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There is an abundance of literature on complex networks describing a variety of relationships among 
units in social, biological, and technological systems 1. Such networks, consisting of interconnected 
nodes, are often self-organized, naturally emerging without any overarching designs on topological 
structure yet enabling efficient interactions among nodes 2, 3.  Here we show that the number of nodes 
and the density of connections in such self-organized networks exhibit a power law relationship. We 
examined the size and connection density of 46 self-organizing networks of various biological, social, 
and technological origins, and found that the size-density relationship follows a fractal relationship 
spanning over 6 orders of magnitude. This finding indicates that there is an optimal connection density 
in self-organized networks following fractal scaling regardless of their sizes. 

There has been considerable interest in the organization of complex networks since the descriptions 
of small-world 3 and scale-free 2 networks at the end of the 1990’s. Of particular interest are naturally 
occurring complex networks based on self-organizing 
principles 2. In particular, self-organized processes have 
been shown to exhibit some scale-free and fractal 
behaviors 2, 4.  Demonstrating scale-free degree 
distributions in many self-organized networks, the work of 
Barabasi and colleagues 2, 5-7 has sparked great debate 8-10 
on the actual existence of scale-free behavior in naturally 
occurring networks. Although the degree distributions of 
many networks were initially considered to follow power law 
distributions 10-14, severe truncation has been often 
observed. Nevertheless, it is intriguing that self-organized 
networks can exhibit scale-free degree distributions, and 
this has led scientists to the search for universality within 
self-organized systems.  

The literature on network organization encompasses a 
broad range of disciplines and disparate types of networks. 
The literature boasts networks that range from email 
communications to protein interactions to word frequencies 
in texts. The number of nodes and the density of 
connections in these networks span multiple orders of 
magnitude, complicating comparisons of metrics extracted 
from various studies. One common characteristic, however, 
is that the majority of them are self-organized--from social to 
technological to biological networks, the interactions 
between the nodes were not predetermined by a top-down 
blueprint design.  

The work reported here describes a universal relationship between network size (the number of 
nodes, N) and connection density (the ratio of the number of existing edges to the number of all 
possible connections, d) across various types of systems. Network parameters from 46 unique 
networks were collected from the literature or publicly available databases as described in the 

Figure 1. Log-log plot of the relationship 
between the number of nodes in a 
network (network size, N) and the 
density of connections (d). Each point 
represents a different network based on 
the previous literature. The fit shows a 
power law relationship that spans more 
than 6 orders of magnitude with an 
exponent of -0.989 consistent with a 
scale-free fractal behavior. 
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supplemental methods. When the data are plotted on a log-log plot (Figure 1), there is an obvious 
linear relationship between the variables. The fit to the data (d = 7.7227N-0.989) reveals a power law 
relationship between the size and density of the networks. The scaling exponent approaches negative 
one (-1), indicating that the relationship is fractal in nature with 1/f properties. Despite the wide variety 
of networks, there is a pronounced power law relationship between size and density covering more 
than 6 orders of magnitude for both node number and connection density. The fit to the data is very 
strong (Spearman’s correlation ρ = -0.956, p<0.0001), and there is no indication of truncation at the 
very large network sizes. It can be seen from the figure that there are two extraordinarily large 
networks included in the analysis. These networks demonstrate that there is no truncation of the 
relationship at the extreme values. Even when these networks are removed, the correlation remains 
very strong (Spearman’s correlation ρ = -0.950, p<0.0001) and the exponent is -0.979. Thus, these 
two points are not unduly influencing the analysis. 

The findings reported here demonstrate a universal relationship in self-organized networks such that 
the network size dictates the density. The fractal behavior observed is of particular interest because it 
indicates that self-organized networks are critically organized. The number of connections within each 
network is scaled to the size of the network, and this universal behavior likely represents an optimal 
organization that ensures maximal capacity at a minimal cost. Furthermore, the critical organization 
would indicate that a density reduction would decrease the communication capabilities of the system. 
An increase in the density, on the other hand, would increase the wiring cost beyond the gain in 
capacity. It is true that one could artificially generate networks that do not exhibit this size-density 
relationship. In fact, the literature contains such artificially generated networks that do not lie near our 
plotted line. But such artificially created networks probably do not have real world relevance. We show 
here the scale-free relationship between network size and connection density in real networks from 
such diverse origins, supporting the notion of a universal law for network organization. 

While replication of these findings from more networks will be important, there are a number of 
practical implications of these findings. First, the construction of networks is inherently limited by the 
sampling procedure used to identify nodes and links. If a self-organized network is found to disobey 
this relationship, one should seriously consider that there was a bias in the sampling of the network 
structure. Second, when building artificial networks to be compared to naturally occurring systems, the 
size-density relationship should roughly follow the 1/f relationship. For example, in studies of 
functional brain networks, cross-correlation matrices of nodal time series are often thresholded to 
identify links between nodes. The optimal threshold to be applied is not known, and the typical 
solution is to utilize multiple thresholds 15 producing networks with various densities. Based on the 
findings presented here, an optimal threshold can be easily determined, resulting in a network 
following the 1/f size-density relationship. Finally, engineered networks for practical applications may 
realize an optimal cost-benefit trade-off by ensuring that the density of connections is appropriate for 
the network size. 

We show an important, apparently universal feature of self-organized networks: fractal scaling of size 
and density of connections. This fractal scaling is independent of network types, as the analysis 
spanned a wide gamut of networks, from biological (e.g., C. elegans neuronal architecture) to 
technological (e.g., the World Wide Web) to cultural (e.g., actors network) to social (e.g., student 
relationships). Thus, it appears that there is an underlying principle to organizing these self-emergent 
networks, a principle that probably ensures optimal network functioning. 
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