account. Phylogenetic targeting selects potential candidates for future data collection using a 33 

flexible scoring system based on differences in pairwise comparisons. We used simulations to 34 

assess the performance of phylogenetic targeting, as compared to a less systematic approach 35 

of randomly selecting species (as might occur when data have been collected without regard 36 

to phylogeny and variation in the traits of interest). The simulations revealed that phylogenetic 37 

targeting increased the statistical power to detect correlations and that power increased with 38 

the number of species in the tree, even when the number of species studied was held constant. 39 

We also developed a web-based computer program called PhyloTargeting to implement the 40 

approach (http://phylotargeting.fas.harvard.edu).  41 

 42 

43 
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INTRODUCTION 43 

The comparative method has played a major role in uncovering adaptive trait evolution in 44 

biological systems (Harvey and Pagel 1991; Martins 2000; Pagel 1999; Ridley 1983). The 45 

comparative method has revealed, for example, links between mating systems and sperm 46 

competition in primates (Harcourt et al. 1981) and other animals (Hosken 1997; Moller 1991). 47 

The comparative method also supported a model of sexual selection in which females choose 48 

males based on their ability to resist parasites (Hamilton and Zuk 1982), and it has been used 49 

to probe the origins of both parasitic and symbiotic associations (e.g., Hugot 1999; Lutzoni et 50 

al. 2001). More recently, comparative methods have been applied to study phylogenetic 51 

community ecology (Webb et al. 2002), for example in the context of the phylogenetic over-52 

dispersion of mammalian communities (Cooper et al. 2008). The comparative method also 53 

can be used to address conservation issues (Fisher and Owens 2004), such as questions 54 

involving the factors that influence rates of extinction (Purvis et al. 2000b) and how the 55 

phylogenetic clumping of conservation threat status can lead to greater loss of phylogenetic 56 

diversity when species go extinct (Purvis et al. 2000a). 57 

A comparative analysis requires data on a set of species relevant to a hypothesis of 58 

interest. Usually, however, data are available for only a fraction of the species in a clade, and 59 

data collection in both the field and laboratory is expensive and time-consuming. A proper 60 

selection of species to study is a non-trivial and multi-faceted problem (Garland 2001; 61 

Westoby 2002) that has rarely been addressed in a systematic way. Instead, species are often 62 

chosen either randomly or subjectively (Faustino 2008; Westoby 1999) because they are of 63 

“particular (and perhaps irrational) interest” (Garland 2001, p.119). Two problems are 64 

introduced when species are chosen in an unsystematic way. First, the full range of variation 65 

is not used to test the hypotheses. Second, taxonomic gap bias may occur, meaning that data 66 

collection has been focused on a few “popular” lineages. These different kinds of biases – 67 

incomplete variation and gap biases – can make a momentous difference to the conclusions 68 
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one draws. In studies of primates, for example, results of comparative research are likely to 69 

change when the sample is tilted towards terrestrial species, rather than those that live in the 70 

trees, because terrestrial species possess larger body masses, exhibit different locomotor 71 

patterns, and live in larger social groups (Clutton-Brock and Harvey 1977; Martin 1990; Nunn 72 

and van Schaik 2002).  73 

To address these issues, methods are needed to quantify potential biases in comparative 74 

datasets and to identify the species that should be studied in the future. Indeed, it is common 75 

to read in write-ups of comparative research that further sampling is needed to validate the 76 

findings, either because the sample sizes were small or the sample was biased towards 77 

particular species within a clade (e.g., in the study of sleep patterns: Capellini et al. 2009; 78 

Nunn et al. 2009; Roth et al. 2006). Unfortunately often, however, only general guidelines for 79 

this selection process have been given, and these guidelines are often specific to the question 80 

of interest (Westoby 2002). To our knowledge, no method yet exists that is flexible and 81 

specific enough to address the crucial task of prioritizing future research in light of specific 82 

hypotheses about the apportionment of variation in relation to one or more ecological factors. 83 

Only a handful of studies have investigated ways of systematically identifying species to 84 

study. For example, Ackerly (2000) compared the performance of different taxon sampling 85 

strategies and found that their statistical performance differed substantially. One of the 86 

algorithms he examined is based on the pairwise comparison approach (Felsenstein 1985, 87 

p.13; Maddison 2000; Møller and Birkhead 1992; Oakes 1992; Purvis and Bromham 1997; 88 

Read and Nee 1995) and identifies meaningful comparisons by selecting species pairs that 89 

differ by a certain amount in the independent variable, following the suggestion of Westoby 90 

(1999). Although it overestimates the magnitude of the correlation, Ackerly (2000) showed 91 

that this design increases the statistical power to detect correlated evolution (see also Garland 92 

2001 and Garland et al. 1993). One major weakness of the method is that the threshold for 93 

when differences are “large” is arbitrary, dependent on the dataset, and must be set manually, 94 
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which limits its applicability considerably.  Mitani et al. (1996) considered sampling strategies 95 

in relation to testing competing hypotheses, while Read and Nee (1995) discussed the need to 96 

identify pairs that contribute for or against hypotheses. Similarly, Maddison (2000) presented 97 

a methodology for choosing species pairs in which each pair is “a comparison relevant for the 98 

question of interest” (p. 198). However, his method is designed for binary rather than 99 

continuously varying data, and it can only handle fully bifurcating trees and thus does not 100 

provide enough flexibility for identifying meaningful comparisons with real data.  101 

The method of pairwise comparisons has been used frequently to identify meaningful 102 

comparisons. Several reasons exist for using pairwise comparisons.  For example, the method 103 

of pairwise comparison relies on fewer assumptions (Ackerly 2000; Hearn and Huber 2006; 104 

Maddison 2000) than other methods. Thus, unlike phylogenetically independent contrasts 105 

(PIC) (Felsenstein 1985; Garland et al. 1992; Harvey and Pagel 1991), pairwise comparison 106 

does not require a specific model of evolution or the estimation of states at interior nodes. In 107 

addition, some sets of species within a larger clade might not be directly comparable in 108 

standard implementations of comparative methods, such as PIC. In mammalian sleep, for 109 

example, some cetaceans sleep with only one half of their brains (Lyamin et al. 2008), making 110 

it difficult to compare the measurements of sleep in cetaceans to other mammals. The method 111 

of selecting specific pairwise comparisons provides a way to limit comparisons so that 112 

cetaceans are compared only to other cetaceans, and non-cetaceans are compared only to non-113 

cetaceans. Similarly, some behavioral experiments might require similar sensory modalities or 114 

cognitive ability among species in the dataset. Pairwise comparisons of some close relatives 115 

may be more appropriate for selecting species for focused comparative experiments that take 116 

these factors into account. 117 

When using the method of pairwise comparisons, it is important that all pairs are 118 

phylogenetically independent, i.e. no branches are shared among the comparisons (Felsenstein 119 

1985; Maddison 2000). In Figure 2, for example, different sets of phylogenetically 120 
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independent pairs (which we call a “pairing,” see Maddison 2000) are shown for each tree. 121 

Thus, when selecting phylogenetically independent pairs, the selection of a particular pair 122 

constrains which other pairs can be selected. 123 

Here, we present a new approach, which we call “phylogenetic targeting,” to 124 

systematically identify the species to study in the future. Phylogenetic targeting is a taxon 125 

sampling approach that aims to prioritize future research by identifying species that should be 126 

studied in a target-oriented way under consideration of the specific hypotheses and data. It is 127 

not a new way to analyze comparative data or a substitute for existing analysis methods, but 128 

rather draws on existing methods in comparative biology. This method uses the pairwise 129 

comparisons approach and is based on a scoring system that incorporates phylogeny and data 130 

on variables relevant to testing hypotheses, specifically involving the predictor and response 131 

variables in a comparative test. The predictor variables can include potentially confounding 132 

variables or variables relevant to testing alternative hypotheses for an association. If external 133 

information suggests that comparisons should be restricted taxonomically or in relation to 134 

existing data, one can use the method to limit which species to compare.  135 

After assigning a score for each pair of species, phylogenetic targeting uses a newly 136 

developed algorithm to select the set of phylogenetically independent pairs of species that 137 

offer greater statistical power to test the hypothesis once data have been collected on the 138 

dependent variable. After collecting data, pairwise contrasts for the targeted species pairs can 139 

be used to test hypotheses, or one can use standard comparative techniques for testing 140 

correlated character evolution (Figure 1). This decision is up to the investigator and depends 141 

on the actual hypotheses, data and analysis preferences (see Discussion). We use computer 142 

simulations to assess the degree to which phylogenetic targeting increases statistical power for 143 

detecting correlated trait evolution, as compared to random sampling of species. We also 144 

implemented the method online (http://phylotargeting.fas.harvard.edu). We anticipate that the 145 

general approach developed here for pairwise comparisons can be developed for use with 146 
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additional comparative methods, such as PIC or generalized least squares approaches, and we 147 

discuss some of these potential extensions. 148 

 149 

METHODS 150 

The method requires a phylogeny and one or more explicit hypotheses that offer predictions 151 

for how variation in one trait (X1) correlates with variation in another trait that is common to 152 

all the hypotheses and, because it is not known in all the species, is the “target” of the analysis 153 

(Yt) (Figure 1). We call this association between Yt and X1 the primary hypothesis. Additional 154 

hypotheses, if desired, are implemented through traits X2…Xn, which relate to competing 155 

hypotheses or potentially confounding variables. The goal of the method is to identify species 156 

that should be studied with regard to Yt by using phylogenetic relationships and data already 157 

collected for the X traits. Thus, a species cannot be included in a phylogenetic targeting 158 

analysis if data on X are lacking for that species. We assume that larger evolutionary changes 159 

in X1 provide higher statistical power for comparative tests to test the hypotheses, because it 160 

increases the available range of variation (Garland 2001; Garland et al. 2005; Westoby 1999; 161 

Westoby et al. 1998). We also assume that the characters show a linear relationship. Different 162 

targeting analyses are likely to focus on a primary hypothesis and various combinations of 163 

alternative hypotheses, and both discrete and continuous traits can be used. Scores are 164 

calculated so that higher values indicate more preferred species to study, based on user-165 

defined criteria involving control of confounding variables, testing of alternative hypotheses, 166 

and availability of data on Yt for one or more species in a clade. 167 

 168 

Calculating pairwise comparisons 169 

The analysis starts by calculating all possible n * (n-1) / 2 pairwise comparisons. In the tree 170 

shown in Figure 2, for example, 15 comparisons can be constructed. The method thus does 171 

not rely on using only pairs of sister species, as pairs of more distantly related species could 172 
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also offer compelling tests of the hypotheses (Maddison 2000; Read and Nee 1995; Westoby 173 

1999). Pairwise comparisons with missing data in any of the traits except Yt are excluded. In 174 

addition, certain species can be excluded manually from the analysis, for example in cases 175 

where an experiment can be applied to only certain species on the tree. 176 

If discrete characters with more than two possible states are used, they can be treated 177 

as ordered (costs between different pairs of states are different, as a particular sequence exists 178 

in which the states must occur through evolution) or unordered (every state change is equal, as 179 

each state can directly be transformed into any other state) (Slowinski 1993). 180 

 181 

Calculating scores for models with a single predictor (Yt and X1) 182 

For predictions that only involve a primary hypothesis (i.e., only one independent variable), 183 

phylogenetic targeting uses a scoring system that maximizes the variability in X1. In other 184 

words, species pairs are targeted that differ the most in X1. If we were interested in hypotheses 185 

that involve body mass as an independent variable, for example, phylogenetic targeting gives 186 

pairs with the largest differences in body mass higher scores. Thus, pairwise comparisons 187 

with big differences in X1 are scored more positively, whereas smaller differences are scored 188 

less positively. These contrasts are then standardized to the scale 0 to 1, with a difference of 0 189 

assigned a score of 0 and the largest difference in all considered pairs assigned a score of 1. 190 

Note that even if no zero contrasts are found in the data, the method fixes this as the lowest 191 

contrast.  All other differences are assigned a score between 0 and 1 by applying a linear 192 

scaling transformation. We call this the score of X1. 193 

If X1 is an unordered discrete character, the score will be either 0 or 1 regardless of the 194 

actual difference in character state assignments, whereas the difference is scored on an 195 

interval between 0 and 1 in the case of an ordered character, with the maximum number of 196 

character steps scored as 1. 197 

 198 
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Calculating scores for models with covariates (Yt , X1, X2 … Xn) 199 

Models that incorporate additional traits enable the testing of different kinds of hypotheses 200 

(e.g., mutually exclusive and non-mutually exclusive), and they can be used to control for 201 

confounding variables. For each X2…Xn, a separate scoring mechanism is defined in which 202 

larger contrasts have either a negative or a positive influence on the overall score. The 203 

decision for whether larger differences in each of the X2 to Xn variables is scored higher or 204 

lower depends on whether the variables reflect confounding variables or a desire to 205 

distinguish among competing hypotheses. To simplify discussion in what follows, we 206 

consider a case in which only one additional variable is included; thus Yt = f (X1, X2). Further 207 

details on the specifics of scoring are given below. 208 

To control for confounding variables, the goal is to minimize variation in the predictor 209 

variable that corresponds to the confounding variable of interest, i.e. X2. Thus, pairwise 210 

comparisons in X2 that make the absolute value of change in a particular confounding variable 211 

as small as possible are scored higher, whereas pairwise comparisons with bigger differences 212 

are scored lower (ScoreNC, i.e. the score from standardizing the covariate for “no change”). 213 

The smallest pairwise contrast is assigned a score of 1, whereas the maximum pairwise 214 

contrast is assigned a score of 0. All other differences are assigned a score between 0 and 1.  215 

To address mutually exclusive hypotheses, the goal is to maximize scores for X2 that 216 

differ maximally from contrasts in X1. Two different scoring options can be applied that both 217 

target big differences, but differ in how they score these differences. The first option scores 218 

differences in X2 in the opposite direction as the difference in X1 positively and differences in 219 

the same direction as X1 negatively (ScoreOD, i.e. the score from standardizing covariate in the 220 

“opposite direction”). The biggest difference in the opposite direction is assigned a score of 1, 221 

whereas the biggest difference in the same direction is assigned a score of -1. A difference of 222 

0 is assigned a score of 0. The smallest pairwise contrast is always assigned 0 even if no 223 

pairwise comparison has a difference of 0 in this trait, as this ensures that all non-zero 224 
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differences are assigned a score different from 0. All other differences are assigned a score 225 

between -1 and 1 by applying a linear scaling transformation, which is calculated separately 226 

for positive and negative contrasts. The second option is the opposite of the first option; that 227 

is, differences in the opposite direction from the difference in X1 are scored negatively and 228 

differences in the same direction are scored positively (ScoreSD, i.e. the score from 229 

standardizing covariate in the “same direction”). For example, this option might be useful if 230 

an increase in X1 is predicted to reduce Yt while an increase in X2 is predicted to increase Yt. 231 

Thus, it is necessary to give higher scores to contrasts in the same direction for X1 and X2 to 232 

distinguish among the hypotheses. 233 

 For models with covariates, the direction of change for X2…Xn always refers to the 234 

direction of change in X1, e.g. a positive value means that the direction of change is the same 235 

as in X1. By doing so, we force the difference in X1 (∆raw, see Table 1) to be positive and 236 

achieve consistency with other widely-used programs, such as CAIC (Purvis and Rambaut 237 

1995) and PDAP-Mesquite (Midford et al. 2005). This “positivization assumption” also helps 238 

to make sense of the other trait differences and their directions when using the computer 239 

program, as it becomes possible to determine whether other pairwise comparisons are 240 

consistently positively or negatively associated with X1 (e.g., if X2 is positive, it must be in the 241 

same direction as X1). Although not strictly necessary for the algorithms implemented here, 242 

this helps guide manual selection of contrasts in the web-based implementation of 243 

phylogenetic targeting. 244 

 245 

Summed score and standardizing scores for branch lengths 246 

For each pairwise comparison, the scores for all traits are summed up to define the 247 

summed score (see Table 1 for a case involving X2 as a confounding variable, i.e. ScoreNC). 248 

The summed score combines the information from all traits and thus represents the strength of 249 
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a pair for testing the hypotheses. For models with only Yt and X1, the summed score thus 250 

equals the score of X1. 251 

Regardless of the scoring model, the summed score can sometimes be uninformative 252 

when compared among different pairs because the more divergent two species are, the more 253 

likely it is that they evolved bigger differences. In other words, different pairs will have 254 

different expected amounts of change (i.e., variance). In our approach, we overcome this 255 

problem by normalizing the summed score by its expected variance (square root of the sum of 256 

the branch lengths that connect the two species) (Felsenstein 1985; Garland et al. 1992). We 257 

call this the standardized summed score. By doing so, all pairwise comparisons have a 258 

common variance as required by most statistical tests (see also Discussion). 259 

Table 1 summarizes and applies the scoring system to the dataset in Figure 2, based on 260 

controlling for X2 as a confounding variable (ScoreNC). Different standardized summed scores 261 

would be obtained if we treated X2 as representing a competing hypothesis, and depending on 262 

the expected direction of X2 in the context of competing hypotheses (see columns for ScoreSD 263 

and ScoreOD in Table 1). 264 

 265 

Availability variable 266 

In addition to manually excluding species from an analysis, it is possible to define an 267 

“availability variable” to automatically exclude species or pairs in relation to the availability 268 

of data for Yt. One can thus use the availability variable to identify other species that should be 269 

studied in the context of existing data on Yt. An availability variable also provides a way to 270 

quickly “pinpoint” where the missing data points are in a phylogenetic context, which can 271 

help to identify biases in the distribution of the studied species.  272 

The availability variable must be a discrete binary variable that identifies whether or 273 

not data are available for Yt for a particular species. For example, consider the scenario in 274 

Figure 2, in which Bt is the availability variable. Possible options would be to only consider 275 
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pairs where data are available for both species that form the pair (exclusion of all pairs except 276 

s1-s5), for one species (exclusion of pairs s1-s5 and all combinations of s2, s3, s4 and s6), for 277 

at least one species (as before, but not s1-s5) and for none of the species (exclusion of the nine 278 

pairs with s1 and s5). This scoring procedure thus can be used in a variety of ways.  For 279 

example, if the availability variable indicates that data are available for only a fraction of the 280 

species, the majority of the pairs will be excluded if the option is chosen to consider only pairs 281 

where one species has already been studied and data are needed for the other species. In such 282 

a case, only those pairs containing one studied species and one that has yet to be studied 283 

remain. It can thus be seen as an additional selection factor that effectively constrains the 284 

species that will be targeted. 285 

 286 

Maximal pairing algorithm 287 

The actual selection of species is performed by a dynamic programming algorithm that 288 

we call maximal pairing. The maximal pairing algorithm is a general optimization algorithm 289 

and selects pairs of species that are phylogenetically independent. In contrast to PIC, where 290 

pairs can also involve internal nodes on the tree, the maximal pairing algorithm selects only 291 

pairs between the tips of the tree. The selection of pairs is based on the summed score for each 292 

pair, and the algorithm determines the set of phylogenetically independent pairs that 293 

maximizes the sum of the individual summed scores (Table 1). This criterion is thus assumed 294 

to maximize the power to test the hypotheses given constraints on maintaining phylogenetic 295 

independence. With large datasets, it is difficult to find the maximal pairing manually, due to 296 

the large number of possible pairings and the complex phylogenetic dependence of pairs that 297 

must not share a branch (Figure 2). Despite some differences that involve execution time and 298 

representation of polytomies, the maximal pairing algorithm also works for polytomous trees 299 

(see Online Appendix A for more details). 300 
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For models that involve only X1, for example, the maximal pairing generally selects 301 

pairs of closely related species that maximize differences in X1, and those pairs are often 302 

distantly related to the other pairs that are selected. In a comparative test, such a design is 303 

considered to be especially powerful (Garland et al. 2005). If, however, an additional trait X2 304 

is used to control for confounding variables (thus scoring small differences in X2 higher using 305 

ScoreNC), the algorithm both maximizes differences in X1 and minimizes differences in X2. 306 

Conversely, if one aims to maximize differences in X2 (thus scoring larger differences in X2 307 

opposite to X1 higher with ScoreOD), the algorithm maximizes differences in X1 and 308 

maximizes differences in X2 opposite in sign to X1. Similar logic applies to ScoreSD. It is 309 

worth noting, however, that due to the phylogenetic constraints and the standardizing of 310 

contrasts, the maximal pairing does not simply select the pairs with the most extreme 311 

character differences; instead, pairs with small differences among closely related species are 312 

also frequently selected.  313 

 314 

Simulations 315 

We compared the performance of phylogenetic targeting to random selection of species 316 

using simulations. The aim of the simulations was to generate data with known degrees of 317 

correlation between pairs of variables, and then to select subsets of species either randomly or 318 

using phylogenetic targeting. To perform the simulations, we first generated phylogenetic 319 

trees and character data using the GEIGER package (Harmon et al. 2008) in R (R 320 

Development Core Team 2009) according to a uniform birth-death process (b=0.15, d=0). We 321 

created 1500 random phylogenies for a series of N=50, 70, and 90 taxa. We then simulated 322 

character evolution for two continuously varying characters on each tree using five different 323 

models of evolution (Table 2) with character states (0,0) at the root of the tree. When 324 

simulating the non-Brownian motion models of evolution, we first transformed the tree in 325 

Geiger (Harmon et al. 2008), simulated traits on the transformed tree, and then analyzed the 326 
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data on the original tree, thus simulating a case where the branch lengths failed to accurately 327 

reflect trait evolution (see Online Appendix B).  Characters were simulated with a variance of 328 

one and correlations of 0 and 0.5, respectively. This yielded 4500 datasets with varying 329 

numbers of species and known evolutionary correlations among the characters. 330 

Using these data and phylogenies, we then selected subsets of species randomly and 331 

using phylogenetic targeting. In each simulation file, we selected the first simulated trait as 332 

X1; the second variable was assumed to be Yt,. We also standardized the scores. The maximal 333 

pairing was then calculated, and we selected the six highest scoring pairs. We also randomly 334 

selected six phylogenetically independent pairs. To investigate whether the number of 335 

selected pairs impacts statistical performance, all analyses were repeated using 9 pairs and 12 336 

pairs.  337 

To evaluate statistical properties of both sampling approaches, we performed standard 338 

statistical tests based on the selected pairwise comparisons. For that, we used the character 339 

differences for X1 and Yt for the selected pairs and standardized them by their expected 340 

variance (square root of the sum of the branch lengths that connect the two species). We 341 

tested for a significant correlation between both characters using the correlation coefficient 342 

through the origin (Garland et al. 1992), with significance based on α = 0.05 using a t-test 343 

with N-2 degrees of freedom. We determined Type I error rates (incorrectly rejecting a true 344 

null hypothesis of no association between traits) and statistical power (probability of rejecting 345 

a false null hypothesis) for both sampling approaches. Type I error rates were calculated as 346 

the proportion of significant results based on p=0.05 for datasets in which r=0, while 347 

statistical power was based on the proportion of significant results for datasets in which r=0.5. 348 

In addition to tests based on pairwise comparisons, we performed tests based on the full 349 

set of independent contrasts. We did this because many users may be interested in using a full 350 

set of contrasts, yet the method operates by examining pairwise comparisons. Thus, 351 

understanding the statistical performance of phylogenetic targeting when used with PIC is an 352 
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important step and expands its application spectrum. After pruning the tree to the subset of 353 

selected pairs, we calculated PIC (Felsenstein 1985) using the APE package (Paradis et al. 354 

2004). We tested for a significant correlation between both characters using the methods 355 

described in the previous paragraph. 356 

We also tested how the inclusion of randomly selected, non-targeted species affects the 357 

results. This simulates a common situation because data are often already available for some 358 

species but missing for others. Specifically, we examined how including k random species 359 

affects the results for tests based on pairwise comparisons and PIC (with k ranging from 2 to 360 

10 in steps of 2). We included these additional species from the remaining set of species that 361 

were not selected by phylogenetic targeting (and thus without using the availability variable). 362 

Lastly, we analyzed how much of the original range of variation in the simulated data was 363 

available after pruning the data to the selected species. This gives insights to the range of 364 

variation that is available for hypothesis testing under the two sampling techniques.  365 

 366 

RESULTS 367 

PhyloTargeting program 368 

We created a freely available computer program – PhyloTargeting – that implements the 369 

phylogenetic targeting approach. It is web-based, takes the data as a Nexus file (Maddison et 370 

al. 1997) and provides a user-friendly, interactive, step-by-step interface, a variety of analysis 371 

options, and graphical visualizations of the results. The program is publicly available at 372 

http://phylotargeting.fas.harvard.edu. 373 

 374 

Simulations 375 

The simulations revealed that phylogenetic targeting substantially increases the range of 376 

biological variation that is sampled relative to random sampling (Figure 4). Phylogenetic 377 

targeting also provided substantially higher statistical power for detecting a true relationship 378 
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(Figure 5). This held for both the pairwise tests and tests based on PIC. For the pairwise tests, 379 

Type 1 error rates for α = 0.05 were elevated if the number of selected pairs was small, but 380 

decreased to the expected level when more pairs were selected. For the tests based on PIC, 381 

Type I error rates were close to the expected level in all scenarios. Importantly, Type 1 error 382 

rates under random sampling and phylogenetic targeting were generally indistinguishable. 383 

More details are provided in Online Appendix C. 384 

Increasing the number of pairs that are selected by the sampling algorithms increased 385 

statistical power, as expected (Figure 5). For the pairwise tests, it also decreased Type 1 error 386 

rates. The number of taxa per tree, however, revealed a more surprising effect. Even when 387 

holding the number of pairs constant, the statistical power increased with the number of taxa 388 

in the clade under phylogenetic targeting, and Type 1 error rates did not increase (Figure 5). If 389 

species are selected randomly, however, power did not increase with increasing clade size. 390 

When the true correlation was 0.5, mean values of r were elevated, and moreover 391 

increased with the number of species per tree (see Online Appendix C). Thus, a sampling 392 

regime based on phylogenetic targeting resulted in biased estimates of evolutionary trait 393 

correlations when r≠0, whereas a random selection of species resulted in no bias. Importantly, 394 

however, no bias was found when the true correlation was 0, as shown in the results for Type 395 

I error rates. Furthermore, the bias decreased substantially if additional, randomly selected 396 

species were included (see Discussion and Online Appendix C).  397 

The results highlighted above are for a Brownian motion process of character evolution. 398 

For the alternative models that we tested (see Online Appendix B), results were comparable. 399 

However, for most of these analyses, Type 1 error rates were highly elevated and statistical 400 

power was reduced under the two sampling approaches and for PIC on the full tree (which we 401 

used as a control). Not surprisingly, the pairwise tests showed substantially less elevated Type 402 

1 error rates if model assumptions were violated, possibly because the method of pairwise 403 

comparisons relies on fewer assumptions. 404 
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 405 

DISCUSSION 406 

Comparative studies generally make use of available data. Here we show that the 407 

comparative approach can also be used to target species for future data collection. By 408 

applying the phylogenetic targeting concept, we can identify species that offer higher power 409 

to test predictions of a comparative hypothesis. Moreover, phylogenetic targeting provides a 410 

way to control for confounding variables when selecting species for further study, or to test 411 

competing hypotheses. The method will most likely be used to augment existing data, but it 412 

can also be applied to generate new datasets in the context of finite resources for data 413 

collection. 414 

A major strength of the approach is that phylogenetic information is incorporated when 415 

selecting species to study (Garland 2001; Garland et al. 2005), thus ensuring that the selected 416 

pairs are phylogenetically independent of one another. This makes it possible to analyze the 417 

data using standard statistical methods (i.e., pairwise tests). However, the simulations revealed 418 

that compared to PIC, statistical power is reduced (see also Ackerly 2000).  This may be due 419 

to the fact that for pairwise differences, the number of data points is reduced by a factor of 420 

approximately 2, because only the tips of the tree are contrasted and not the interior nodes of 421 

the tree. Furthermore, the bias in estimating the correlation coefficient is increased with 422 

pairwise comparisons. We thus advise users to analyze the selected species with standard 423 

comparative methods based on the full set of contrasts whenever possible instead of using the 424 

differences for the selected pairs directly. 425 

The simulation results revealed that phylogenetic targeting provides many advantages 426 

compared to a random selection of species for detecting correlated trait evolution. Statistical 427 

power was strongly increased in all cases that we examined. Phylogenetic targeting used a 428 

higher percentage of the available range of variation for a character, as compared to random 429 

sampling of species. Thus, we can be more certain that the pattern holds generally across the 430 
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clade of organisms rather than, for example, only among the species that are larger in body 431 

size or more amenable to study. Surprisingly, the simulations also revealed that statistical 432 

power increased with the number of species per tree, even when the number of taxa selected 433 

for study remained constant. Type 1 errors, however, were always close to the nominal level 434 

and undistinguishable between phylogenetic targeting and random species sampling. Thus, 435 

applying the method to larger clades resulted in increased power without increasing the 436 

number of pairs examined, probably because having more taxa increased the magnitude of the 437 

differences that can be selected overall (which increased the ability to detect a correlation).  438 

Phylogenetic targeting should be used with caution when one wants to determine the 439 

magnitude of a correlation. Similar to the pairwise approach of Westoby (1999), it 440 

overestimates the correlation coefficient (Ackerly 2000). This was true for both the pairwise 441 

tests and PIC, and the bias was stronger with the pairwise tests. The simulations also revealed 442 

that this overestimation increases with the number of species per tree, thus mirroring the 443 

increase in power. In the context of applying the method to real-world data in which data for 444 

Yt are already available for some of the species, however, simulations confirmed that this bias 445 

decreases substantially with the number of randomly selected species for which data are 446 

already available. For most questions of interest that we envision, data are often available on 447 

Yt for a number of species, often comprising a majority of the species in the dataset. When 448 

such data are available, inclusion of already available data in subsequent analysis after 449 

applying phylogenetic targeting is highly recommended.  Alternatively, users can implement 450 

the availability variable option described above to more fully integrate decisions about future 451 

data collection with already studied species. Furthermore, as noted above, the bias is likely to 452 

decrease if additional traits representing confounding variables or alternative hypotheses are 453 

included in the analysis. 454 

A few limitations and assumptions of phylogenetic targeting should be noted. Although 455 

the maximal pairing selects the set of species pairs that have the highest overall score 456 
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according to a user-defined scoring model, it may select species that are not directly 457 

comparable in relation to a particular test, such as an experiment that involves testing 458 

cognitive abilities. To overcome this possible weakness, our PhyloTargeting program 459 

provides a way for the user to select pairs in which particular comparisons are possible and to 460 

exclude other comparisons. Phylogenetic targeting must be used with caution if non-linear 461 

relationships between the variables can be assumed, and we advise users to critically examine 462 

the variables beforehand. Another critical issue is the phylogenetic tree, the representation of 463 

polytomies (see Online Appendix B), and the branch lengths on which the species selection is 464 

based. The selection of species can vary substantially between similar tree topologies due to 465 

the fact that the maximal pairing algorithm strictly maximizes the overall score, which can 466 

sometimes be heavily influenced by the topology. Branch lengths are assumed to be 467 

proportional to the expected variance in the amount of evolutionary changes along each 468 

branch (Brownian motion), which becomes an important assumption both in phylogenetic 469 

targeting and in subsequent analyses. This is particularly true for PIC. If these assumptions are 470 

violated, Type 1 error rate are inflated and statistical power is reduced (Diaz-Uriarte and 471 

Garland 1996; Quader et al. 2004) . Indeed, the simulations confirmed this effect; for almost 472 

all of the alternative models, Type 1 error rates were highly elevated.  The only exception is 473 

the early burst model, which yielded results very similar to those for Brownian motion 474 

(Online Appendix C). 475 

Because sister taxa will tend to be similar in many ways, confounding variables are 476 

expected to be less of a problem in sister-species comparisons (Harvey and Pagel 1991; 477 

Møller and Birkhead 1992). In our approach, however, more distantly related species pairs 478 

can also be selected. That can be critical, because other, unmeasured confounding variables 479 

may be introduced to the analysis. The comparison of distantly related species is comparable 480 

to an experiment with multiple uncontrolled variables (Garland 2001; Garland and Adolph 481 

1994). The more distantly related two species are, the more likely it is that such an effect 482 
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could bias the results. By including additional variables in the calculations, it is possible to 483 

control for some confounds when measurements are available.  484 

We recommend that users standardize pairs to meet statistical requirements of 485 

subsequent statistical tests (i.e., equal variances among pairs). Standardization has not 486 

typically been implemented for pairwise comparisons, but it is necessary if one wishes to use 487 

parametric statistical tests that make assumptions about homoskedasticity. When contrasts are 488 

standardized, distantly related pairs are less often selected. This may be useful if large 489 

differences are only informative when the species are closely related (e.g., to control for 490 

possibly unknown confounding variables), or when comparisons should be made between 491 

closely related species (e.g., because of biological differences that limit comparability of 492 

experimental results). Standardization thus affects the selection of pairs.  493 

Another argument for standardization is that fewer traits should change on shorter 494 

branches, and thus it helps control for confounding variables. However, standardization may 495 

exaggerate evolutionary differences for close relatives when differences are due to sampling 496 

error or within-species variation (Purvis and Webster 1999). It can thus overestimate the 497 

importance of certain species pairs if they are close relatives. We may sometimes expect a 498 

larger absolute change in some trait, regardless of its rate of change, to be more valuable in 499 

testing a hypothesis than a small change over a short branch. For example, brain size that 500 

increases by an order of magnitude might be a stronger test than a smaller amount of brain 501 

change, even if it occurs over a small branch. Using the program that we provide, the choice 502 

of standardization is left up to the user (with the default option to standardize scores), based 503 

on his or her preferences, the assumptions of subsequent methods, and particulars of the 504 

biological system.  505 

Phylogenetic targeting works best for continuous traits, but it can also be used with 506 

discrete traits. However, phylogenetic targeting purely based on discrete characters is more 507 

challenging because the number of distinct differences is typically smaller. In such cases, it is 508 
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common to find that numerous pairs have the maximal possible score. This will ultimately 509 

result in multiple optimal solutions in the maximal pairing algorithm. However, as the current 510 

implementation returns only one optimal solution, it is difficult to evaluate its uniqueness. 511 

Possible workarounds would be to either add a continuous variable or to standardize contrasts, 512 

both of which help to generate variation in the scores and thus to decide among the possible 513 

pairs of taxa.  514 

The maximal pairing algorithm falls in a class of general combinatorial optimization 515 

problems that are of considerable interest in comparative phylogenetics and bioinformatics 516 

more generally. Several modifications of this algorithm have practical importance as well.  517 

For example, the algorithm could be modified to select only a fixed number of pairs (given by 518 

the researcher), thus incorporating the fact that limited resources are available to select species 519 

for future study. This important variant has already been implemented elsewhere (see Arnold 520 

and Stadler 2010). It might also be desirable to take into account conservation status of 521 

different species, to ensure that species are studied before they go extinct. More generally, the 522 

selection of species could be based not solely on pairwise comparisons, but on the full set of 523 

contrasts, possibly in combination with examining the raw data space or regularly sampling 524 

character values along the entire range of a character of interest. Here, we laid down the 525 

foundations for systematically identifying species for future study. Many possible extensions 526 

and modifications of the approach are possible, particularly related to alternative ways of 527 

sampling species. 528 

In summary, we provided a systematic method to select species for future study that 529 

offers greater statistical power to test adaptive hypotheses as compared to a random selection 530 

of species. With this method of phylogenetic targeting, it is also possible to control for 531 

confounding variables, to incorporate alternative hypotheses, and to make use of existing data 532 

on the trait of interest. It thus provides a way to guide the selection of species relative to a 533 
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priori hypotheses. Through our web-based computer program, other researchers are able to 534 

easily implement the approach in a flexible and user-friendly way.   535 
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ONLINE APPENDIX A: THE MAXIMAL PAIRING PROBLEM 542 

 543 
The Maximal Pairing Problem (MPP) is the prototype of a class of combinatorial 544 

optimization problems with considerable interest in bioinformatics and comparative 545 

phylogenetics: Given an arbitrary phylogenetic tree T and weights ωxy for the paths between 546 

any two pairs of species (x, y) (which measures the benefit or our amount of information 547 

contributed by including the comparison of species x with species y), what is the collection of 548 

phylogenetically independent paths between pairs of leaves (i.e., no edge is shared twice) that 549 

maximizes the total weight? 550 

In what follows, we provide algorithmic details for the implemented version for how 551 

to compute the solution of the MPP, which we call maximal pairing (MP) (see also Arnold 552 

2008; Arnold and Stadler 2010). 553 

The algorithm proceeds from the root of the tree up to the leaves. Solutions of sub-554 

problems (i.e., the MP of trees rooted at nodes other than the root node) are tabulated and thus 555 

do not have to be recalculated. The score for the MP for a particular tree rooted at u, denoted 556 

ST(u), can be decomposed into two cases. First, the MP of T(u) may exclusively consist of pairs 557 

that do not go through u itself. All pairs that contribute to ST(u) are thus located in the trees 558 

rooted at the children of u, denoted chd(u). ST(u) therefore equals the sum of Sk for each k  559 

chd(u). To calculate ST(u), it is thus sufficient to recursively call all children of u. 560 

The second case is more complex. Here, at least one pair, denoted ru, with u as the least 561 

common ancestor belongs to the MP of T(u), and ST(u) is thus composed of the score of  562 

and the sum of the scores from the MP of all leftover subtrees that arise when the branches 563 

from ru are allocated in the tree, denoted subtrees(ru). To calculate ST(u), however, we have to 564 

find the particular pair ru that maximizes ST(u) for the second case (see also Figure A1). All 565 

subtrees k with k  subtrees(ru) are then called recursively. The procedure becomes much 566 

more complex if polytomous nodes (degree > 2) are involved, due to the fact that more than 567 
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one pair can go through the polytomous node without violating phylogenetic independence. In 568 

the current implementation, the MP algorithm calls polytomous nodes multiple times to find 569 

the combination of pairs that maximizes the score of the MP for the second case by using a 570 

brute force approach (for more details, see Arnold 2008).  571 

These two distinct cases allow a decomposition of the initial problem into smaller 572 

problems (dynamic programming). The recursions stop for subtrees with degree = 0, i.e. the 573 

tips of the tree, as their score is always 0. Ultimately, this leads to the following recursion 574 

formula: 575 

 576 

, with the notation introduced above. Figure A1 shows a graphical representation of the 577 

recursion formula. After comparing the scores for both cases, the higher-scoring case is 578 

selected, and the score and some additional information needed for the backtracing are 579 

tabulated. 580 

Finally, a backtracing procedure is applied to reconstruct the solution (i.e. the set of 581 

phylogenetically independent pairs), based on the information collected in the forward 582 

recursions.  583 

For binary trees, the forward recursions can be computed in O(n3) time and O(n2) 584 

space. If the tree is balanced, only O(n2 log2 n) time is needed. Backtracing can be computed 585 

in O(n2) time. For polytomous nodes p, execution time for the MP of the tree rooted at p is 586 

increased exponentially by a factor 2d-2 that accounts for multiple calls of p (see above). 587 

Execution time for polytomous trees can be improved to an overall polynomial-time algorithm 588 

by building auxiliary graphs for each polytomous node and solving maximum weighted 589 

matching problems (Arnold and Stadler 2010) 590 
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The MP algorithm works for arbitrary trees, including trees with polytomies. Hard and 591 

soft polytomies are treated differently, as follows. If the polytomy is defined as hard (i.e. split 592 

into more than two lineages), multiple pairs can go through the polytomous node without 593 

violating phylogenetic independence. Polytomies that are defined as a series of zero-branches 594 

(soft polytomies), however, are treated as a series of true dichotomies. Here, in most cases, 595 

fewer pairs can be selected, due to the fact that no branch can be shared twice. Treating 596 

polytomies as soft reduces execution time. Zero-length branches should be treated with 597 

caution, however, since the arbitrary order of zero-branches might change the MP 598 

considerably. 599 

600 
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ONLINE APPENDIX B: ALTERNATIVE MODELS OF EVOLUTION FOR 600 

SIMULATIONS 601 

We tested the narrow sense validity, in which the characters evolved on the randomly 602 

generated tree under Brownian motion, and then investigated the broad sense validity in 603 

which the characters evolved under different evolutionary models that were assumed to be 604 

unknown to the user.  To implement different evolutionary models, we transformed the tree 605 

using the Geiger package (Harmon et al. 2008), evolved the characters with a particular model 606 

on the transformed tree under Brownian motion, and used the original tree for the subsequent 607 

steps.  We investigated four different models that characterize stabilizing selection (the 608 

Ornstein-Uhlenbeck model) (Hansen 1997), an adaptive radiation model in which most 609 

change occurs early in the evolutionary history of the clade (Freckleton et al. 2003; Price 610 

1997), a speciational model in which branches were equal, and a transformation of the tree 611 

corresponding to weaker levels of phylogenetic signal (Freckleton et al. 2002; Pagel 1999). 612 

Table B1 provides more details on the models and their parameters.  613 

614 
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ONLINE APPENDIX C: SIMULATION RESULTS 614 

 615 

All simulation results (including the results not highlighted in the manuscript) are 616 

provided in the file “Simulation results.xls”. 617 

618 
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FIGURES 750 

 751 

Figure 1. Flow chart for applying phylogenetic targeting. Phylogenetic targeting is essentially 752 

a taxon sampling technique to systematically guide future data collection.  753 

 754 

Figure 2. Three out of the 15 possible pairings for an example tree. Paired species are 755 

highlighted in black. One pairing has three pairs, ten pairings two pairs, and four only one 756 

pair. In all pairings, pairs are phylogenetically independent, and no additional pair can be 757 

added without violating the requirement of phylogenetic independence. 758 

 759 

Figure 3. Example dataset and phylogeny for applying phylogenetic targeting. The tree shows 760 

continuously varying traits X1, X2, Yt and a binary trait Bt indicating whether the species has 761 

already been studied in relation to Yt. Two species have already been studied regarding Yt, and 762 

data on Yt are missing for four species. The goal is to identify which of the four unstudied 763 

species should be targeted for studying Yt. 764 

 765 

Figure 4. Results from the simulations. Simulation results for the percentage of the used range 766 

of variation for X1 when species pairs are selected using phylogenetic targeting (dark grey) 767 

and randomly (light grey) are shown. The x-axis plots the effects of the number of pairs that 768 

have been selected (6, 9, and 12). Contrast standardization is turned on. 769 

 770 

Figure 5. Selected results from the simulations under Brownian motion. Type I errors and 771 

statistical power for correlation tests based on pairwise comparisons (PC, left category) and 772 

phylogenetically independent contrasts (PIC, right category) are shown for phylogenetically 773 

targeted sampling (“PT”) and random taxon sampling (“R”). The first three bars in each 774 

category represent Type I error rates (based on 50, 70, and 90 species tree; from left to right), 775 
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and the last three bars represent statistical power (also based on 50, 70, and 90 species tree; 776 

from left to right). Contrast standardization is turned on, and six pairs were selected. 777 

 778 

Figure A1. Graphical representation of the recursion formula of the maximal pairing 779 

algorithm for bifurcating nodes. Calculation of the maximal pairing proceeds recursively from 780 

the root to the tips. For each internal node, two distinct cases can be distinguished that allow a 781 

decomposition of the initial problem into smaller problems (dynamic programming). The 782 

higher-scoring case is selected and the recursion proceeds. Note that for polytomous nodes, a 783 

different algorithm is used (not shown here). See text for details.  784 

785 
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TABLES 785 

 786 

TABLE 1. ILLUSTRATION OF THE SCORING SYSTEM AND THE MAXIMAL PAIRING, APPLIED TO FIGURE 2. 787 

X1 X2 

Score 
Pairwise 

comparison ∆Raw Score ∆Raw 
ScoreNC ScoreSD ScoreOD 

Summed 

score 

Sum of branch 

lengths 

Standardized 

summed score 

 

s1-s2* 0.5 0.385 -3 0.831 -0.171 0.171 1.216 6 0.496 

s1-s3 0.8 0.615 -1.5 0.916 -0.086 0.086 1.531 6 0.625 

s1-s4 1.3 1 -2.7 0.848 -0.154 0.154 1.848 6 0.755 

s1-s5 1 0.769 14.8 0.169 0.831 -0.831 0.938 8 0.332 

s1-s6 0.6 0.462 9.6 0.461 0.539 -0.539 0.922 8 0.326 

s2-s3 0.3 0.231 1.5 0.916 0.084 -0.084 1.146 4 0.573 

s2-s4 0.8 0.615 0.3 0.983 0.017 -0.017 1.599 4 0.799 

s2-s5 0.5 0.385 17.8 0 1 -1 0.385 8 0.136 

s2-s6 0.1 0.077 12.6 0.292 0.708 -0.708 0.369 8 0.13 

s3-s4* 0.5 0.385 -1.2 0.933 -0.069 0.069 1.317 2 0.931 
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s3-s5 0.2 0.154 16.3 0.084 0.916 -0.916 0.238 8 0.084 

s3-s6 0.2 0.154 -11.1 0.376 -0.634 0.634 0.53 8 0.187 

s4-s5 0.3 0.231 -17.5 0.017 -1 1 0.248 8 0.088 

s4-s6 0.7 0.538 -12.3 0.309 -0.703 0.703 0.847 8 0.3 

s5-s6* 0.4 0.308 5.2 0.708 0.292 -0.292 1.016 2 0.718 

 788 

NOTE.– ∆Raw = raw difference of trait values (see Figure 2). See scoring section for details on ScoreNC, ScoreSD, and 789 

ScoreOD. Calculation of the summed score based on the score of X1 and the ScoreNC scoring option for X2; sum of branch 790 

lengths according to the tree in Figure 2. Pairs that are selected in the maximal pairing are indicated by * in the leftmost 791 

column. 792 

793 
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TABLE B1. MODELS OF EVOLUTION USED IN THE SIMULATIONS. 793 

 794 

Model of evolution Description of the model Parameters in the GEIGER package 

Brownian motion constant-rate random-walk model None 

Ornstein-Uhlenbeck random-walk model with a central tendency, so 

that phenotypes tend to evolve towards one 

"optimal" value1 

α = 0.5, 1, and 2  

Adaptive radiation / Early burst rate of evolution decays exponentially through 

time 

endRate=0.3 and 0.6  

Speciational/ Punctuated  all branches have length 1 None  

Lambda transformation The parameter λ is a scaling parameter that can 

be used to estimate phylogenetic signal. 

Decreasing the value of λ has the effect of 

gradually eliminating phylogenetic structure. 

Under Brownian motion, λ takes the value 1.0 

by default. If the Brownian motion assumption 

is violated, however, λ will significantly depart 

from 1.0.  

λ=0.3 and 0.6 

NOTE.– 1 here: the ancestral state for the character 795 

 796 
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