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Abstract

Molecular subtypes of serous ovarian cancer have been recently described. Using data from independent datasets including
over 900 primary tumour samples, we show that deregulation of the Let-7 pathway is specifically associated with the C5
molecular subtype of serous ovarian cancer. DNA copy number and gene expression of HMGA2, alleles of Let-7, LIN28,
LIN28B, MYC, MYCN, DICER1, and RNASEN were measured using microarray and quantitative reverse transcriptase PCR.
Immunohistochemistry was performed on 127 samples using tissue microarrays and anti-HMGA2 antibodies. Fluorescence
in situ hybridisation of bacterial artificial chromosomes hybridized to 239 ovarian tumours was used to measure
translocation at the LIN28B locus. Short interfering RNA knockdown in ovarian cell lines was used to test the functionality of
associations observed. Four molecular subtypes (C1, C2, C4, C5) of high-grade serous ovarian cancers were robustly
represented in each dataset and showed similar pattern of patient survival. We found highly specific activation of a pathway
involving MYCN, LIN28B, Let-7 and HMGA2 in the C5 molecular subtype defined by MYCN amplification and over-expression,
over-expression of MYCN targets including the Let-7 repressor LIN28B, loss of Let-7 expression and HMGA2 amplification and
over-expression. DICER1, a known Let-7 target, and RNASEN were over-expressed in C5 tumours. We saw no evidence of
translocation at the LIN28B locus in C5 tumours. The reported interaction between LIN28B and Let-7 was recapitulated by
siRNA knockdown in ovarian cancer cell lines. Our results associate deregulation of MYCN and downstream targets,
including Let-7 and oncofetal genes, with serous ovarian cancer. We define for the first time how elements of an oncogenic
pathway, involving multiple genes that contribute to stem cell renewal, is specifically altered in a molecular subtype of
serous ovarian cancer. By defining the drivers of a molecular subtype of serous ovarian cancers we provide a novel strategy
for targeted therapeutic intervention.
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Introduction

The management of ovarian cancer is in transition. It is

increasingly apparent that ovarian cancer is a complex series of

distinct tumour types [1], requiring therapies that target molecular

features common to the subtypes of the disease. High-grade serous

ovarian cancers (HG-SOC) account for a majority of disease-

related deaths. Whilst response rates are high to platinum-taxane
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based adjuvant chemotherapy, there has been little improvement

in patient survival over the last decade or more, despite extensive

clinical investigation [2]. PARP inhibitors that exploit deficiencies

in homologous recombination repair [3,4] have shown consider-

able promise, particularly in women with germline BRCA1 or

BRCA2 mutations. HG-SOC is currently treated as a single entity.

A deeper understanding of the molecular drivers of this disease is

essential if more effective therapies are to be developed [2].

Recently, gene expression profiling revealed unappreciated

diversity within HG-SOC by delineating four distinct molecular

subtypes. One subgroup (C1) was defined by a reactive stroma

signature, correlating with extensive desmoplasia in such samples.

Tumours with the C2 signature were characterised by intra-

tumoural infiltration of immune cells, while C4 tumours had a

relatively low expression of stromal genes and high levels of

circulating CA125. The C5 subtype reflected a mesenchymal cell

gene expression signature, and these tumours had sparse immune

cell infiltration and were associated with low levels of circulating

CA125 [5]. The genetic events that give rise to each molecular

subtype of HG-SOC and control their clinical behaviour are

currently unknown.

Let-7s are a family of twelve sequence-related micro (mi) RNAs

distributed over eight genomic clusters that are often down-

regulated in cancer [6,7,8]. Let-7 has emerged as part of a complex

and important regulatory network in cancer, whose reduced

expression leads to re-expression of a range of oncofetal proteins

[6,9]. As with other miRNAs, Let-7 molecules recognise and bind

to their target sequences, resulting in both translational repression

and mRNA decay [10,11,12]. At a cellular level, Let-7 has

widespread effects on differentiation and self-renewal [13]. The

HMGA2 gene is an extensively characterized target of the Let-7

family of miRNAs [6,9,11,14] and encodes a DNA binding and

chromatin modifying protein that regulates both differentiation

and stem cell renewal [15]. High level expression of HMGA2 has

also been linked to poor outcome in a range of solid cancers,

including ovarian cancer [16]. The balance between HMGA2 and

Let-7 expression has been tied to maintenance of an undifferen-

tiated state in cancer cells [9,14]. A negative feedback loop

involving high-level expression of the Let-7 repressors, LIN28 and

LIN28B, has been associated with multiple malignancies

[14,17,18]. The oncogenes c-Myc and N-Myc are positive

regulators of LIN28 and LIN28B, respectively [19,20]. Therefore,

deregulation of different aspects of a pathway involving MYC

proteins, Let-7 repressors LIN28 and LIN28B, various Let-7 alleles,

and oncofetal targets such as HMGA2 have been reported in a

range of malignancies.

We have utilized genomic datasets from over 900 HG-SOC to

decipher the pathways that control this disease. We show that the

C5 subtype of HG-SOC is defined by Let7 and MYCN de-

regulation, presenting a new opportunity for targeted therapeutic

intervention in ovarian cancer.

Methods

Ethics statement
This study was approved by the Human Research Ethics

Committees at the Peter MacCallum Cancer Centre, Queensland

Institute of Medical Research, University of Melbourne and all

participating hospitals. Written informed consent was obtained

from all participants in this study.

Genomic datasets
Microarray gene expression data was obtained from four

cohorts, referred to as AOCS, TCGA, NCI and Norway. The

AOCS dataset (n = 285) was generated using Affymetrix U133 2.0

arrays and is available at Gene Expression Omnibus (GEO). The

Cancer Genome Atlas dataset (TCGA, n = 476) was generated

using Affymetrix HTHGU133a arrays, and obtained through the

TCGA data portal. The NCI dataset (n = 185) was generated on

Affymetrix U133a arrays and obtained from Michael Birrer,

Massachusetts General Hospital. The Norway dataset [21,22]

(n = 64) was generated using custom cDNA arrays and obtained

through the laboratory of one of us (A.H.). Clinical details for each

dataset are summarized in Table S1.

Patients and samples
Samples for immunohistochemistry and RNA validation studies

were obtained from the Australian Ovarian Cancer Study

(AOCS), a population-based cohort of women with epithelial

ovarian cancer recruited between 2002–2006 [5]. All patients

signed an institutionally-approved patient information and consent

document. Details of processes for patient accrual, collection of

clinical follow up information, pathological review, isolation of

nucleic acids, and preparation of tissue microarrays are described

previously [5].

Bioinformatic analyses
A detailed description of the multiple bioinformatic analyses

used in this report is provided in Supplementary Methods S1.

Quantitative real-time polymerase chain reaction (Q-RT-
PCR)

Measurement of expression of coding genes was performed as

described previously [23], using either TaqMan gene expression

assays (Applied Biosystems) or SYBR green (Applied Biosys-

tems). PCR amplification was performed in triplicate for each

sample. Endogenous controls HPRT1 and ACTB were included

for all assays and relative quantification of mRNA expression

was calculated by using the 22DDCt method [24]. The

expression of mature miRNAs for Let-7 alleles was determined

using a TaqMan miRNA Assay (Applied Biosystems) following

manufacturer’s instructions. Additional details, including prim-

ers and cycle times, are provided in Supplementary Methods

S1.

Immunohistochemistry and fluorescence in situ
hybridisation

HMGA2 protein expression was measured in HG-SOC samples

on a tissue microarray (n = 127) as described in Supplementary

Methods S1. Scoring was as follows: 0 - no/weak or moderate

nuclear expression, 1 - less than 10% tumour cells with strong

nuclear staining, 2 - 10–50% tumour cells with strong nuclear

staining, 3 - more than 50% tumour cells with strong nuclear

staining. Fluorescence in situ hybridization (FISH) of bacterial

artificial chromosome (BAC) probes to metaphase nuclei was as

previously described [17].

Functional assays in cell lines
Knockdown (KD) of target mRNAs was achieved using

Dharmacon On-Target Plus Smartpools (Dharmacon, Thermo-

Scientific) for all genes except MYCN, which was targeted using

Qiagen siRNA Hs_MYCN_3 (Qiagen). Controls included Dhar-

mafect1 alone, Dharmacon non-silencing control pool, GAPDH

smartpool, and All-Stars negative control (Qiagen) for MYCN

assays. Details of the cell culture and KD transfection conditions

are provided in Supplementary Methods S1.

MYCN Deregulation in Aggressive Ovarian Cancer
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Results

Molecular subtypes of HG-SOC
We developed a classifier based on the molecular subtypes

(C1, C2, C4, C5) identified in our previous study of 215 tumours

from the Australian Ovarian Cancer Study (AOCS) [5]. Using

the classifier and a supervised learning procedure, samples were

partitioned into one of the four molecular subtypes in datasets

from The Cancer Genome Atlas (TCGA) (n = 476), Norway

(n = 64) [21,22] and the National Cancer Institute (n = 185) [25]

(Figure 1A, Table S1). Consistent patterns of gene expression

and clinical outcome were observed across the datasets. C5

tumours were consistently associated with poor outcome

compared with the C2 subtype (Figure 1B–D). We note that

there was some variation in the relative frequency of the

molecular subtypes in the different datasets and this may be

associated with differences in the inclusion criteria used in each

study.

Figure 1. Molecular subtypes of serous ovarian carcinomas with clinical outcome data. (A) Heatmap of gene expression data taken from
AOCS, TCGA, NCI and Norway datasets shows that tumours are classified into 4 molecular subtypes. Genes are clustered by Pearson correlation and
samples are ordered by molecular subtype. While the original K-means clustering from Tothill et al. is shown for the AOCS cohort, a supervised
learning procedure was used for classification of tumours in other datasets (see Supplementary Methods S1). (B) Kaplan-Meier survival curves of
samples are plotted. Overall survival is used as the endpoint in all four datasets. Cox proportional hazard model is used to compute statistical
significance of the difference in survival between all four groups. Log-rank test p-value is reported. (C) Samples from all datasets were combined to
estimate the survival characteristics. Subtypes were compared to C5 and the log rank test p-value given in the table. (D) Kaplan-Meier curves are
plotted to depict the survival function of samples in the four different subtypes after combining the samples.
doi:10.1371/journal.pone.0018064.g001
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HMGA2 over-expression and Let-7 down regulation
To identify subtype-specific pathways we focused on C5

tumours, which are characterised by reduced circulating CA125

immunoreactivity, limited immune cell infiltration, an undifferen-

tiated phenotype [5], and poor overall patient survival (Figure 1B).

HMGA2 is the most strongly over expressed C5-specific gene

(AOCS p,0.0001; TCGA p,0.0001; NCI p,0.0001, two sided

Mann-Whitney test; Figure 2A, Table S2). Other markers of an

undifferentiated phenotype that are highly C5-specific include

DACH1, PAX2, LAMA1, MYCN, SOX11, as well as high-mobility

group members TOX and TCF7L1.

Immunohistochemical analysis also demonstrated that C5

tumours consistently express high levels of HMGA2 protein

(,95% at 3+; p = 0.02, two sided Fisher’s exact test; Figure 2B and

Table S3). At the protein level, strongly expressing tumours were

also present in other subtypes, albeit at a lower frequency. These

findings suggest that a specific mechanism of regulating HMGA2

mRNA expression or stability operates predominately in C5

tumours, and that post-transcriptional mechanisms may influence

HMGA2 protein expression in other subtypes. HMGA2 amplifi-

cation was more common in C5 tumours (p = 0.005, Mann-

Whitney test; Table S4). However, this could not account for the

majority of samples showing C5-specific over-expression, as

HMGA2 is significantly over expressed in C5 samples without

amplification of HMGA2 locus (Figure S1). Therefore, while

HMGA2 amplification is more common in C5 tumours, amplifi-

cation-independent mechanism(s) must account for C5-specific

over-expression of mRNA and protein.

HMGA2 is the most highly predicted target of the Let-7 family of

microRNA (miRNA) in the genome [6,9,11,14], suggesting

reduced Let-7 expression as an alternative explanation for the

pattern of HMGA2 expression in C5 tumours. Consistent with this,

we observed C5-specific over-expression of other gene normally

repressed by Let-7, including a core set of twelve oncofetal genes

defined by Boyerinas et al. [6] (Figure 2C; p = 4.861028, two sided

Fisher’s exact test). An independently derived gene set of the 100

most highly ranked Let-7 target genes predicted using a miRNA

target prediction model [26] was also significantly enriched in the

C5 subtype (p,0.0001, one-sided Fisher’s exact test) (Figure 2D).

We then directly measured expression of the Let-7 family in

AOCS samples using a TaqMan assay and compared the findings

with miRNA microarray data from the TCGA dataset. We found

that Let-7b, -7d, and -7i were significantly under expressed in C5

tumours compared with other subtypes in both the AOCS and

Figure 2. Oncofetal genes deregulated in the C5 subgroup. Let-7 target genes, including HMGA2 are specifically deregulated in the C5
molecular subtype of high-grade serous cancers. (A) mRNA expression of HMGA2 is significantly higher in the C5 molecular subtype. (B)
Immunohistochemical analysis of HMGA2 expression in ovarian cancer samples showing consistent over-expression in C5 tumours. Example of strong
(3+) staining (top) and no staining (bottom) panel. (C) A core set of Let-7 regulated target genes (Oncofetal genes) identified by Boyerinas et al [6] are
over-represented in C5 gene signature. (D) Let-7 target genes obtained from TargetScan5.0 are enriched in C5 tumours. The significance of overlap
between C5-specific and Let-7 target gene sets was determined by one-sided Fisher’s exact test. Bar plot depicting the association is shown.
(* indicates p,0.0001).
doi:10.1371/journal.pone.0018064.g002
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TCGA cohorts (Table 1). Let-7c, -7e and -7f were also significantly

under expressed in C5 in either TCGA or AOCS datasets. The

difference between the two cohorts with these alleles may relate to

sensitivity of the assay platform used, miRNA microarrays for

TCGA and TaqMan assays for the AOCS samples.

Deregulation of Let-7
We explored possible causes of low-level expression of Let-7

alleles. Genomic deletions, assayed by SNP-based arrays in the

TCGA dataset, showed that loss involving the chromosomal

region 22q13.31, encompassing Let-7b and Let-7a3, was more

common in C5 tumours (p = 0.018)(Table S5). Although loss of

22q13.31 may account for reduced expression of Let-7b in some

tumours, it would not account for the effects observed with other

Let-7 alleles, which are distributed over 8 loci and are more likely

to be de-regulated in trans. Defects in miRNA processing

machinery, including reduced levels of Dicer (DICER1) and

Drosha (RNASEN), have been linked to poor outcome in HG-SOC

[27], however, higher expression of DICER1 was observed in the

C5 subtype (Figure S2). DICER1 levels have been shown to be

negatively regulated by Let-7b [28,29], potentially explaining the

C5-specific over-expression of DICER1.

Lin28 and Lin28B negatively regulate Let-7 levels by binding to

the terminal loops of the precursors of Let-7 family miRNA,

thereby blocking processing into mature miRNAs [17,30,31,32].

We found that the expression of LIN28B, but not LIN28, was

highly enriched in C5 tumours (AOCS p,0.0001, TCGA

p,0.0001, two sided Mann Whitney test; Figure 3A and Figure

S2). Translocation between HACE1 and LIN28B has been

suggested to result in de-regulation of LIN28B and result in

lowered Let-7 levels [17]. FISH on a TMA of 239 ovarian

tumours, including 73 of known molecular subtype found evidence

for rearrangement between HACE1 and LIN28B in only a single

core from a HG-SOC tumour of unknown molecular subtype

(Table S6), suggesting this mechanism for LIN28B up-regulation is

rare in ovarian carcinoma.

Deregulation of MYCN
Recently, both c-Myc and N-myc have been shown to positively

regulate LIN28 and LIN28B expression [19,20], however, we

found no difference in expression of MYC between C5 and non-C5

tumours. Interestingly, gain of MYC was more common in non-C5

tumours (p,0.01) (Table S4). By contrast, MYCN was significantly

over expressed in C5 tumours (AOCS p,0.0001, TCGA

p,0.0001, two sided Mann Whitney test; Figure 3A). In the

TCGA dataset where both copy number and expression data were

available, MYCN copy number gain was highly enriched in the C5

subtype (p,0.0001, two sided Mann-Whitney test; Figure 3B).

Whilst there was a significant correlation between MYCN copy

number and gene expression, some C5 samples over expressed

MYCN without gene amplification, suggesting other mechanisms

of subtype-specific regulation. Further evidence of N-Myc activity

was obtained by examining expression of known target genes in

the AOCS and TCGA cohorts [33]. In both datasets we observed

a significant enrichment in expression of N-Myc target genes in C5

tumours (AOCS p,0.0001, TCGA p,0.0001, one-sided Fisher’s

exact test, Figure 3C), including trans-activation of LIN28B.

MYCN and HMGA2 expression were also highly significantly

correlated (Figure S3). We observed highly specific deregulation of

individual members of the MYCN-Lin28B-Let7 pathway in C5

tumours, as well as a broader set of MYCN and Let7 transcriptional

targets. To understand the extent to which the Let7 pathway

defines C5 tumours, we used a recently described signalling

pathway impact analysis (SPIA) [34] to probe other signalling

pathway dependencies. Amongst 87 signalling pathways tested,

Let7 was the most significantly regulated pathway in C5 tumours

(Table S7). Signature genes for all subtypes are presented in Table

S8.

Functional analysis of pathway associations
To explore the functional significance of our findings in primary

tumours, we searched genomic data from 40 ovarian cell lines.

A2780 and CH1 approximated C5 tumours most closely, as both

expressed low levels of Let-7 alleles, and high levels of HMGA2 and

LIN28B (Figure S4A, S4B). However, only CH1 expressed MYCN,

neither line showed amplification of the MYCN locus, and both

strongly expressed LIN28, the paralogue of LIN28B (Figure S4B,

S4C). Following systematic knock-down of LIN28, LIN28B and

MYCN we monitored expression of the Let-7 alleles. In both A2780

and CH1 cells, combined siRNA knock-down (KD) of both LIN28

and LIN28B resulted in up-regulation of virtually all Let-7 family

members (Figure S5A–B), consistent with previous reports [17,31].

KD of LIN28B was generally not as substantial as LIN28

(maximum achieved 70% KD, compared to .90% KD) and

was associated with less impact on Let-7 expression. Of particular

note, Let-7 up-regulation following LIN28/LIN28B KD was not

immediate; despite LIN28 and LIN28B mRNA being suppressed

within 48 hours, Let-7 up-regulation was not detectable until

96 hours. KD of MYCN RNA was difficult to obtain (Supplemen-

tary Methods S1) in the CH1 cell line. At best a reduction of 60%

mRNA expression was achieved (Figure S5B) and little effect on

LIN28B or Let-7 expression was observed. Neither KD of LIN28,

LIN28B, nor MYCN had a significant effect on HMGA2 protein or

mRNA expression (Figure S5C). However, as observed in some

C5 tumours, CH1 cells have amplification of HMGA2 (Figure

S4B), suggesting this cell line has an alternative mechanism of

HMGA2 over-expression.

Discussion

An extensive series of gain- and loss-of-function experiments in

cell lines have demonstrated a functional interaction between N-

myc and Lin28B [20]; Lin28B and Let-7 [17,30,31,32]; and Let-7

and HMGA2 and other oncofetal proteins [6]. Here we have

shown that each pathway element is specifically expressed in a way

that would account for the profound over-expression of HMGA2

and other oncofetal proteins in a large proportion of C5 tumours

Table 1. Differential expression of Let-7 alleles in C5 tumors.

TCGA data (n = 476) AOCS data (n = 56)

pvalue (fdr)
Log fold
change pvalue (fdr)

Log fold
change

hsa-let-7a 0.2 0 0.082 20.85

hsa-let-7b* ,0.0001 20.69 0.003 21.53

hsa-let-7c 0.003 20.21 0.293 20.83

hsa-let-7d* 0.008 20.24 0.009 21.1

hsa-let-7e ,0.0001 0.49 0.263 20.46

hsa-let-7f 0.972 20.04 0.008 21.17

hsa-let-7g 0.891 0.01 0.087 20.46

hsa-let-7i* 0.001 20.25 0.012 21.28

hsa-miR-98 0.606 20.14 0.062 20.81

*Significantly reduced expression.
doi:10.1371/journal.pone.0018064.t001
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(Figure 4, Table S9). Gain or over-expression of MYCN has not

previously been associated with serous ovarian cancer. Whilst a

level of amplification is not as high as typically described in

neuroblastoma [35], we find significant over-expression of N-myc

target genes in C5 tumours supporting the view it is functionally

active. Recent data shows that even low-level copy number gain of

MYCN can significantly influence patient outcome in medullo-

blastoma [36]. MYCN over-expression was highly C5-specific and

mechanisms in addition to amplification are likely to contribute to

this.

It is likely that several mechanisms lead to HMGA2 subtype

specific expression including MYCN amplification, loss of specific

Let-7 alleles including Let-7b, and amplification of HMGA2 itself.

For example, in CH1 cells LIN28 and LIN28B are both over

expressed and repress Let-7 expression, however, these cells also

show HMGA2 amplification. We also found a significant

association between the C5 molecular phenotype and loss of Let-

7b. The expression of Let-7b was reduced in both AOCS and

TCGA datasets, and it is noteworthy that amongst Let-7 alleles,

Let-7b has been previously reported as being under expressed in

HG-SOC [37]. Although the different alleles of Let-7 appear to

target very similar sequences, the presence of multiple indepen-

dent genes, their differential expression during development [7]

and our data imply they perform selective roles.

The over-expression of MYCN and Let-7 targets in C5 tumours

adds weight to the functional significance of the amplification and

over-expression of MYCN and the significant reduction in

expression of Let-7 alleles. Knockdown of LIN28 and LIN28B

expression resulted in re-expression of Let-7 providing additional

evidence of a chain of interactions in ovarian tumours. However,

other established interactions were not observed in the ovarian

cancer cell lines tested here. For example, although HMGA2 is a

well-defined target of Let-7 [6], both in gain and loss-of-function

experiments, restoration of Let-7 expression did not noticeably

influence HMGA2 expression. These findings may be explained by

limited experimental suppression of LIN28B and MYCN, the fact

Figure 3. Amplification of MYCN and over-expression of MYCN and LIN28B in C5 tumours. (A) Boxplots depict differential expression of
LIN28B and MYCN in different molecular subtypes of serous ovarian cancers AOCS dataset. (B) DNA copy number levels and expression levels of MYCN
are highly correlated. C5 samples (coded in red) are predominately distributed in the top right corner of the plot. Samples with segmented copy
number log ratio greater than 0.3 were considered to have a gain of MYCN and samples with segmented log ratio less than 20.3 were considered to
have a loss. Fisher’s exact test was used to compute the statistical significance of the association. (C) Association between MYCN targets and C5 gene
sets. MYCN targets were extrapolated from the intersection of two gene lists, (1) genes bound by N-myc in mouse embryonic cell lines and (2) genes
with 2-fold increase in expression following transfection of N-myc in mouse embryonic cells (see Supplementary Methods S1). Using data from AOCS
or TCGA gene expression sets genes were classified as high or low in C5 tumours versus all other tumours (C1–C4) at p,0.001 by two-sided t-test.
The significance of overlap between C5 gene sets and MYCN gene sets was determined by a one-sided Fisher’s exact test. Bar plot depicting the
association is shown.
doi:10.1371/journal.pone.0018064.g003
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that neither CH1 nor A2780 cell lines faithfully phenocopy all of

the molecular defects seen C5 tumours, and the amplification of

HMGA2 in CH1 cells. We also note that Let-7 expression was

restored only after an extended period (96 h) of siRNA-mediated

knockdown of LIN28 and LIN28B, suggesting that it is difficult to

reinitiate the pathway once it has been down-regulated. Further

validation of our findings will require cell lines derived from C5

tumours that more closely share the molecular characteristics of

their primary counterparts.

Whilst elements of this pathway have been previously

demonstrated to be de-regulated in ovarian cancer [37,38], our

report is the first to show complete pathway disruption and its

association with a specific subtype of HG-SOC. Our analysis

indicates that the Let-7 pathway is uniquely prominent amongst

signalling events disrupted in C5 tumours, and appears to sculpt

their transcriptional profile. The identification of molecular

subtypes of breast cancer [39,40] and certain haematological

cancers such as diffuse large B-cell lymphoma [41,42,43] have

provided powerful starting points to discover subtype-specific

drivers of disease. Concomitant down regulation of Let-7 and

augmented HMGA2 expression results in less differentiated

tumours with stem cell-like characteristics [6,9,13,14,15]. These

observations are consistent with the low expression of differenti-

ation markers in C5 tumours [5], including MUC16, the target of

the CA125 antibody used clinically for ovarian cancer diagnosis

and prognosis. Our work for the first time defines a pathway in

HG-SOC that is associated with and appears to drive the

biological and clinical behaviour of a distinct molecular subtype

of ovarian cancer, suggesting a targeted therapeutic approach in

this group of patients.

Supporting Information

Figure S1 HMGA2 gene is significantly up-regulated in
C5 tumours from TCGA. (A) mRNA expression of HMGA2

based on all samples from TCGA (B) HMGA2 is over-expressed in

samples without amplification of HMGA2 locus.

(TIF)

Figure S2 Expression of a number of C5 specific genes
measured using qRT-PCR. This is done to validate the

microarray expression data from the AOCS cohort. Boxplots

depicting the relationship between expression levels of these genes

and molecular subtype (C5 or Non-C5) are shown, p-values are

computed using Wilcox on rank sum test.

(TIF)

Figure S3 HMGA2 and MYCN expression levels. (A)

HMGA2 and MYCN expression levels are correlated in TCGA

samples. (B) HMGA2 and MYCN expression levels are correlated

in AOCS samples.

(TIF)

Figure S4 Cell lines and similarities to the C5 molecular
subtype. A panel of 40 ovarian cancer cell lines was interrogated

for similarity to the C5 molecular subtype. (A) Gene expression

Figure 4. Amplification and over-expression of MYCN influences a regulatory loop involving LIN28B, Let-7 and HMGA2 in C5 high-
grade serous tumours. Each event is significantly enriched in C5 versus non-C5 high grade serous tumours: MYCN amplification p,0.0001; MYCN
over-expression p,0.0001; over-expression MYCN targets p,0.0001; LIN28B over-expression p,0.0001; under-expression Let-7 alleles p,0.01-0.0001;
HMGA2 amplification p,0.001, HMGA2 over-expression p,0.0001 (TCGA data). Cumulatively loss of Let-7b, and/or gain of HMGA2, and/or gain of
MYCN occur in 77.8% of samples in C5 subtype (p,0.0001, two-sided Fisher’s exact test; Table S4).
doi:10.1371/journal.pone.0018064.g004
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profiles of Let-7 alleles in A2780 and CH1 cell lines. (B) Gene

expression heatmap of 12 oncofetal genes as well as other defined

targets and regulators of the LIN28B-Let-7 pathway are shown for

40 ovarian cancer cell lines. CH1 and A2780 resemble C5 tumours,

with over expression of HMGA2, LIN28B and LIN28. (C) SNP 6.0

Genome-wide copy number profiles of CH1 and A2780. Several

key genomic loci are noted: MYCN, MYC, HMGA2, LIN28 and

LIN28B. Although neither cell line shows amplification of MYCN,

CH1 expresses relatively high levels of MYCN RNA. CH1 cells also

show amplification of HMGA2. The relatively limited chromosomal

change seen in CH1 and A2780 is atypical of HG-SOC.

(TIF)

Figure S5 Knock-down results in cell-lines A2780 and
CH1. Heatmaps showing relative knockdown of genes and

resulting changes in gene expression in A2780 (A) and CH1 (B).

Altered expression of Let-7 family members was assayed by

TaqMan microRNA assays and is displayed over as log2 fold

change as per color scale bar. (C) Western blot illustrating change

in protein expression following mRNA knockdown of target gene

MYCN in CH1 cells. Typical experiments are shown. NS, non-

silencing control siRNA.

(TIF)

Supplementary Methods S1 Description of microarray
datasets.
(DOCX)

Table S1 Summarized clinical annotations for samples
from NCI.
(XLS)

Table S2 Genes significantly upregulated in C5 sub-
type.
(XLS)

Table S3 Contingency table HMGA2 protein intensity
and molecular subtypes.
(XLS)

Table S4 Genes significantly gained in C5 subtype.

(XLS)

Table S5 miRNA locus significantly lost in C5 subtypes.

(XLS)

Table S6 Summary of FISH on TMA for AOCS samples
of known molecular subtype.

(PDF)

Table S7

(XLS)

Table S8 Genomic aberrations and their association
with subtypes.

(XLS)

Table S9

(XLS)

Table S10

(XLS)
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