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Abstract

Background: HIV-1 is a pathogen that T cell responses fail to control. HIV-1gp120 is the surface viral envelope glycoprotein
that interacts with CD4 T cells and mediates entry. HIV-1gp120 has been implicated in immune dysregulatory functions that
may limit anti-HIV antigen-specific T cell responses. We hypothesized that in the context of early SHIV infection, immune
dysregulation of antigen-specific T-effector cell and regulatory functions would be detectable and that these would be
associated or correlated with measurable concentrations of HIV-1gp120 in lymphoid tissues.

Methods: Rhesus macaques were intravaginally inoculated with a Clade C CCR5-tropic simian-human immunodeficiency
virus, SHIV-1157ipd3N4. HIV-1gp120 levels, antigen-specificity, levels of apoptosis/anergy and frequency and function of
Tregs were examined in lymph node and blood derived T cells at 5 and 12 weeks post inoculation.

Results/Conclusions: We observed reduced responses to Gag in CD4 and gp120 in CD8 lymph node-derived T cells
compared to the peripheral blood at 5 weeks post-inoculation. Reduced antigen-specific responses were associated with
higher levels of PD-1 on lymph node-derived CD4 T cells as compared to peripheral blood and uninfected lymph node-
derived CD4 T cells. Lymph nodes contained increased numbers of Tregs as compared to peripheral blood, which positively
correlated with gp120 levels; T regulatory cell depletion restored CD8 T cell responses to Gag but not to gp120. HIV gp120
was also able to induce T regulatory cell chemotaxis in a dose-dependent, CCR5-mediated manner. These studies contribute
to our broader understanding of the ways in which HIV-1 dysregulates T cell function and localization during early infection.
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Introduction

It is increasingly clear that a single HIV virion or a small founder

virus population infects a target cell in the mucosa and initiates a

localized infection that is followed by systemic spread of the virus

[1,2,3,4]. Early HIV infection is characterized by a reduction of CD4

T cells approximately 9 days post onset of acute illness, followed by an

increased number of CD8 T cells and an inversion of the CD4/CD8

T cell ratio [5,6,7]. These kinetics are associated with an increasing

plasma viral load and rising numbers of HIV-specific CD8 T cells. By

3–6 months post-inoculation, the plasma viral load has equilibrated to

a set point that is highly correlated with disease progression [5,8,9].

These early events set the stage for a prolonged and multi-

dimensional negative impact on the host immune system that

characteristically fails to eradicate the infection [8,9,10,11].

HIV proteins, including the surface envelope glycoprotein

gp120, perform critical functions during the viral life cycle as well

as playing a direct role in the immune pathogenesis of HIV/AIDS.

For example, it has been shown that HIV-1 gp120 can mediate

both viral entry and dysregulate immune cell function through its

well-described interaction with cellular receptors, including CD4

and the chemokine co-receptors, CXCR4 and CCR5 (for X4 and

R5 tropic viruses, respectively). HIV gp120 has been extensively

studied in vitro with respect to its effects on a variety of both stromal

and immune cell types [10,11,12]. HIV gp120 can impair

dendritic cell maturation or induce dendritic cells to become

immunosuppressive [12,13,14]. HIV gp120 has been shown in vitro

to dysregulate T cell functions, including TCR desensitization,

interference with co-stimulation, induction of apoptosis, and T cell

migration [15,16,17,18,19,20,21]. The impairment of these
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functions may have a dramatic effect on the formation and

stability of effective anti-HIV immunity beyond the characteristic

depletion of CD4 T cells seen in HIV/AIDS.

In vivo, gp120-induced immune dysfunction is more difficult to

quantify, although human studies have consistently shown that

gp120 is poorly targeted by both humoral and cellular immune

responses [22,23,24,25]. In addition, there is a growing body of

evidence to support the view that levels of gp120 required for

immune dysregulation in vitro are present in lymphoid tissues in vivo

[26]. Accumulation of high levels of gp120 in lymphoid organs of

early SHIV-infected rhesus monkeys (RM) have been demonstrated

[27], and high levels of the envelope protein have been found in the

lymphoid tissues of HIV-1-infected humans with very low or

undetectable viral loads [28,29]. These data support the view that

the earliest events after primary infection, including exposure of

immune cells to high local or systemic levels of gp120, play a major

role in the long-term outcome of infection [1,3,30]. Taken together,

these studies support the view that HIV-1 gp120 may play a role in

immune dysfunction in lymphoid tissues as infection progresses.

We examined the hypothesis that a biologically relevant R5

HIV-1 gp120, in the context of early mucosal SHIV challenge,

results in multimodal dysregulation of T cell-mediated immune

function that in some cases, are associated with persistently high

levels of gp120 in lymphoid tissues. Mucosal R5-SHIV inoculation

of RM was chosen as a model system because 90 percent of all

HIV infections among humans involve mucosal exposure to an

R5-tropic virus. In this non-human primate study, we demonstrate

early immune dysregulation of CD8 gp120-specific and CD4 Gag-

specific T cells in the lymph nodes (LN), as compared to the

peripheral blood. We found no enhancement of antigen-induced

cell death in LN derived T cells compared to the T cells from the

peripheral blood (PB); however, we observed increased levels of

PD-1 expression on CD4 T cells in the LN as compared to PB and

naı̈ve LN samples. Furthermore, LN gp120 levels correlated with

an increased proportion of regulatory T cells (Treg) in lymphoid

tissues. Depletion of CD4+CD25+ Treg cells augmented Gag-

specific CD8 T cell responses, whereas gp120-specific T cells

remained impaired in this context. Finally, we demonstrated that

R5 gp120 could induce Treg chemotaxis in vitro in a CCR5

mediated and concentration dependent manner. This study

demonstrates multiple T cell-mediated immune defects that are

associated with HIV-1 gp120 in LN during the first 12 weeks of

R5 clade C SHIV infection.

Materials and Methods

Ethics Statement
The studies were conducted in accordance with National

Institute of Health guidelines on the care and use of laboratory

animals at the Yerkes National Primate Research Center

((YNPRC), Emory University, Atlanta, GA), which is fully

accredited by the Association for Assessment and Accreditation of

Laboratory Animal Care International. The Animal Care and Use

Committee of YNPRC and DFCI approved all animal experiments.

Animals
Six rhesus macaques (RM) of Indian origin were exposed

intravaginally to various dilutions of a SHIV-1157ipd3N4 (R5-

SHIV) stock grown in RM peripheral blood mononuclear cells

(PBMC) (227 ng/ml of p24; 46106 /ml) 50% tissue culture

infectious doses (TCID50) as titrated in TZM-bl cells. This virus is

exclusively R5-tropic [31,32]. Two animals that received the lowest

mucosal dose (1:50) of SHIV did not seroconvert and were

challenged secondarily with 1 ml of viral stock via the intravenous

route (Table 1). Peripheral blood (PB) and peripheral nodes,

including axillary LN were sampled at 5 weeks and 12 weeks post-

inoculation. Some LN were frozen and stored at -80uC for later

quantitation of gp120. Mononuclear cells (MNC) were isolated from

PB via Ficoll gradient enrichment as previously described [27].

MNC were obtained from the LN via physical disruption with cell

lifters in a Petri dish and enriched by Ficoll gradient centrifugation.

Samples were frozen at 280uC prior to use in vitro assays.

Quantitation of HIV gp120 and SIV p27 in tissue
LN biopsy specimens from infected and non-infected animals

were thawed, weighed and suspended in 3.5 ml of lysis buffer

(RIPA containing protease inhibitors), per gram. After being

subjected to two freeze/thaw cycles, samples were spun at

16,0006 g for 10 min and supernatants were frozen at 280uC
prior to analysis as previously described [29]. Thawed samples

were diluted in RPMI1640 containing 10% fetal bovine serum

(FBS) and aliquots were assayed using the HIV-1 gp120 Antigen

Capture Assay (Advanced BioScience Laboratories, Inc., Ken-

sington, MD) and a signal amplification kit ELAST ELISA

Amplification (Perkin Elmer, San Jose, CA). Briefly, the modifi-

cations to the assay consisted of diluting the HIV-1 gp120 Antigen

Capture Assay kit conjugate 1:1 with 1% BSA PBS-Tween 20

(0.05%) followed by 60 min incubation at 37uC. Next, 100 ml of

Biotinyl Tyramide Solution (ELAST ELISA Amplification) was

added to each well, followed by a 20 min incubation at room

temperature. Detection consisted of adding 100 ml of diluted

Streptavidin–HRP Concentrate from the ELAST ELISA Ampli-

fication kit; 1000 fold with 1% BSA PBS-Tween 20 (0.05%) to

each well and incubating the plate at room temperature for

30 min. The peroxidase substrate and the stop solution from the

HIV-1 gp120 Antigen Capture Assay kit were used as described by

the manufacturer. After stopping the reaction, absorption was

measured at 450 nm as previously described [29]. SIV p27 was

measured via a Retrotek SIV p27 antigen ELISA as per

manufacturer’s instructions (Zeptometrix, Buffalo, NY.). Antigen

concentrations were calculated as the number picograms per ml of

tissue, according to the following equation: concentration of

antigen = {[(tissue volume + media added)/tissue volume] 6
antigen amount}/tissue volume.

Flow cytometry and intracellular cytokine staining (ICS)
PB and LN derived MNC were stimulated for 5 hours in the

presence of an inhibitor of Golgi function (Golgi plug, BD

Table 1. Levels of gp120 and p27 in the Plasma, Lymph Node
and Spleen of RM 12 weeks post-inoculation with R5-SHIV.

Animal Tissue gp120 (pg/ml) p27 (pg/ml)

Rbo-6 Plasma 0.00 21.53

LN 71.81 1832.04

Spleen 297.63 545.57

RBw-8 Plasma 0.00 62.82

LN 170.37 447.72

Spleen 278.16 603.89

Ryb-6 Plasma 0.00 7.54

LN 176.96 687.00

Spleen 451.38 1064.68

LN: Lymph Node.
doi:10.1371/journal.pone.0018465.t001

R5-SHIV Causes Multiple Defects in T Cell Function
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Biosciences, San Jose, CA) and anti-CD28 and anti-CD49d (clone

CD28.2 and 9F10, BD Biosciences). Antigen-specific stimulation

utilized 2 mg/ml of overlapping peptide pools from either a

consensus gp120 of HIV clade C (kindly provided by Dr. Christian

Brander), or from SIVmac239 Gag (AIDS Research and

Reference Reagent Program, Division of AIDS, NIAID, NIH,

15mers). Multi-parameter surface staining for CD3, CD4, CD8,

CD25, CD127, (CD3 clone Sp34-2, CD4 clone L200, CD8 clone

SK1, CD25 clone M-A251, CD127 clone hIL-7R-M21 BD

Biosciences) and PD-1 (clone EH12.2H7, Biolegend, San Diego,

CA) were carried out, followed by permeabilization and

intracellular staining for IFN-c or FoxP3 as per manufacturer’s

instructions (IFN-c clone B27 BD Biosciences, FoxP3 clone

PHC101 eBiosciences). Analysis was completed using FlowJo

Software (TreeStar, Ashland, OR) and gating was completed using

a ‘fluorescence minus one’ (FMO) approach.

Activation- Induced Cell Death (AICD)
A 96 well round-bottom plate was coated with 1 mg of anti-CD3

monoclonal antibody (clone Sp34-2, BD Biosciences) overnight at

4uC. Previously frozen samples from PB and LN were cultured in

the presence or absence of plate-bound anti-CD3 with the addition

of anti-CD28, anti-CD49d for 5 hours at 37uC and 5% CO2.

CD25 Depletion and CD4+CD25+ Isolation
PB and LN derived MNC were depleted via a MACS CD25

depletion kit (Miltenyi Biotec, Auburn, CA) as per the manufac-

turer’s instructions. CD25 depletion was confirmed via flow

cytometry and was 7868%. Depleted or non-depleted cells were

then stimulated and stained as described above to examine the role

of CD25 cells on T-effector cell functions. For migration studies,

human PBMC were obtained via a Ficoll spin and CD4+CD25+
T regulatory cells were isolated via a Human CD4+CD25+
MACS isolation kit (Miltenyi Biotec, Auburn, CA), as previously

described [27]. Cell subpopulation purity was confirmed via flow

cytometry to be greater than 80%.

Transmigration Assay
T cell migration was measured using Transwells (96-well format,

3-mm pore; ChemoTx System, Neuro Probe Inch, Gaithersburg,

MA) as previously described [33]. Briefly, 7,000 CD4+CD25+ T-

regs were loaded into the upper chamber, and 30 ml of medium

alone or media supplemented with CCR5 tropic YU2 gp120

(ImmunoDiagnositcs, Woburn, MA) was added to the lower or

upper chamber at the concentrations of 500 pg/ml, 5 ng/ml, and

500 ng/ml [34]. After a three hour incubation at 37uC and 5%

CO2, cells in the upper chamber of the transwell were removed and

migrated cells in the lower chamber were counted. using a

hemocytometer. The normalized transmigration index was calcu-

lated as the ratio between the cells counted in the presence of R5

gp120 and when cells were exposed to media alone in upper and

lower chambers. To determine whether T-cell migration was G

protein-mediated, the cells were pre-incubated with 100 ng/ml

pertussis toxin (PTx; Sigma Aldrich) for 1 h at 37uC, washed, and

then loaded in the chemotaxis chamber. In order to determine

whether the migration of cells in response to R5 gp120 gradients

was CCR5 dependent, cells were pre-incubated with the CCR5

antagonist, TAK-779, at a concentration of 40 nM [34].

Statistical analysis
All statistical analyses were performed in collaboration with Dr.

Gebremichael at the Department of Biostatistics and Computa-

tional Biology at the Harvard School of Public Health. The

analyses were completed using the Student t-Test and determina-

tions of correlation coefficients using Excel software.

Results

Quantifiable amounts of gp120 in secondary lymphoid
organs of RM at 12 weeks post mucosal R5-SHIV
inoculation

We have previously demonstrated that gp120 is found in the

secondary lymphoid organs of individuals with chronic HIV

infection at levels that were disproportionally high in comparison

to both local p24 concentrations or plasma viral loads[29]. We

sought to examine if during early mucosal R5-SHIV challenge, R5

gp120 would also be found at high levels in LN and spleen. At 12

weeks post-inoculation, we observed measureable amounts of

gp120 in LN as compared to PB (Table 1, 139.7634 pg/ml).

Interestingly, at 12 weeks, we also observed significantly more

gp120 in the spleen of infected RM than in the LN

(342.4654.7 pg/ml, vs 12 week LN; p,0.05 non-paired T-test),

in spite of the fact that half of the animals (3/6) had non-detectable

viral loads in their PB (,1,300 copies/ml)[35]. Furthermore, we

observed considerably lower levels of p27 than the expected

Gag:gp120 ratio would lead one to predict. Previous studies of the

protein content of HIV virions have demonstrated a ratio of p24 to

gp120 to vary between 6:1 and 60:1 (table 1, 12 weeks p,0.05

spleen, p,0.001 LN vs an expected 6:1 Gag:gp120 ratio,

p,0.0001 60:1 Gag:gp120 ratio) [29,36]. These data demonstrate

that early after inoculation there is a gradient of gp120 between

high detectable levels in LN, as described above, and undetectable

amounts in PB at 12 weeks.

Reduced Gag-specific CD4 and gp120 specific CD8 T cell
responses in the LN of RM during early infection

We examined responses of T cells derived from PB and LN

upon stimulation with overlapping peptide pools of gp120 and

Gag antigens at both 5 and 12 weeks post-inoculation. All animals

were productively infected and had measurable viral loads at 5

weeks post inoculation. Half (3/6) of the RM subsequently had

viral loads that were below the level of detection at 12 weeks post

inoculation (Figure 1A). HIV-1gp120 specific IFN-c+ CD4 T cells

were lower in LN compared to PB, although this was not

significant (Figure 1B &1C). However, the frequency of gp120-

specific IFN-c+ CD8 T cells was lower in LN than in PB at both 5

and 12 weeks post-inoculation (CD8 p,0.05, Figure 1D & 1E).

Furthermore, in general gp120-specific CD4 and CD8 IFN-c+ T

cell responses in LN did not increase over time post R5-SHIV

inoculation, whereas anti-gp120 CD4 and CD8 IFN-c+ T cell

responses in the PB increased over time between 5 and 12 weeks

post-inoculation(Figure 1C & E). We also observed a different

temporal pattern of Gag-specific responses. We observed a

significant reduction with respect to Gag-specific CD4 T cells in

LN as compared to PB at 5 weeks but not at 12 weeks post R5-

SHIV inoculation (5 weeks: p,0.01, Figure 1F). Gag-specific CD4

and CD8 T cells increased over time regardless of anatomic

location (Figure 1F & G). These data suggest that fewer gp120-

specific T cells reside or are maintained in LN than in PB and that

this effect is stable over time.

Increased levels of Activation-Induced Cell Death (AICD)
occur during early infection but are not associated with
HIV-1 gp120 in lymph nodes

Previous in vitro studies have demonstrated that gp120 can

enhance T cell sensitivity to AICD and therefore we hypothesized

R5-SHIV Causes Multiple Defects in T Cell Function
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that the relative depletion of anti-gp120 responses might be due to

enhanced activation of LN-derived T cells [16,20,21,37]. We

examined the ability of T cells to undergo AICD after polyclonal

stimulation and compared the results between T cells derived from

either PB or LN from naı̈ve RM or RM during early infection at 5

and 12 weeks post-inoculation. Upon examination of CD4 and

CD8 T cells derived from naive animals, we found that PB-derived

T cells demonstrated induction of AICD and stimulation-

increased apoptosis, as expected (p,0.005 PBMC, Figure 2A &

B). Interestingly, the basal levels of CD4 T cell apoptosis at 5 and

12 weeks (non-stimulated) were higher in infected RM as

compared to PB derived T cells from naı̈ve animals (p,0.005

PBMC 5 weeks, p,0.05 PBMC 12 weeks, Figure 2A). In contrast

to naı̈ve animals, PB-derived CD4 T cells from R5-SHIV-infected

animals could not be further stimulated via anti-CD3 at either

time point (Figure 2A). A similar pattern was observed with respect

to CD8 T cells: PB-derived cells had higher basal apoptosis at 5

weeks post-inoculation compared to PB-derived T cells from naı̈ve

animals (p,0.05 PBMC naı̈ve vs 5 weeks, Figure 2B). Moreover,

LN-derived CD8 T cells did not demonstrate enhanced levels of

apoptosis upon stimulation with CD3 at either 5 or 12 weeks post-

inoculation (Figure 2B). Increased levels of AICD in LN were not

correlated with HIV gp120 levels in these tissues (data not shown).

These results suggest that AICD may not play a major role in

Figure 1. Reduced antigen-specific CD4 and CD8 T cell responses in LN RM during early R5-SHIV infection. RM were inoculated
intravaginally (n = 4) or intravenously (n = 2) with SHIV-1157ipd3N4 (R5-SHIV). Blood samples were drawn for viral load analysis at 0, 1, 2, 3, 8 and 12
weeks post infection (A). Paired peripheral blood samples (PB) and lymph nodes (LN) from RM during early infection were sampled at 5 and 12 weeks
post-inoculation (B-G). PB and LN lymphocytes were stimulated with overlapping clade C gp120 peptide pools at 5 and 12 weeks post inoculation
and IFN-c+ gp120-specific CD4 (B,C) and CD8 (D,E) T cell were assayed. F & G) PB and LN derived cells were stimulated with overlapping SIVmac239
Gag peptide pools at 5 and 12 weeks post inoculation and IFN-c+ Gag-specific CD4 (F) and CD8 (G) T cell responses were assayed. Data representative
of frequency of total (C,E-G) or frequency of parent (B,D) are shown. Error bars 6SEM, *p,0.05, ** p,0.01.
doi:10.1371/journal.pone.0018465.g001

R5-SHIV Causes Multiple Defects in T Cell Function
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immune dysregulation observed in LN of RM during early

infection.

Enhanced expression of PD-1 in LN derived T cells from
RM during early infection

Although, we observed no differences in apoptosis that were

associated with reduced antigen-specific LN responses we

proposed that T cell anergy may in part account for the observed

immune dysregulation. Previous studies have demonstrated that

during chronic HIV infection, levels of PD-1 are upregulated and

correlated with anergic T cell responses to HIV antigens

[38,39,40]. Furthermore, the blockade of PD-1 restores T cell

function in animal models [41,42]. To further elucidate immune

dysregulation in LN during early infection, we examined the level

of PD-1 on T cells derived from PB and LN of naı̈ve and infected

RM at 5 and 12 weeks post-R5-SHIV inoculation. We observed

no major differences with respect to the proportion of T cells

expressing PD-1 in any of the groups (data not shown). However,

when we examined the amount of receptor on a per-cell basis, we

observed higher levels of PD-1 on LN-derived CD4 T cells from

R5-SHIV-infected RM at 5 weeks compared to cells from naı̈ve

RM as measured by mean fluorescence intensity (MFI, p,0.005

Figure 3A). Whereas, PB-derived CD4 T cells at 5 weeks post-

inoculation had levels of PD-1 similar to those seen in naı̈ve

animals (Figure 3A). In general, we also observed more PD-1 on

CD4 T cells derived from LN at both 5 and 12 weeks post-

inoculation as compared to PB-derived CD4 T cells (5 weeks

p.0.005,12 weeks p,0.05 Figure 3A). We also observed a similar

Figure 2. Enhanced basal T cell apoptosis from PB, but not LN of R5-SHIV-infected RM. Naı̈ve and R5-SHIV challenged RM were sampled at
5 and 12 weeks post-inoculation. PB and LN samples from either naı̈ve or 5 and 12 weeks post-inoculation samples were either non-stimulated (NS) or
stimulated with plate-bound anti-CD3 (CD3) for 24 hours. A) Percent of apoptotic CD4 T cells from naı̈ve RM or infected RM at 5 or 12 weeks post
inoculation comparing non-stimulated to CD3 stimulated is shown (naı̈ve PBMC non-stimulated vs naı̈ve PBMC stimulated p,0.005; naı̈ve PBMC non-
stimulated vs 5 weeks infected PBMC non-stimulated p,0.005; naı̈ve PBMC non-stimulated vs 12 weeks infected non-stimulated p,0.05). B) Percent
of apoptotic T cells from naı̈ve RM or infected RM at 5 or 12 weeks post inoculation comparing non-stimulated to CD3 stimulated, (naı̈ve PBMC non-
stimulated vs naı̈ve PBMC stimulated p,0.005; naı̈ve PBMC, non-stimulated vs 5 weeks infected PBMC, non-stimulated p,0.05).
doi:10.1371/journal.pone.0018465.g002
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phenomenon with respect to LN-derived CD8 T cells, where PD-1

receptor expression was upregulated at 5 weeks post-inoculation

compared to cells from naı̈ve RM (p,0.005, Figure 3B). These

data suggest that upregulation of PD-1 can be observed in LN-

derived CD4 T cells of R5-SHIV challenged RM during early

infection in LN and not in PB.

Increased frequency of CD4+CD25+CD127low T cells in LN
of RM during early infection correlate with tissue levels of
gp120

We hypothesized that lower frequencies of gp120-specific CD4

and CD8 T cells and to some extent Gag-specific CD4 and CD8 T

cells seen in LN compared to PB, resulted from antigen-specific

Treg suppression. To address this, we examined the proportion of

CD4+CD25+CD127low Treg in PB and LN of SHIV challenged

RM during early infection. We observed CD4+CD25+CD127low T

cells in both PB and LN of RM during early infection

(Figure 4A & B). We found consistently higher frequencies of

CD4+CD25+CD127low T cells at 5 weeks post-inoculation in LN

compared to PB (.85% of all CD4+CD25+CD127low T cells were

FoxP3+) (5 weeks: p,0.01, Figure 4C, E). In order to determine

whether the observation of increased frequencies of

CD4+CD25+CD127low T cells was associated with decreased

frequencies of IFN-c+ T cells in LN, we examined the effect of

Tregs on antigen-specific T cell production of IFN-c. To

accomplish this, we depleted 5 week post-inoculation PB and

LN mononuclear cell samples of CD4+CD25+ cells, where we

observed significant differences in the frequencies of Treg and the

greatest difference between IFN-c producing, antigen-specific T

cells (gp120 and Gag) from PB and LN. CD4+CD25+ depletion

reduced the level of this subpopulation by 7868%. We observed a

trend toward more Gag-stimulated CD8 T cells producing IFN-c
in the CD4+CD25+-depleted samples than in the non-depleted

samples, as shown by the difference between depleted compared to

non-depleted cells (p = 0.06, Figure 4F). Interestingly, gp120-

stimulated CD8 T cells were not impacted by the depletion of

CD4+CD25+ T cells (data not shown), which is similar to

observations in mouse models where the effects of Tregs are most

potent on immunodominant epitopes [43,44,45]. Although Treg

depletion had no impact on the restoration of CD4 T cell

responses, these results may be difficult to interpret due to the fact

that the Treg depletion step may have reduced the proportion of

Figure 3. Enhanced expression of PD-1 on LN-derived CD4 and CD8 T cells. Naı̈ve and intravaginally challenged RM were sampled at 5 and
12 weeks post-inoculation. Samples from PB and LN derived lymphocytes were examined by flow cytometry for the amount of PD-1 that was
expressed at 5 and 12 weeks post-inoculation. Mean Fluorescent Intensity (MFI) for CD4 (A) and CD8 (B) of samples from infected and naı̈ve RM are
shown. Significant increases in PD-1 expression by LN derived CD4 and CD8 T cells were seen at 5 weeks post inoculation compared to naı̈ve animals.
doi:10.1371/journal.pone.0018465.g003
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effector T cells in our samples. Finally, we observed that increasing

levels of CD4+CD25+CD127low T cells in LN of RM at 5 weeks

and 12 weeks post-inoculation positively correlated with the

measured concentration of gp120 in lymphoid tissues (Figure 4G,

r2 = 0.7 p = 0.035).

Tregs migrate towards R5 gp120 in a CCR5 and G-protein
coupled receptor manner

In view of the finding that LN levels of gp120 correlated with

the number of Tregs in this tissue, we hypothesized that gp120

may play a direct role in Treg recruitment. To examine this, we

investigated the migration of Tregs from human HIV naı̈ve

donors in response to recombinant R5 HIV-1 gp120. We observed

that Tregs migrated with increasing frequency to an R5 (YU2)

gp120 in a dose-dependent manner (Figure 5A). Furthermore, the

specific CCR5 antagonist, TAK-779, inhibited Treg migration

demonstrating the dependence of this directional migration on

CCR5. Additionally, pertussis toxin, an inhibitor of G-protein

coupled receptor signaling, potently inhibited Treg migration

toward R5 gp120 (Figure 5A). Finally, we observed that Tregs do

not migrate away from R5 gp120 at any concentration of envelope

protein that we examined (Figure 5B). These results suggest that

recruitment of Tregs to lymphoid tissues during HIV infection

may be in part due to the chemoattractant activity of R5 gp120 for

this T cell subpopulation.

Discussion

In this study, we demonstrate a significant impact of early R5-

SHIV infection on critical aspects of T cell function at and beyond

the 5-week time point of maximal CD4 T cell depletion and viral

load, including upregulation of PD-1 expression, differential

suppression of gp120-specific T cell responses and preferential

accumulation of Treg cells in lymphoid tissues. These immune

dysregulatory effects are associated with high levels of the envelope

protein (gp120) of HIV in lymphoid tissues when viral load is low

or undetectable in PB (12 weeks). These data are consistent with a

growing literature describing the effects of gp120 on T and B-cell

function in vitro [10,11,12,13,14,15,16,17,19,23] and gp120-

mediated dysregulation of immune cell function and localization

in vivo [22,27,29,46,47].

Our results reveal consistent differences between the measure-

ments of immune activation and regulation of PB versus LN-

derived CD4 and CD8 T cells, regardless of route of infection

(intravenous or mucosal). These differences are also evident

despite the small sample size and the inclusion of two animals in

this study that were challenged via a non-mucosal route and are

consistent with a similar study performed in the dual-tropic SHIV-

KB9 model using intravenous transmission [27]. In addition, these

data imply that the anti-HIV immune response during early

infection could easily be overestimated if the responses generated

by circulating T cells was the only measurement made in this

Figure 4. Increased numbers of CD4+CD25+CD127low T cells in the LN of R5-SHIV infected RM. RM were sampled at 5 and 12 weeks
post-inoculation. PB and LN samples were examined by multi-colour flow cytometry for the proportion of Treg cells present. A) Representative
dotplots from PB and LN gated on size and granularity as well as CD3 and CD4, and subsequently on CD25 vs CD127 as shown (% frequency of
parent). B) Gating strategy demonstrating the fluorescent minus one scheme utilized as above and CD25 vs CD127 as shown. C & D) Individual RM
Treg cell frequencies of parental gate at 5 weeks post-infection *p,0.05 LN compared to PB (C), and 12 weeks (non-significant) (D) post-infection. E)
Time course of Treg accumulation at 5 and 12 weeks post infection in PB and LN, mean 6SEM. F) LN samples depleted of CD4+CD25+ T cells and
stimulated with overlapping SIVmac239 Gag peptide pools. Data depicted as relative change of Gag- and gp120 specific CD8 responses in
CD4+CD25+ depleted compared to non-depleted samples, (p = 0.06 vs change in gp120 specific CD8 T cells.) G) Correlation of Tregs with gp120 in
the LN of intravaginally challenged RM (r2 = 0.7, two-tailed p = 0.035).
doi:10.1371/journal.pone.0018465.g004

Figure 5. T regulatory cells migrate toward R5 HIV gp120. CD4+CD25+T regulatory cells were purified from naive human PBMC and exposed
to various concentrations of gp120 in a Boyden chamber migration assay. A) Normalized transmigration index of Tregs that migrate towards various
gp120 concentrations (500 pg/ml, 5 ng/ml, 500 ng/ml) in presence of CCR5 antagonist, TAK-779, or pretreated with pertussis toxin (Ptx 100 ng/ml)
(*p,0.05 vs TAK-779). B) Normalized transmigration index of Tregs that migrate away from gp120 concentrations (500 pg/ml, 5 ng/ml, 500 ng/ml) in
presence of CCR5 antagonist, TAK-779 (40 nM), or pretreated with pertussis toxin (Ptx, 100 ng/ml).
doi:10.1371/journal.pone.0018465.g005
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context. The examination of PB T cell function as a surrogate

marker of immune activation in lymphoid tissues in HIV has been

the gold standard in both basic science and clinical trials.

Interestingly, there is an increasingly consistent lack of correlation

between PB T cell responses and immune protection in RM

models [24,27,48,49]. Although immune cells residing in LN are

more difficult to sample, they may provide a deeper understanding

of the mechanisms used by the virus to subvert and evade host

immune responses.

The presence of gp120 in LN of RM during early infection was

shown to be associated with dysregulated IFN-c responses of CD4

and CD8 T cells [27]. Previously, our laboratory demonstrated that

the addition of exogenous gp120 to PB CD4 and CD8 T cells

reduced HIV-specific IFN-c responses to those levels observed in

LN [27]. In the current study, increased levels of gp120 and the

impaired IFN-c response observed in LN were associated with

increased levels of the T cell exhaustion marker, PD-1. Moreover,

we observed enhanced basal apoptosis in PB of infected RM,

suggesting that apoptosis may play a role in immune dysregulation,

but this did not correlate with LN gp120 levels, PD-1 levels or

impaired IFN-c responses. The lack of correlation to apoptosis may

be due to the fact that tissues have differential apoptotic rates during

early infection [50]. Although HIV gp120 has been demonstrated to

upregulate T cell death in vitro, we were unable to find a direct

correlation to this parameter in vivo in this model [16,19,21].

Regulatory T cells have been demonstrated to have either a

deleterious effect or no effect on HIV infection [51,52,53,54,55].

Here, we show that increased numbers of CD4+CD25+CD127low

Treg correlate to the levels of gp120 in the LN at 12 weeks post

infection and that the LN resident Tregs are in part responsible for

the dampening of ex vivo CD8 IFN-c responses against Gag

antigen. Treg depletion resulted in a trend toward higher Gag-

specific T cell responses but did not enhance CD8 gp120-specific

T cell responses. This finding carries the caveat that it is difficult to

interpret the effect of Treg depletion on Gag and gp120-specific

CD4 T cells as we deplete a population of CD4+CD25+ that may

include T effector/memory cells [56]. These results support

previous findings in mouse models, where immunodominant

epitopes are preferentially targeted by Tregs [43,44,45]. Our data

also suggest that other mechanisms, such as direct suppression via

gp120, may play a role in immune dysregulation. In vitro studies

suggest that gp120 itself can suppress the immune response

independent of Treg [57]. Interestingly, a recent study by Becker

et al. reported that a single dose of HIV-1 gp120 was able to

ameliorate graft versus host disease in a mouse via the specific

activation of Tregs [58]. Our in vitro data demonstrate that Tregs

migrate toward R5 gp120 in a CCR5/Gai-protein coupled

receptor-dependent manner. We propose that the accumulation of

Tregs in lymphoid tissue during acute R5-SHIV infection may be

completely or partially driven by HIV-1 gp120 induced Treg cell

chemoattraction.

This study is the first demonstration of multimodal dysregula-

tion of T cell function that occurs in vivo during early mucosal

challenge with R5-SHIV. Furthermore, these data support the

view that the persistence of HIV-1 gp120 in lymphoid tissues

during early infection is associated with dysregulation of T cell

function beyond CD4 T cell depletion that is emblematic of HIV/

AIDS. Further examination of the effects of the virus and its

envelope protein on HIV-1 antigen specific responses in lymphoid

tissues in vivo at early time points following virus inoculation will

assist in the broader understanding of the pathogenesis of HIV

infection and those aspects of the disease which will need to be

prevented or reversed by a vaccine or viral eradication approach.
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but not peripheral FOXP3+ regulatory T cells are highly increased in untreated

HIV infection and normalize after suppressive HAART. Blood 108: 3072–3078.

53. Ji J, Cloyd MW (2009) HIV-1 binding to CD4 on CD4+CD25+ regulatory T

cells enhances their suppressive function and induces them to home to, and

accumulate in, peripheral and mucosal lymphoid tissues: an additional

mechanism of immunosuppression. Int Immunol 21: 283–294.

54. Kinter A, Mcnally J, Riggin L, Jackson R, Roby G, et al. (2007) Suppression of

HIV-specific T cell activity by lymph node CD25+ regulatory T cells from HIV-

infected individuals. Proc Natl Acad Sci USA 104: 3390–3395.

55. Kinter AL, Hennessey M, Bell A, Kern S, Lin Y, et al. (2004) CD25(+)CD4(+)

regulatory T cells from the peripheral blood of asymptomatic HIV-infected

individuals regulate CD4(+) and CD8(+) HIV-specific T cell immune responses

in vitro and are associated with favorable clinical markers of disease status. J Exp

Med 200: 331–343.

56. Dunham R, Cervasi B, Brenchley JM, Albrecht H, Weintrob A, et al. (2008)

CD127 and CD25 expression defines CD4+ T cell subsets that are differentially

depleted during HIV infection. J Immunol 180: 5582–5592.

57. Hu H, Fernando K, Ni H, Weissman D (2008) HIV envelope suppresses CD4+
T cell activation independent of T regulatory cells. J Immunol 180: 5593–5600.

58. Becker C, Taube C, Bopp T, Michel K, Kubach J, et al. (2009) Protection from

graft-versus-host disease by HIV-1 envelope protein gp120-mediated activation

of human CD4+CD25+ regulatory T cells. Blood 114: 1263–1269.

R5-SHIV Causes Multiple Defects in T Cell Function

PLoS ONE | www.plosone.org 10 April 2011 | Volume 6 | Issue 4 | e18465


