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Abstract

Metachondromatosis (MC) is a rare, autosomal dominant, incompletely penetrant combined exostosis and enchondroma-
tosis tumor syndrome. MC is clinically distinct from other multiple exostosis or multiple enchondromatosis syndromes and is
unlinked to EXT1 and EXT2, the genes responsible for autosomal dominant multiple osteochondromas (MO). To identify a
gene for MC, we performed linkage analysis with high-density SNP arrays in a single family, used a targeted array to capture
exons and promoter sequences from the linked interval in 16 participants from 11 MC families, and sequenced the captured
DNA using high-throughput parallel sequencing technologies. DNA capture and parallel sequencing identified
heterozygous putative loss-of-function mutations in PTPN11 in 4 of the 11 families. Sanger sequence analysis of PTPN11
coding regions in a total of 17 MC families identified mutations in 10 of them (5 frameshift, 2 nonsense, and 3 splice-site
mutations). Copy number analysis of sequencing reads from a second targeted capture that included the entire PTPN11
gene identified an additional family with a 15 kb deletion spanning exon 7 of PTPN11. Microdissected MC lesions from two
patients with PTPN11 mutations demonstrated loss-of-heterozygosity for the wild-type allele. We next sequenced PTPN11 in
DNA samples from 54 patients with the multiple enchondromatosis disorders Ollier disease or Maffucci syndrome, but
found no coding sequence PTPN11 mutations. We conclude that heterozygous loss-of-function mutations in PTPN11 are a
frequent cause of MC, that lesions in patients with MC appear to arise following a ‘‘second hit,’’ that MC may be locus
heterogeneous since 1 familial and 5 sporadically occurring cases lacked obvious disease-causing PTPN11 mutations, and
that PTPN11 mutations are not a common cause of Ollier disease or Maffucci syndrome.
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Introduction

Cartilage tumor syndromes are characterized by multiple

cartilaginous bone tumors that develop in childhood, often causing

significant morbidity and predisposing to chondrosarcoma.

Tumors can form as exostoses (on the surface of bone), as in the

autosomal dominant, multiple osteochondroma (hereditary mul-

tiple exostoses) syndromes (MO; MIM 133700 and 133701), or as

endosteal tumors (within bone), as in the sporadically occurring

multiple enchondromatosis disorders (MIM 166000) Ollier disease

and Maffucci syndrome. In MO, mutations in EXT1 or EXT2,

which encode heparan sulfate glycosyltransferases, affect chon-

drocyte orientation in the growth plate [1]. A small percentage of

patients with Ollier syndrome have mutations in PTH1R, which

encodes the receptor for parathyroid hormone and parathyroid

hormone-related protein, causing altered chondrocyte differenti-

ation in the growth plate [2]. The cause of Maffucci syndrome is

unknown [3]. Patients with MO do not develop endosteal tumors,

and patients with Ollier disease or Maffucci syndrome do not

develop exostotic tumors [1,3,4].

Patients with metachondromatosis (MC; MIM 156250) form

exostotic and endosteal tumors (Figure 1). Fewer than 50 cases of

MC have been published since Maroteaux’s initial description in

1971 [5]. Exostotic lesions in MC occur frequently in the digits,

involve metaphyses and epiphyses, and tend to grow toward the

joint; in contrast, exostotic lesions in MO occur frequently in the

long bones, involve only the metaphyses, and tend to grow away

from the joint [6–11]. MC exostotic lesions can also spontaneously

decrease in size and completely regress [6,7,9,12]. Endosteal

lesions in MC are common in the metaphyses of long bones and in

the pelvis [7–11]. Avascular necrosis of the femoral head, due to

endosteal tumors, has been a frequent complication in patients

with MC [7,8,13–15]. Hand deformity due to endosteal tumors is

uncommon in patients with MC, whereas it is often a significant

problem for patients with Ollier disease and Maffucci syndrome

[3]. Finally, malignant transformation has only been reported in

one patient with MC, whereas it has been more frequently

reported in patients with MO, Ollier disease, and Maffucci

syndrome [3,4,16]. The distinct distribution and clinical behavior

of lesions in patients with MC, suggest that MC is pathophysio-

logically distinct from these other cartilage tumor syndromes. We

therefore sought to better characterize MC and to determine its

genetic basis.

Results

Patient selection
We diagnosed participants as having MC based upon the

presence of both multiple exostotic and endosteal cartilaginous

lesions as previously described [5–10,15]. We excluded from

analysis participants with solitary lesions, contiguous endosteal

lesions suggestive of Ollier disease, soft tissue lesions suggestive of

Maffucci syndrome, or radiographs suggestive of MO. We

included participants who had clinical and radiographic features

of MC, even if they lacked a positive family history. For each

patient, the clinical history and radiographs were reviewed by at

least 3 authors. MC patients from 17 unrelated families from 9

countries were identified (Supplementary Table 1). All participants

gave their informed consent following the guidelines of each

referring institution. In 10 families disease segregation is consistent

with autosomal dominant inheritance. In 7 families, the disease is

suspected to have arisen de novo. Immediate family members of

patients with sporadically occurring MC were interviewed and

examined, although detailed imaging was not performed. For 8

familial cases, blood or DNA was available from additional family

members.

Clinical and pathologic features of metachondromatosis
Figure 1 depicts features seen in affected participants with MC.

No phenotypic differences could be found between sporadic or

familial cases of MC. Radiographs identify exostotic and endosteal

lesions of the digits (Figure 1A–1C) and long bones (Figure 1E–

1H), along with degenerative hip disease secondary to endosteal

lesions in the femoral neck (Figure 1I). Spontaneous regression of

exostotic lesions is seen in radiographs obtained 10 years apart in

the same patient (Figure 1F,1G). Also depicted in Figure 1 are

histopathologic features that distinguish exostoses in patients with

MO from those in patients with MC, based upon a comparison of

30 exostoses excised from children with MO and 15 exostotic

lesions excised from 3 affected individuals with MC. Exostoses in

children with MO have cartilage caps with endochondral bone

growth immediately beneath the cap (Figure 1J). In contrast,

exostoses in children with MC have a predominantly fibrous cap

and a core of disorganized cartilage surrounded by trabecular

bone (Figure 1K, 1L). In all MC cases, the lesions were bilateral

and not obviously confined to a single body segment as in Ollier or

Maffucci patients.

Linkage analysis
We performed linkage analysis in the largest family (Family A,

Figure 2A) to identify a genetic locus for MC. Raw genotype data

were generated using Affymetrix 6.0 SNP arrays and multipoint

parametric linkage analysis of the autosomal genome was

performed using MERLIN [17]. Because non-penetrance and

non-ascertainment are potential confounding factors in the

diagnosis of MC, we analyzed only founders and affected

individuals (Figure 2A). Although this limited the maximum

attainable LOD score to 2.7, which is lower than the genome-wide

significance threshold of 3.3, the dense marker set ensured a

reasonable probability that only one large interval that achieved

the maximum LOD score would be observed, with the remainder

of the genome being excluded.

Author Summary

Children with cartilage tumor syndromes form multiple
tumors of cartilage next to joints. These tumors can occur
inside the bones, as with Ollier disease and Maffuci
syndrome, or on the surface of bones, as in the Multiple
Osteochondroma syndrome (MO). In a hybrid syndrome,
called metachondromatosis (MC), patients develop tumors
both on and within bones. Only the genes causing MO are
known. Since MC is inherited, we studied genetic markers
in an affected family and found a region of the genome,
encompassing 100 genes, always passed on to affected
members. Using a recently developed method, we
captured and sequenced all 100 genes in multiple families
and found mutations in one gene, PTPN11, in 11 of 17
families. Patients with MC have one mutant copy of
PTPN11 from their affected parent and one normal copy
from their unaffected parent in all cells. We found that the
normal copy is additionally lost in cartilage cells that form
tumors, giving rise to cells without PTPN11. Mutations in
PTPN11 were not found in other cartilage tumor syn-
dromes, including Ollier disease and Maffucci syndrome.
We are currently working to understand how loss of
PTPN11 in cartilage cells causes tumors to form.

PTPN11 Mutations in Metachondromatosis
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We identified a single interval on chromosome 12, from 121.5

to 132.3 cM, that attained the maximum LOD score of 2.7

(Figure 2B). No other autosomal interval .1 cM yielded a peak

LOD score .21.9. Several intervals ,1 cM attained LOD scores

.0 (Figure S1), but we considered these unlikely to be candidate

intervals and instead assumed they represented either unfiltered

genotyping errors or short ancestral population haplotypes, rather

than familial haplotypes inherited from a common ancestor.

Multiplexed targeted genomic capture and sequencing
of linkage interval

We next performed array-based capture, followed by Illumina

GAII sequencing, using bar-coded DNA libraries created from 16

individuals in 11 families. We sequenced 1 affected individual in 8

families, 2 affected individuals in 1 family, and 2 affected and 1

unaffected individual in 2 families (Table S1). We prepared bar-

coded genomic DNA libraries, having an average insert size of

150 bp, using sheared DNA from each of the 16 individuals

(Figure S2). We performed array-based targeted capture by

pooling each DNA library and hybridizing the pooled sample to

an Agilent Technologies 1M SureSelect DNA capture array

containing 973,952 probes targeting 844,339 bp within the

8.6 Mb candidate interval, including 88.4% and 98.6% of UCSC

exons and CCDS coding sequence, respectively. After hybridiza-

tion and elution, the captured DNA was PCR amplified, purified

to remove primer dimers, and sequenced on two lanes of an

Illumina GA II.

We obtained 50 million, 80 bp, single-end reads. Novobarcode

software was used to sort the reads according to their 3 bp

barcode, and Novoalign was used to align the reads to the

reference genome (hg19). We obtained between 1 and 6 million

reads for each individual. Among individuals, an average of 61%

(62%) of the aligned reads mapped to regions targeted by the

capture array (Figure S3A). Of the bases targeted by the capture

array, 75% (67%) had a read depth of at least 56, which

diminished to 55% (614%) after the removal of PCR duplicates

(Figure S3B). Twenty percent of targeted bases were not

captured. In the 3 families for which pairs of affected family

members were sequenced, total filtered variants in the candidate

interval (388–1499 per individual) were analyzed to find variants

shared by both affected individuals from the same family

(Table 1). In all 3 families, frameshift mutations in exon 4 of

PTPN11 were the only novel coding variants present in both

affected family members and, for Families A and B, absent in the

unaffected individual. Family A had a 5 bp deletion, Family B

had a more complex deletion/insertion, and Family C had a 2 bp

deletion (Table S1). In the remaining 8 families for which only 1

affected individual per family was sequenced, there were 18 novel

coding variants present in $3 reads, one of which was a nonsense

mutation in exon 13 of PTPN11 (p.Q506X) (Figure S4). We used

Sanger sequence analysis of PCR amplimers to demonstrate that

affected family members from these 4 families had PTPN11

mutations, and that unaffected family members lacked PTPN11

mutations.

Sanger sequence analysis of the 15 coding exons of PTPN11 in

the 7 families for whom we had not found mutations by array

capture and Illumina-sequencing detected a 1 bp deletion in exon

11 in 1 of the 7 families (Family D). This deletion was within a

98 bp segment that had been targeted but not captured in any of

the DNA samples. Another family (F) had a splice-acceptor site

mutation (AG.CG) in intron 5 in 2 affected siblings, but not in

either parent. The siblings’ mother was clinically affected with

MC, although less severely than her children. The mother was the

first in the family to have MC and was the only member of the

family who was included in the Illumina sequencing. The site of

the splice-site mutation identified in her children was covered 256
in her DNA sequence and was always wild-type, as were her

Sanger sequence results. These data suggest the mother is mosaic

for a PTPN11 mutation and that the family’s mutation would have

been found by Illumina sequencing had we initially sequenced her

children’s DNA.

We subsequently collected DNA from an additional 6 MC

families. Sanger sequence analysis revealed a nonsense mutation

involving exon 3 (p.K99X) in one family (I), and a splice site

mutation in intron 9 (c.1093-1G.T) in another family (G). In

total, we found PTPN11 mutations in 10 of 17 families. Five

mutations were frameshift, 2 were nonsense, and 3 disrupted a

splice-acceptor site (Figure 3A, Table S1). Each family had a

different mutation and mutations were scattered across the gene

(Figure 3A). In two families without mutations we had performed

aCGH and did not find evidence of PTPN11 intragenic deletions

or duplications (Table S1). We did not have other family members’

DNA samples from the one familial MC patient who lacked a

PTPN11 mutation to be able to test for locus heterogeneity by

linkage analysis.

Multiplexed targeted genomic capture and sequencing
of PTPN11 and associated genes

To test whether the patients without PTPN11 coding mutations

had noncoding mutations in PTPN11 or had mutations in other

genes, we designed a second Agilent 1M capture array. Firstly, we

included probes to target the entire PTPN11 gene, excluding Alu

repeats. Secondly, we included probes targeting the exons of 74

genes that function in the same pathways as PTPN11, including

the Ras/MAPK and PI3K/Akt pathways (Table S2). Thirdly, we

included probes targeting the exons of the MO genes EXT1 and

EXT2, to determine whether any of our patients lacking mutations

and classic radiographic features of MC had been misdiagnosed.

Barcoded genomic libraries for an individual from each of the 7

MC families without PTPN11 coding mutations and from 2

families originally referred with MC, but whose radiographic

features were more consistent with MO, were pooled and

hybridized to the capture array. The captured DNA was then

sequenced using two lanes of Illumina GAII 42 bp single end

sequencing. For each barcoded sample, 4.3 (61.2) million reads

were obtained, of which 37% (67%) mapped to regions targeted

by the array (Figure S3A). Of the bases targeted by the array, 85%

(66%) were covered by a read depth of at least 106, which

dropped to 83% (68%) after the removal of PCR duplicate reads

(Figure S3B).

Identified variants with a quality score .20 were filtered to

remove SNPs listed in the SNP database (version 132) and the

1000 genomes project (Nov. 2010 release). No PTPN11 coding

mutations were found. We then analyzed the noncoding regions

and identified one 39 UTR mutation, and 7 intronic mutations, of

which 6 were in LINE elements or other repetitive regions (Table

S3). All intronic mutations were at least 300 bp from the nearest

exon and, using an online splice prediction tool (http://genes.mit.

edu/GENSCAN.html), were not predicted to alter splicing. We

then analyzed variants identified in the exons of the 76 other genes

included in the capture array (Table S2). No nonsense, frameshift

or splice site mutations were identified. Of the missense mutations

that were present in more than 4 independent sequencing reads, 4

were nonsynonomous (ERBB2 p.S1050L, MTOR p.P1408S, MVP

p.R49S, SOS2 p.D952N) and 4 were synonomous (PIK3C2B

p.D478D, RAF1 p.L351L, MAP2K2 p.D140D, MVP p.T199T).

Further experiments will be needed to determine if any of the

PTPN11 Mutations in Metachondromatosis
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Figure 1. Clinical, radiographic, and histologic features of metachondromatosis. (A) Hand radiographs of participant B-IV-7, taken when 8-
years-old. Exostotic lesions (white arrows) are present in the phalanges and metacarpals, and arise from the metaphysis (arrows) or epiphysis
(arrowheads). Exostoses tend to point toward the adjacent joint. Endosteal lesions (red arrows) cause metaphyseal expansion. (B, C, D) Hand
photograph and radiograph, and foot photograph of participant C-III-1 taken when 9-years-old, depicting mild shortening and deformity of the
digits, a large exostotic lesion arising from the second metacarpal bone in the hand, and ankle enlargement superior to the malleoli due to exostoses
of the tibia and fibula. (E) Ankle radiograph of participant A-IV-8 taken when 19-years-old depicting a recurrence of a previously excised exostotic
lesion of the distal tibia that spans the physis. (F, G) Lateral knee radiographs of participant B-IV-7, taken at 6 years and 16 years, respectively. Note
that multiple exostotic lesions of the distal femur and proximal fibula (white arrows) seen when 6-years-old (F) have regressed in the absence of
surgical intervention by 16-years of age (G). (H) Ankle radiograph of participant B-IV-7, taken when 5-years-old, demonstrating radiolucency
associated with endosteal lesions (red arrows) in the tibia and fibula, and mild metaphyseal flaring. Despite combined metaphyseal and epiphyseal
involvement, this individual’s linear growth was not affected. (I) Hip radiograph of participant A-IV-8 taken when 22-years-old depicting an endosteal
lesion of the femoral neck (arrow) that has caused degeneration of the femoral head and spurring of the acetabulum. (J) Low power
photomicrograph of an hematoxylin and eosin (H&E) stained section through an exostosis that had been excised from a patient with hereditary
multiple exostoses. Note this exostosis is a typical osteochondroma, having a well-developed surface cartilaginous cap (arrow) and endochondral
bone immediately below (arrowhead). The scale bar represents 0.15 cm (K) Photomicrograph of an H&E stained exostotic lesion excised from
participant A-IV-5 when 5-years-old. This lesion is predominantly covered by a fibrous cap (arrow) and has only a small, eccentric cartilaginous cap
(double arrowhead). The majority of cartilage in this, and in 14 other exostoses from patients with MC that have been analyzed, is found within a
central core (arrow) and has bone formation occurring at the periphery of this cartilage core. The scale bar represents 0.5 cm. (L) High-power image
of the central cartilage core shows chondrocytes with prominent cytoplasm no organization typical of a growth plate. The scale bar represents
100 mm.
doi:10.1371/journal.pgen.1002050.g001

PTPN11 Mutations in Metachondromatosis
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novel noncoding PTPN11 mutations or novel variants in the other

genes are disease causing.

We next analyzed the sequencing read depth across the PTPN11

locus to detect deletions or duplications. In one individual (Patient

S), we identified an ,15 kb region spanning exon 7 that contained

half as many reads as would be expected based upon the read

depths of the other patients included in the capture array

(Figure 3B). As expected, PCR primers that flank this 15 kb

region failed to produce amplimers when wild-type genomic DNA

was used as template. However, PCR amplification using genomic

DNA from Patient S yielded an ,700 bp PCR product and

Sanger sequence analysis of this product indicated that 14,629 bp

Figure 2. Linkage mapping of metachondromatosis to chromosome 12q. (A) Pedigree of the family (Family A) used to define the
metachondromatosis candidate interval. Affected individuals have filled symbols. Individuals who were not examined but who were assumed to be
obligate carriers have interior dots. An arrow identifies the proband. Participants whose DNA was used for linkage analysis are double underlined.
Those participants with a single or double underlines were tested for the PTPN11 mutation, after the mutation had been identified in participants A-
III-10 and A-IV-5 by targeted array capture and Illumina sequencing. (B) LOD score plot of chromosome 12. Only one interval, larger than 1 cM, in the
entire genome attained the maximum LOD score of 2.7. Several autosomal intervals, each smaller than 1 cM, also achieved maximum or positive LOD
scores (Figure S1). These likely represent either genotyping errors or short ancestral haplotypes that are coincidental with linkage. The physical
coordinates shown are derived from GRCh37/hg19.
doi:10.1371/journal.pgen.1002050.g002

Table 1. Novel coding variants identified in three metachondromatosis families.

Family A B C

Individual III-10 IV-5 IV-7 III-5 III-1 II-5

Total variants* 529 388 536 1499 480 709

Coding 45 40 50 200 37 51

Not listed in dbSNP 6 12 10 167 5 7

Shared 3 1 1

Not present in unaffected family member 1 1 n/a

Genes affected and predicted protein changes PTPN11 p.V137fs PTPN11 p.T153fs PTPN11 p.S118fs

*filtered to remove low confidence variants.
doi:10.1371/journal.pgen.1002050.t001

PTPN11 Mutations in Metachondromatosis
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of genomic sequence (chr12:112,897,487–112,912,115) had been

replaced with a single CA dinucleotide (Figure 3B). In addition,

PCR amplification and sequencing of PTPN11 in peripheral blood

cDNA from this patient, using a forward primer in exon 6 and a

reverse primer in exon 8, detected a mutant cDNA that lacked

exon 7 (data not shown). The loss of exon 7 results in a frameshift

with introduction of a premature stop codon (T253LfsX54).

The read depth of the remaining 76 genes targeted by the array

was also analyzed to detect deletions or duplications. Two patients

initially included in the study, but on radiographic review were felt

more likely to have MO than MC, were found to have deletions

involving EXT1 (Figure S5). In one patient (Q), the first exon of EXT1

contained half as many reads over its 1.8 kb as expected (Figure S5A).

In a second patient (N), all exons of EXT1 had half as many reads as

expected (Figure S5A). In additional to skeletal lesions, this patient

has developmental delay, microcephaly and mild dysmorphism,

suggesting a possible contiguous gene deletion syndrome. EXT1

deletions were confirmed in both patients by multiplex ligation-

dependent probe amplification (MLPA) (Figure S5B, S5C).

PTPN11 loss-of-function mutations in
metachondromatosis

Our finding of nonsense, frameshift, and splice-site mutations in

multiple exons, as well as a large deletion, suggests that MC-

causing PTPN11 alleles are loss-of-function. We tested this

hypothesis by performing Western blots on whole protein extracts

from white blood cells and from an excised exostotic lesion in a

patient (B-IV-7) with a PTPN11 frameshift mutation in exon 4. An

anti-SHP2 antibody that recognizes an epitope amino-terminal of

the polypeptide encoded by the frameshifted exon detected only

full-length, wild-type SHP2 protein (Figure S6).

Loss of PTPN11 wild-type alleles in the cartilage cores of
MC exostoses

We next determined whether MC exostoses arise from a

‘‘second hit,’’ similar to what has been observed in autosomal

dominant MO [18]. We looked for a second hit in cells of the

cartilage core of an MC lesion (e.g., Figure 1K) by performing

microdissection, PCR amplifying the mutation containing exon,

and Sanger sequencing the amplimers. In tumors from two

different patients (A-IV-5, A-IV-8), with a 5 bp frameshift

mutation in exon 4, we observed a clear excess of mutant

sequence versus wild-type sequence in the tumors’ cartilage cores,

as compared to the patients’ peripheral blood and bone/marrow

from the lesion (Figure 4A). We quantified the amount of mutant

versus wild-type sequence, by extracting DNA from the cartilage

core of patient A-IV-8, PCR amplifying exon 4, and subcloning

amplimers to determine the percent that contained the mutant

allele. Forty-four of 52 individual subclones contained the mutant

allele, which is significantly higher (p,0.001) than expected for a

heterozygous mutation. In contrast, 58% of subclones (34/59)

from adjacent unaffected bone/bone marrow contained the

mutant allele, which is not significantly different from the expected

value of 50% (p = 0.24). These data are consistent with an MC

exostosis arising from a second hit (loss of the wild-type allele)

within a cell that ultimately contributes to the lesion’s cartilage

core.

Because the mutant allele is 5 bp shorter than wild-type

PTPN11 in these two patients, we tested for loss of heterozygosity

at a second polymorphic site in PTPN11 to control for potential

PCR bias in amplifying the exon with the deletion. In their

peripheral blood DNA, patient A-IV-5 and her unaffected mother

are heterozygous for a benign polymorphism in intron 11 of

Figure 3. PTPN11 mutations identified in MC participants. (A) Schematic of the exonic structure of PTPN11 (above) and the corresponding
protein structure of SHP2 (below). The locations of mutations that were identified in MC are indicated with black lines. Predicted protein changes are
indicated for the nonsense (blue) and frameshift (red) mutations, while the cDNA designation is indicated for the splice-site mutations (green). (B)
Log2 values of the number of Illumina reads obtained per 50 bp window in participant S, divided by the average number of reads obtained in other
participants whose DNA was captured simultaneously using the second capture array. Shown are all 50 bp windows spanning regions of PTPN11
targeted by the array, with the corresponding exonic structure of PTPN11 shown below. The red bar indicates a region spanning exon 7, in which the
average log2 value is approximately 21, suggesting a heterozygous deletion. PCR amplification and sequencing of the breakpoint, using primers on
either end of the deletion, indicate that 14,629 bp of sequence have been deleted and replaced with a single CA dinucleotide.
doi:10.1371/journal.pgen.1002050.g003
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PTPN11 (rs41279092). The abundance of this SNP, which is in the

wild-type PTPN11 allele, was markedly reduced in the lesion’s

cartilage core, again consistent with LOH occurring in the cell that

drives formation of the cartilage core (Figure 4B).

PTPN11 mutations are not found in other cartilaginous
tumor syndromes

We finally asked whether mutations in PTPN11 are associated

with other cartilaginous tumor syndromes. We sequenced the

coding exons of PTPN11 in 38 lesions excised from patients with

Ollier disease, 2 peripheral blood samples from patients with

Ollier disease, 15 lesions excised from patients with Maffucci

syndrome, 4 solitary enchondromas, 9 chondrosarcomas (1

polyostotic), and 3 osteochondromas without EXT1 or EXT2

mutations. We did not find PTPN11 coding sequence mutations in

any patient sample. In 24 percent of the samples we observed

heterozygosity for noncoding SNPs that are known common

variants, suggesting that large PTPN11 gene deletions and other

causes of LOH are not frequently associated with these other

cartilaginous tumors.

Discussion

We identified 17 unrelated families with MC. Clinical features

were similar to previously published cases [5–10,15]. The

exostoses of MC had been assumed to be identical to the

osteochondromas of MO; however, we demonstrate that they are

histologically unique lesions with a large cartilaginous core

(Figure 1J–1L). We combined linkage analysis in a single MC

family with DNA capture and parallel sequencing of bar-coded

DNAs from several MC families to identify mutations in PTPN11

as a cause of MC. In MC patients without PTPN11 coding

Figure 4. Loss of the wild-type PTPN11 allele in the cartilage of two exostoses. (A) Electropherograms of PCR amplified template DNA that
had been extracted from whole blood, a section of an exostosis, or the cartilage core of the same exostosis. Exostoses were available from patients A-
IV-5 and A-IV-8. The site of the 5 bp deletion in exon 4 of PTPN11 in both patients is indicated with a box. Note that that the heights of the peaks
corresponding to the mutant sequence are markedly reduced in amplimers from the cartilage-core compared to amplimers from blood or from a
section that contains cartilage, bone and fibrous tissue. This is consistent with loss-of-heterozygosity in the cartilage component of the exostoses. (B)
Electropherograms of PCR amplified template DNA extracted from blood from participants A-III-9, A-III-10 and A-IV-5, as well as DNA extracted from
the cartilage core of the exostosis from participant A-IV-5 shown in (A). Blood DNA electropherograms indicate that participants A-III-9 and A-IV-10
are heterozygous at a position (asterisk) in intron 11 of PTPN11. This is the site of a known common polymorphism (rs41279092). Exostosis cartilage
DNA electropherograms have a reduced adenine peak height at this position. This suggests that the wild-type PTPN11 allele inherited from the
unaffected parent (A-III-9), which carries an adenine at this position, has been lost in cells that contribute to formation of the exostosis’ cartilage core.
doi:10.1371/journal.pgen.1002050.g004
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sequence and splice site mutations, we generated and pooled

barcoded DNAs, and performed a second targeted capture that

included the entire PTPN11 gene and exons from 76 other genes.

This led us to detect an ,15 kb deletion in a patient by analyzing

the depth of sequencing reads (Figure 3B). In total, we found likely

disease-causing PTPN11 mutations in 11 of 17 families.

Concurrent with our studies of MC, Sobreira et al. (2010)

reported PTPN11 mutations in 2 MC families [11]. They

performed whole-genome sequencing (WGS) in a single affected

individual who was a member of family in which MC was

segregating. This approach also required these investigators to

include linkage data to reduce the number of novel potentially

disease-causing heterozygous changes that are identified by WGS

[19,20]. The investigators next identified an independently arising

PTPN11 mutation in an unrelated patient to strengthen the

evidence for causality. However, having only studied genomic

DNA and finding frameshift mutations in the same exon (exon 4)

in their two unrelated patients, Sobreira et al. (2010) could not

definitively determine the mechanism by which PTPN11 muta-

tions cause MC.

Missense mutations in PTPN11 have previously been identified

in patients with Noonan, Noonan-like, and LEOPARD syn-

dromes, as well as in juvenile myelomonocytic leukemia [21]. In

these disorders, the mutations are gain-of-function and/or

dominant negative for SHP2, which is the PTPN11 protein

product [22,23]. SHP2 is a protein tyrosine phosphatase and an

important intracellular signaling molecule linking several growth

factor receptors to the Ras/MAPK and other signaling pathways

(Reviewed in [24]). Therefore, frameshift mutations in exon 4

might also create an abnormal protein product by altering

PTPN11 mRNA splicing. Alternatively, the frameshift mutations

might result in loss-of-function because of nonsense mediated

mRNA decay or rapid degradation of a truncated SHP2

polypeptide. Our finding of nonsense, frameshift, and splice-site

mutations in multiple exons, as well as a whole-exon deletion,

suggests that MC-causing PTPN11 alleles are loss-of-function. We

tested this hypothesis by performing Western blots on whole

protein extracts from white blood cells and from an excised lesion

containing affected and unaffected tissue, and detected only full-

length, wild-type SHP2 protein (Figure S6), confirming that the

mutant alleles are loss-of-function.

Exostoses in MO originate from the ‘‘second hit’’ mutations

[18]. Mice with conditional alleles at the EXT1 locus demonstrate

that only a few cells having two mutant alleles are sufficient to

cause other cells to become misdirected and form an exostosis

[25]. By performing microdissection, we found evidence for loss of

the wild-type PTPN11 alleles in the majority of cells within the

cartilage cores of exostoses from two MC patients (Figure 4),

consistent with a ‘‘second hit.’’ Recently, Bauler et al. used a

ubiquitously expressed Ert2-Cre driver in 6–8 week-old Ptpn11

floxed mice to generate mice that were Ptpn11-null in multiple

tissues. Among the consequences of completely deleting SHP2 was

the appearance of ectopic cartilage islands in the animals’

metaphyseal trabecular bone and growth plates [26]. These

findings are consistent with the distribution of endosteal tumors

and exostoses seen in patients with MC. The findings in mice with

homozygous deletion of Ptpn11 contrast with the absence of

skeletal lesions in mice that have heterozygous loss-of-function

mutations [27]. We suspect that mice with heterozygous mutations

have a much lower incidence of noticeable ‘‘second hits’’

compared to humans because they have fewer skeletal cells and

shorter lifespans. Homozygous inactivation of Ptpn11 solely in

mouse chondrocytes may be required to enable a detailed

understanding of how SHP2 deficiency leads to tumorigenesis.

We did not detect PTPN11 mutations in 6 of 17 patients with

MC phenotypes, including 1 patient with a family history of MC

and 5 patients who are the first affected members in their families.

DNA is not available from other affected family members of the

familial case to determine whether MC exhibits locus heteroge-

neity. Two patients with de novo disease did have DNA variants

found in the 39 UTR and/or in introns. None of these variants are

in likely regulatory regions or in regions important for mRNA

splicing; however, we cannot conclude they are benign. Further-

more, we cannot exclude the possibility that patients with de novo

disease are somatic cell mosaics for PTPN11 mutations that are not

present in white blood cell DNA, similar to the mildly affected

mother in Family F who had two affected children. Despite these

caveats, MC could be locus heterogeneous, similar to Noonan

syndrome, which can be caused by mutations in PTPN11 or in

other components of the Ras/MAPK pathway [28]; however, our

targeted capture and sequencing of 74 genes that included most of

the Ras/MAPK and PI3K/Akt signaling pathways did not find an

obvious mutation in another gene in any of the 6 PTPN11

mutation-negative MC patients.

We found no evidence of PTPN11 coding mutations in other

cartilage tumor syndromes, including Ollier disease and Mafucci

syndrome. Although sequencing was performed on lesional tissue

rather than whole blood, it is possible that we may have missed

causative mutations that are present in only a subset of cells within

the lesion. We may also have missed mutations in the 59 and 39

untranslated regions of PTPN11 contained within exons 1, 15, and

16, that we did not sequence in these patients. Based on our

finding heterozygosity for noncoding SNPs in many of these

samples, it is unlikely that large PTPN11 gene deletions or other

causes of LOH are common in these syndromes. Despite the

aforementioned limitations of our mutation detection method, our

data are consistent with the separation of MC from the other

cartilage tumor syndromes based on clinical and pathologic

features.

In conclusion, we combined linkage analysis in a single family

with DNA capture and parallel sequencing of bar-coded DNAs

from several families to identify mutations in PTPN11 as a cause of

MC. The advantages of this approach are its ability to identify a

region of interest, then simultaneously sequence affected individ-

uals from multiple unrelated families, and then focus on genes for

which novel SNPs or other mutations are seen in more than one

family, all at reasonable cost (,$10,000 in consumables). In

patients with MC and PTPN11 mutations, we conclude that the

mutations are loss-of-function since the mutant protein is not

expressed, and that the loss of the remaining wild-type allele via a

‘‘second hit’’ is responsible for the formation of the exostoses.

Since we did not detect PTPN11 mutations in all MC families, MC

may be locus heterogeneous, although we have not found evidence

after sequencing more than 70 genes that function in related

pathways. Finally, precisely how mutations in PTPN11 give rise to

the exostoses and endosteal tumors in patients with MC is not yet

known. However, this question can now be addressed since mice

with alleles of Ptpn11 that can be conditionally inactivated in

temporal and site-specific manner are available [26,29].

Materials and Methods

Ethics
Informed consent was obtained through a Children’s Hospital

Boston IRB approved protocol. Specimens and/or DNA received

from external institutions were collected under IRB approved

protocols at host institutions and received coded without

identifying information.
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Linkage analysis
Raw genotype data were generated for multiple members of

family A using Affymetrix 6.0 SNP arrays, and genotypes were

called using Affymetrix Genotyping Console with the Birdseed v2

algorithm and a confidence threshold of 0.02. SNPs with ,100%

sample call rate or pedigree minor allele frequency of 0 were

removed, then multipoint parametric linkage analysis of the

remaining 421,922 autosomal and 17,169 X-linked SNPs was

performed using MERLIN and its derivative MINX, respectively,

with Affymetrix Caucasian allele frequencies and deCODE

Genetics genetic map positions. The disease allele frequency was

estimated at 1E-7, and phenocopies and non-penetrance were not

permitted (affectation probability 0/1/1). Because non-penetrance

and non-ascertainment are potential confounding factors in MC,

we analyzed only founders and affected individuals.

Barcoded genomic libraries
To generate genomic libraries for each individual, 2 mg of

genomic DNA were first sheared to ,100 bp–200 bp using

Adaptive Focused Acoustics following the manufacturer’s protocol

(Covaris, Inc). Blunt-ended fragments were generated using an

End-it DNA End-Repair kit (Epicenter), purified using Agencourt

AMPure XP magnetic beads (Beckman Coulter), and eluted in

10 mM Tris Acetate, pH 8.0. The fragments were A-tailed using

the Klenow fragment (NEB), purified, eluted in 16Quick Ligase

Buffer (Quick Ligation kit, NEB), and incubated with Quick T4

DNA ligase and 100 mM barcoded-adapters (Table S4) to create a

library of adapter-ligated fragments. A different barcoded adapter

was used for each genomic DNA library. Each library was again

purified using Agencourt AMPure XP magnetic beads and eluted

in 40 ml of 10 mM Tris Acetate, pH 8.0. Libraries used for

hybridization to the first capture array were amplified according to

two strategies: 3 ml amplified for 18 cycles in four 50 ml PCR

reactions (Phusion High-Fidelity DNA polymerase, Finnzymes), or

2 ml amplified for 11 cycles in one 50 ml PCR reaction that was

then purified and amplified for 17 cycles in ten 50 ml PCR

reactions (FastStart Taq DNA polymerase, Roche). For the

libraries used for hybridization to the second capture array,

13 ml was amplified for 15 cycles in ten 50 ml PCR reactions

(Phusion High-Fidelity DNA polymerase, Finnzymes). Primers are

provided in Table S5. Sizes of amplified libraries were confirmed

to be between 200–300 bp necessary for Illumina GA II

sequencing prior to hybridization (Figure S2).

Capture array design
To enrich regions of interest in the linked interval for

sequencing, we used an Agilent Technologies 1M SureSelect

DNA capture array. Target regions were defined using the UCSC

Genome Browser and included: the union of exons from multiple

GRCh37/hg19 gene, mRNA, and Alt Events tracks; 30 bp of

proximal and distal intronic flanking sequence; and 1000 bp of

upstream promoter sequence. Targets were padded with 60 bp of

additional proximal and distal flanking sequence to promote

uniform capture coverage, for a total size of 1,187,477 bp. Probes

were designed against NCBI36/hg18 using the Agilent eArray

software (https://earray.chem.agilent.com/earray/) and translat-

ed coordinates, with 60-nt length, 3-nt spacing, and repetitive

elements masked. The resulting 243,488 probes spanned

844,339 bp (GRCh37/hg19), and included 71.1%, 72.2%,

88.4%, and 98.6% of the padded target, unpadded target, UCSC

exons, and CCDS coding sequence, respectively. The probes and

their reverse complements were each applied in duplicate to the

capture array for a total of 973,952 probes.

For the second 1M SureSelect DNA capture array, Biomart

(http://uswest.ensembl.org/biomart/) was used to obtain the

Ensembl NCBI37/hg19 coordinates for the exons of 76 genes

(Table S2). Exons were padded with 90 bp to define a 718,566 bp

target region. eArray was used to design 568,634 probes to target

the repeat masked sequences of this region (91%). The target

region for PTPN11 was defined as 93,180 bp spanning 1 kb

upstream to 2 kb downstream of the gene. Repeat masker (http://

www.repeatmasker.org/) was used to mask only Alu repeats (37%

of the region) resulting in a target region of 61,365 bp, for which

55,205 probes were designed using eArray. All probes were 60-nt

in length and spaced every 1-nt. The capture array was designed

to include all probes (623,839 total), as well as the reverse

complement of every 2nd probe and every 17th probe, for a total of

972,455 probes.

Array hybridization
For the first capture array, 1.4 mg of each of the 16 amplified

libraries was pooled and hybridized to the array following Agilent’s

SureSelect DNA Capture Array protocol version 1.0. Different

blocking oligonucleotides (Table S5) were added to the hybrid-

ization. After elution from the array, half of the captured library

was amplified in five 50 ml PCR reactions for 18 cycles using

Phusion High-Fidelity DNA polymerase (Finnzymes) and post-

capture primer pair (Table S5), purified using an E-Gel CloneWell

(Invitrogen) to remove primer dimers, and re-amplified using

fifteen PCR cycles with the same primer pair. The amplified

library was again purified to eliminate primer dimers using E-Gel.

For the second capture array, 2 mg of each of the 12 amplified

libraries was pooled and hybridized to the array. After elution, half

of the captured library was amplified in five 50 ml PCR reactions

for 15 cycles and purified using Agencourt AMPure XP magnetic

beads. Further details of the array design and methods for

sequence analysis are provided in the supporting information.

Additional methods for Illumina data analysis, copy number

analysis, Sanger sequence analysis of PTPN11 (Table S6), DNA

extraction from lesional tissue, PCR product subcloning experi-

ments, aCGH analysis, MLPA (Table S7), and immunod-

etection of SHP2 are also provided in the supporting information

(Text S1).

Supporting Information

Figure S1 Linkage mapping of metachondromatosis to chro-

mosome 12q. A whole genome LOD score plot is depicted. The

chromosomes are color-coded according to the key on the right.

Raw genotype data were generated using Affymetrix 6.0 SNP

arrays and multipoint parametric linkage analysis was performed

using MERLIN with Affymetrix Caucasian allele frequencies and

deCODE Genetics genetic map positions. The disease allele

frequency was estimated at 1E-7, and phenocopies and non-

penetrance were not permitted (affectation probability 0/1/1).

Error checking identified and removed unlikely genotypes during

initial analysis, and the cleaned data were then reanalyzed.

Because non-penetrance and non-ascertainment are potential

confounding factors in the diagnosis of MC, we analyzed only

founders and affected individuals. Our analysis identified one

interval on chromosome 12 (orange above), from 121.5 to

132.3 cM, that attained the maximum LOD score of 2.7. The

minimum linked interval is bounded by rs1861693 (LOD score

2.1; GRCh37/hg19 coordinate 107603157) and rs1520173 (2.3;

116182525), and is flanked proximally by rs12422243 (25.8;

107595567) and distally by rs2460488 (24.3; 116187660), for a

maximum linked interval of 8,592,092 bp. We did not observe any

PTPN11 Mutations in Metachondromatosis
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other autosomal interval .1 cM with a peak LOD score .21.9.

Several autosomal intervals ,1 cM attained LOD scores .0, but

we considered these unlikely to be candidate intervals and instead

assumed they represented either unfiltered genotyping errors or

short ancestral population haplotypes, rather than familial

haplotypes inherited from a common ancestor. Although MC is

well documented as autosomal dominant and many of our own

pedigrees show male-to-male inheritance, family A does not;

therefore we also examined the X chromosome. Four X-linked

intervals .1 cM attained LOD scores .22, but the largest was

3.4 cM and the highest LOD score was 0.3; we therefore assumed

these intervals also represented either unfiltered genotyping errors

or short ancestral population haplotypes.

(PDF)

Figure S2 Amplified libraries before and after array capture. (A)

Bioanalyzer plot of a representative amplified genomic DNA

library before targeted array capture. Peaks at 15 bp and 1500 bp

represent size standards. The broad peak between 100 and 300 bp

comprises the barcoded and amplified DNA library. (B) Photo-

graph of an Ethidium Bromide stained 4% agarose gel containing

the pooled library after targeted array capture and amplification,

but before E-gel purification. Note the broad band of amplimer

between 200 bp and 300 bp in size. These sized amplimers were

used to obtain Illumina GA II sequence.

(PDF)

Figure S3 Specificity of target capture and read depth of

targeted bases. (A) Graph depicting the number of filtered Illumina

GA II reads per barcoded sample that aligned to the targeted

region (dark blue), aligned elsewhere in the human genome

(medium blue), or failed to align to the reference genome (light

blue), for both the first (left) and second (right) capture array

experiment. Each letter refers to a family and if more than one

member of the family was sequenced then the specific family

member is indicated. For each array, of the 50 million reads

obtained from two lanes of GA II sequencing, between 1 and 6

million reads were obtained for each individual. The percentage of

each individual’s reads that mapped to the targted region was

,60% for the first array and ,40% for the second array. (B)

Percentage of bases targeted by the array having read depths

greater than or equal to a specific fold-coverage. Graph depicting

the mean of the percent of targeted bases captured in each

individual at greater than or equal to 1, 5, 10, 20, 30, 40, and 50-

fold coverage (nX). Values are shown before (dark red) and after

(light red) removal of PCR duplicates. Error bars indicate 1 SD.

(PDF)

Figure S4 Identified coding variants in unrelated individuals

from the first capture array. Total coding variants identified in the

8 unrelated individuals who were the only members of their

families included in the first array capture experiment. The graph

depicts the number of variants and the number of reads containing

each variant in an individual. Novel (dark gray) and previously

characterized (light gray) SNPs are separated into different bars.

Note that the ratio between novel and known SNPs decreases as

the number of reads containing that SNP increases. These data

suggest that most novel SNPs seen in 3 or fewer reads represent

sequence artifacts rather than real variants. Shown above the

graph are novel variants that were observed in three or more reads

in single individuals, with the gene names and predicted amino

acid changes indicated. Nonsense mutations are indicated in red,

nonsynonomous mutations are indicated in purple, and synono-

mous mutations are indicated in green. No insertion or deletion

variants were seen in more than 2 reads. The family in which the

novel variant was identified is indicated in parentheses. Two

mutations were identified in PTPN11, including a nonsense

mutation and a synonomous mutation. The nonsense mutation

was confirmed by Sanger sequence analysis; however, the

synonomous mutation could not be confirmed and therefore

likely represents a false positive result.

(PDF)

Figure S5 Heterozygous deletions of EXT1 identified in two

participants. (A) Log2 values of the number of Illumina reads

obtained per 50 bp window in participants N and Q, divided by

the average number of reads obtained in other participants whose

DNA was captured simultaneously using the second capture array.

Shown are all 50 bp windows spanning the exons of four genes

(FGFR1, LYN, EXT1, PTK2) located on chromosome 8 that were

targeted by the capture array. The red bars indicate a region

spanning all EXT1 exons in participant N, and exon 1 of EXT1 in

participant Q, where consecutive windows have log 2 values of

approximately 21, suggesting heterozygous deletions of these

regions. (B) MLPA amplification products separated by electro-

phoresis. The amplification products of the MLPA probes

targeting both the middle and the boundary of EXT1 exon 1,

and the MLPA probes targeting the middle of EXT1 exon 1, have

reduced peak heights in participants N and Q respectively

(arrowheads). (C) Ratio of each EXT1 peak height to the average

height of the four control peaks. The ratios were normalized based

on the ratios obtained in control individuals, such that a ratio of

1.0 indicates a copy number of 2, while a ratio less than the

threshold of 0.8 suggests a copy number of 1. In both participants

N and Q, the ratio for the probe corresponding to the middle of

EXT1 exon 1 is below 0.8, suggesting a heterozygous deletion of

this exon. MLPA was performed twice for each participant. Error

bars indicate standard deviation.

(PDF)

Figure S6 Truncated SHP2 protein is not detected. Immuno-

blots of protein extracted from an exostosis from participant B-IV-

7 with a truncating frameshift mutation, rib cartilage from an

unaffected individual (cartilage expression tissue control), and

HELA cells (antibody control) that have been separated on a 4–

12% SDS-PAGE gel, transferred to Immobilon-P. Upper panel:

immunodetection using mouse-anti-SHP2 that detects an epitope

N-terminal of the frameshift mutation. Brackets indicate wild-type

SHP2 that is differentially phosphorylated. Wild-type protein is

present in the exostosis, likely from the bone marrow and fibrous

elements since the lesional cartilage was not selectively isolated.

Note absence of a unique band 17 kD in size, that would have

been expected if truncated protein was produced (arrow). Lower

panel: immunodetection of the same blot using a mouse-anti-actin

antibody as a loading control.

(PDF)

Table S1 Summary of metachondromatosis families and

PTPN11 mutations.

(DOC)

Table S2 Genes included in second capture array.

(DOC)

Table S3 Mutations identified in second capture array.

(DOC)

Table S4 Barcoded library adapters.

(DOC)

Table S5 PCR primers for library amplification and blocking

oligonucleotides.

(DOC)
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Table S6 Primers used for amplification of PTPN11 coding

exons.

(DOC)

Table S7 Probes used for MLPA.

(DOC)

Text S1 Supporting Materials and Methods.

(DOC)
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